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Figure 1: Illustration of the apparatus developed to measure the Motion-to-Photon latency. A microcontroller (middle) reads the
difference between the rotation of a tracked controller as moved by a motor (left) and the reported rotation on the Vive display (right).
The illustration shows the experimental prototype which disassembled the Head-Mounted Display for easier access to the internals,
i.e., the lenses and displays.

ABSTRACT

Latency in Virtual Reality (VR) applications can have numerous
detrimental effects, e.g., a hampered user experience, a reduced
user performance, or the occurrence of cybersickness. In VR envi-
ronments, latency usually is measured as Motion-to-Photon (MTP)
latency and reported as a mean value. This mean is taken during
some specific intervals of sample runs with the target system, of-
ten detached in significant aspects from the final target scenario, to
provide the necessary boundary conditions for the measurements.
Additionally, the reported mean value is agnostic to dynamic and
spiking latency behavior. This paper introduces an apparatus that is
capable of determining per-frame MTP latency to capture dynamic
MTP latency and latency jitter in addition to the commonly reported
mean values of latency. The approach is evaluated by measuring
MTP latency of a VR simulation based on the Unreal engine and
the HTC Vive as a typical consumer-grade Head-Mounted Display
(HMD). In contrast to previous approaches, the system does not rely
on the HMD to be fixed to an external apparatus, can be used to
assess any simulation setup, and can be extended to continuously
measure latency during run-time. We evaluate the accuracy of our
apparatus by injecting a controlled artificial latency in a VR simu-
lation. We show that latency jitter artifacts already occur without
system load, potentially caused by the tracking of the specific HMD,
and how mean latency and jitter increase under system load, leading
to dropped frames and an overall degraded system performance. The
presented system can be used to monitor latency and latency jitter
as critical simulation characteristics necessary to report and control
to avoid unwanted effects and detrimental system performance.
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1 INTRODUCTION

Each instruction of a computer system has an associated execution
time. As a result, any output that is calculated after changing user
input will always be delayed, introducing latency into the human-
computer interaction loop. The impact this delay causes on the
system qualities of usability and user experience depends on the
interactivity and potential real-time requirements of the human-
computer interface and the employed interaction metaphor [6]. Even
users of a spreadsheet software in a 2D graphical user interface (GUI)
expect a timely response to a mouse click. The response should
feel to be instantaneous. The conditions to experience feedback as
instantaneous depend on several factors of the interaction metaphor.

Direct interaction metaphors are more sensitive to delays than
indirect ones. Here, VR systems are specifically sensitive to delays
between input and output processing since they directly and continu-
ously couple input, including head movements, to the visual output.
The overall latency in VR between an action, e.g, moving an input
controller measuring hand or head movements, and its correspond-
ing effect shown on a screen is denoted as Motion-to-Photon (MTP)
latency. Unwanted delays during the input-to-output processing not
only risk to annoy users but they potentially might induce more
severe consequences of visually-induced motion sickness (VIMS)
and cybersickness [25]. Hence, a central requirement of VR systems
is to measure and finally control a VR system’s latency behavior to
judge its performance before negative consequences arise.

Deducing the latency from code inspection and counting the
execution times of all instructions of a VR application is largely out
of reach today. The interplay of all soft- and hardware sub-systems
of modern general-purpose computer systems introduce a dynamic
complexity that can only be observed as a black box [28]. Low-
level system interrupts of the system’s motherboard, modern CPU
speed-up approaches including parallelization, caching, and branch
prediction, as well as high-level operating system and application-
layer aspects of concurrency, multi-threading and scheduling, and
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Table 1: Comparison of previous approaches to latency measurement. Camera based approaches are less intrusive but can’t capture an object
and an HMDs screen with the exception of augmented reality headsets [23]. Camera based approaches are not viable if the user wears an HMD
as the view is obstructed. Photodiodes are more intrusive but provide high temporal resolution. Approaches that use photodiodes attached to the
screen can allow to use a majority of the screen to display a VR experience. Only a small screen area needs to be reserved for the information
that gets picked up by the sensor. Other approaches that use photodiodes have either only tested with a monitor screen instead of an HMD or
require the HMD to follow specific movement patterns. Our approach is the only one that uses photodiodes with an HMD without the need of a
predetermined HMD movement pattern. This potentially allows to measure latency while a user consumes a VR application.

Author Method Capture Latency Use
HMD

HMD
wearable

Measurement
frequency

Temporal
Resolution

Becher et al. [2] Continuous Photodiode Mean, SD, Min, Max yes no 11 ms Frame

Di Luca et al. [7] Sine Fitting Photodiode Mean, SD yes no 20 Hz Once

Friston et al. [11] Event Camera Mean, SD, Min, Max yes no Acceleration
peak

Movement
dependent

He et al. [14] Event Camera Mean no no Grid line
crossed

Movement
dependent

Kämäräinen et al. [17] Event Photodiode Mean, SD no possible 16 ms - 100 ms Once

Liang et al. [19] Continuous Camera Mean no no 20 Hz Frame

Mine [22] Event Photodiode Mean no possible Pendulum zero
position

Movement
dependent

Papadakis et al. [23] Continuous Photodiode Mean, SD no possible 0.1 ms 0.1 ms

Sielhorst et al. [26] Continuous Camera Distribution AR no < 1 ms < 1 ms

Steed [32] Sine Fitting Camera Mean no no 25 Hz Once

Wu et al. [35] Continuous Camera Distribution no no 2 ms 2 ms

Zhao et al. [36] Sine Fitting Photodiode Mean, SD yes no 11 ms Once

Our approach Continuous Photodiode Mean, SD, Distribution yes yes 11 ms Frame

I/O communication (including networking) and the interplay of all
these aspects induce a potential fluctuation in execution time. After
all, real-time capabilities currently are not a central requirement for
the typical consumer-grade general purpose computer systems. As
a result, the overall MTP latency of VR systems is often reported
as a mean value – if it is reported at all. However, each of the
multiple hardware and software parts either contribute their own
variable latency during run-time or the interplay of all parts creates
a dynamic pattern of latencies not well represented by a mean value
derived from sample runs.

Ideally, we would either be able to control and assure run-time
behavior as provided by real-time systems, or to continuously moni-
tor latency and latency jitter during execution of a VR system. For
example, spikes in latency may influence and invalidate results dur-
ing VR experiments since they induce a potential confound. The
ability to detect latency spikes during experiments allows to sort out
trials when the experimental condition is overshadowed by technical
inconsistencies. Overall, monitoring latency in VR systems is a crit-
ical quality assurance measurement to optimize run-time behavior
and to assess and guarantee good usability and user experience of
VR systems.

Contribution

This paper introduces an apparatus that is capable of determining
per-frame MTP latency to capture dynamic MTP latency and latency
jitter in addition to the commonly reported mean values of latency.
The approach is evaluated by measuring MTP latency of a VR
simulation based on the Unreal engine and the HTC Vive as a typical
consumer-grade Head-Mounted Display (HMD). We inject artificial
latency in a VR simulation and show that latency jitter artifacts
already occur without system load, potentially caused by the tracking
of the specific HMD, and how mean latency and jitter increase under
system load, leading to an overall degraded system performance.
In contrast to previous approaches, the system does not rely on the
HMD to be fixed to an external apparatus, can be used to assess
any simulation setup, and can be extended to continuously measure
latency during run-time.

2 RELATED WORK

Visual delay was found as a major contributing factor already in early
simulators [10]. Time invariant latency causes cybersickness [5],
decreases performance [15] and reduces presence [21]. Reoccuring
latency spikes also have negative effects on performance [24, 33]
and cybersickness [31]. Interruptions in VR can cause a break in
presence [27].

Users are able to distinguish changes in latency for hand [9] as
well as for head [8] movements that are faster than 33 ms. Building
on this work, Mania et. al. test sensitivity to head tracking latency
in virtual environments [20] where they show that differences of
15 ms are still distinguishable. The currently common VR displays
running on 90 Hz would exceed this detectable threshold if tracking
information is even one frame delayed.

The performance of VR applications is usually assessed by mea-
suring MTP latency which tracks the time between an input on a
certain input channel and the time it takes to show its effect on a dis-
play. He et. al. [14] employ manual frame counting. They record a
tracked controller’s movement and its virtual counterpart at the same
time with a high-speed camera. They count the time delay between
movement discontinuities to infer the latency. Steed [32] replaces the
error prone determination of discontinuities in the video with sine
fitting. Steed attaches the tracked controller to a pendulum and fits
the movement with a sine curve. The use of a continuous signal in-
stead of detecting distinct events reduces the impact of inaccuracies
due to limited temporal video resolution. Fitting a sine to the real
controller’s movement and its virtual image yields the MTP latency
in the phase difference. The still manual video analysis is replaced
by a direct deduction of the sine’s gradient with photodiodes by Di
Luca [7] or image processing in Friston and Steed [11]. Papadakis
et al. [23] correlate a continuous movement of a tracked object with
a photodiode reading which is attached to a monitor screen. An
oscilloscope shows measurements of the system’s latency. Becher
et al. [2] use multiple photodiodes on the HMD screen to pick up
the brightness encoded HMD orientation. A motor rotates the HMD
to provide the base truth. The latency is derived from the difference
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of the orientation in reality and the orientation reported on screen.
Kämäräinen et al. [17] use a photodiode and a simulated touch event
to measure latency in a remote rendering application, inducing fur-
ther latency through additional non-local network communication.
All approaches report one mean latency value and if the approach
allows it a standard deviation.

Latency, however, changes with time and shows repeated
spikes [7, 28]. This is a result of the complexity of VR systems
that often consist of multiple software components to handle various
input and output modalities that run in parallel or on distributed
machines [1, 18, 29]. Regarding latency as time invariant allows to
only measure it once and claim that it will be the same at a later time.
Sielhorst et al. [26] describe the latency behavior of an augmented
reality system with the distribution of measured latencies. Their
measurements exhibit infrequent outliers. Wu et al. [35] propose
a camera-based approach to measure latency at a 1 ms resolution
again showing the time variability of latency. If latency is to be
assumed to change during runtime of a system, it is neccessary to
measure latency spikes during user studies that might be influenced
by this jitter.

Latency measurement either focuses on the latency between cer-
tain events, or use sine fitting to correlate a known movement to the
measurement data. If the measurement is precise enough and can
be repeated often, a continuous approach is taken. The capturing of
latency measurements is either done with a camera that records both
the tracked object and the result on a screen, or with photodiodes
attached to a screen that are correlated with a known movement.
Camera based measuring is less invasive but is hard to use with
HMDs, as their screen is difficult to capture. Photodiodes are more
invasive and need additional hardware to support their usage, but can
potentially report measurements during runtime of a system, and not
only in post hoc analysis. A comparison of the reported approaches
is presented in Table 1.

Research shows that latency changes over time and users of VR
applications can detect small changes in latency, but measuring
approaches are restricted to report mean values. We introduce a
setup that allows to measure MTP latency for every frame, that can
be extended to work during VR experiments. We use this to describe
a VR system’s latency under different conditions.

controls

is tracked by displays

is read by

motion to photon
latency

Figure 2: End-to-end latency in the setup: The top part shows MTP
latency from a tracked controller to its representation on the HMD
screen. The bottom shows the microcontroller comparing controller
and display to calculate the MTP latency.

3 SETUP

We measure the time between a known real-world rotation of a
tracked controller, and the effect of said rotation on a HMD screen.
A motor rotates a tracked controller with a known speed. The tracker
sends the position and orientation of the controller to a computer.
The computer then calculates the motor angle from the orientation.
This detected angle is rendered to a VR HMD screen, encoded
into rectangles with certain brightness levels. Each processing and
communication adds to the final latency both by our own software
and by the hard and software we are using. A microcontroller is
employed to drive the motor and to read the HMD screen using
photodiodes. It calculates the difference between the known motor
angle and the angle reported on the screen. Knowing the speed of
the motor, introduced latency between movement of the controller to
display of the correct orientation on the HMD screen can be deduced.
An overview is shown in Figure 2.

We use an HTC Vive tracker, first and second generation, which
is mounted on a NEMA17-01 2 phase hybrid stepper motor. The
tracker orientates itself with an IMU and the Lighthouse tracking
system at 120 Hz [16]. The tracking data is sent to the connected
computer. A VR application based on the Unreal Engine 4.22.3
receives the data through the SteamVR/OpenVR connection. The
microcontroller is a NUCLEO L152RE developer board with ARM
Cortex M3 processor, attached to a motor driver shield X-NUCLEO
IHM01A1. Four OSRAM BPW 21 photodiodes are attached to the
microcontroller and HMD to read back the orientation of the tracked
controller encoded on the HMD screen.

The Unreal Engine collects the most recent tracker orientation
every frame and provides it for the subsequent user logic. We receive
the orientation in euler angle form and convert it to a quaternion to
extract the motor angle. This extraction needs a calibration before the
experiment. The tracker rotates multiple times around its axis. Due
to the intermittent Euler angle representation, the orientations form
a line in quaternion space. The quaternion at the beginning of the
line q0 is used to normalize all other rotations. It is characterized by
having a negative distance to its predecessor, with the distance being
calculated using the dot product between itself and its predecessor.
The calculation is done multiple times to account for sampling errors.
All potential quaternions for q0 are collected in a set S.

S = {qt |〈qt ,qt−1〉< 0}

where qt is the tracker’s orientation at time t. The quaternion q0 is
the element of S with minimal w component.

q0 = argmin
p∈S

p(w)

A multiplication of an orientation qt of the tracked controller with
the inverse of q0 removes the base orientation, i.e. the slope the
tracker stands on. This assumes that the motor and attachement
provide a rotation without nutation. The normalized quaternion is
denoted qn.

qn, t = qt ·q
−1
0

The motor/tracker angle at is then computed by taking the inverse
cosine of the w component.

anglet = cos−1(qn,t(w))

The stepper motor moving the tracked controller rotates at 0.9◦

per step. Microstepping increases the motor vibrations that influence
the IMU part of the tracking significantly, and was therefore not
used. The motor is attached to a small slope to prevent gimbal lock.
The calculated controller angle is converted to its stepper motor
step equivalent and encoded on the HMD, by rendering a brightness
pattern to a specific area of the HMD screen. Four photodiodes
attach to the display area to read back the brightness values rendered
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pattern. The lens is taken out, and the rectangles encoding the
number are enlarged for a better view. The number displayed in the
middle is for debugging only, as the photodiodes are attached at the
border of the screen.

on the screen. The photodiodes are able to distinguish four different
values consistently, leading to a total number of 256 (44) different
values that can be encoded. The 400 possible steps per single rotation
of the motor exceed the 256 distinguishable values and are therefore
encoded modulo 200. Figure 3 shows an example number encoded
on the display.

The Vive display is dark most of the time, with a light wave occur-
ing every frame. The microprocessor reads the attached photodiodes
at a frequency of 4 kHz, delivering approximately 44 brightness
samples per frame for each photodiode, of which 16-17 are in the
bright region of each frame. The bright region consists of a plateau
of 6-7 samples. The remaining 10-11 samples describe the rising
and diminishing brightness. Figure 4 shows an exemplar reading
of the brightness levels of the various photodiodes during several
frames of the HMD. The photodiodes have different dark levels due
to variation in their attachment. The brightness reading rises once
an image is shown. The absolute brightness units carry no meaning
here, as the measurements are used for relative comparison between
the different brightness levels, and are normalized in the figure. The
computer performs a calibration with the microcontroller over its
serial interface prior to the measurements, to ensure accurate and
repeatable detection. The calibration phase starts to display a black
HMD screen for the microcontroller to pick up which sensor values
equal black. To be robust against small variations, the black thresh-
old is set to be at 1.15 times the maximum measured black value.
All readings above this threshold are then counted as belonging to a
brightness level encoding a specific grey level of the display. The
computer then presents each possible brightness combination to the
microcontroller, while communicating which actual grey level is set
over the serial interface. The microcontroller deduces for each sensor
which measured brightness interval represents the respective number.
The figure shows the four different brightness values used in our
system, presented to one of the photodiodes each. Relatively large
gaps between amplitudes of the different curves indicate that more
intensity levels could be distinguished by the photodiodes. This

Figure 4: Brightness readings of the Vive display with four different
brightness values shown as read by four photodiodes. The Vive
display is black most of the time with a short burst of brightness to
show the image. The maximum brightness represents the color shown
on screen.

optimization was not followed up upon, to keep the measurements
as reliable as possible. During measurement, the microcontroller
saves the two highest brightness values for each phase, while the
brightness reading is above the black threshold for each respective
diode. The encoded number is deduced at the fourth reading below
the black threshold by averaging the two highest values and com-
paring the result to the brightness intervals calibrated during system
startup. We discard a frame’s reading if at least one photodiode
doesn’t detect the light flank end within 2 ms of the other diodes to
guard against erroneous readings.

The microcontroller drives the stepper motor with two revolutions
per second. Using a motor with 400 steps per revolution, one step of

the motor is occuring every 1
800 s = 1.25ms. This value that depends

on the employed stepper motor is a limiting factor determining the
maximum possible accuracy of the measurements in the following
experiments.

4 EXPERIMENTAL MEASUREMENTS

We use our setup to observe a computer systems’s baseline MTP
latency behavior and MTP latency behavior under load. We validate
the system setup with an experiment: Known artificial latency jitter
is introduced at the application stage of our VR system, to determine
if the additional latency is visible in the final readings compared to
an established baseline containing no additional latency.

4.1 Experiment 1: Baseline

The baseline measurement describes the MTP latency behavior of
our system. Common VR applications are expected to show a similar
latency behavior.

4.2 Experiment 2: Artificial Latency Jitter

We introduce artificial latency jitter to see if manipulation at the
application stage is visible in the final measurement. The introduced
jitter discards position and orientation updates of the tracker every
16th frame for the duration of two frames. The implementation fol-
lows Stauffert et al. [31] but exchanges the probability distributions
with fixed numbers to achieve the desired effect.
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Figure 5: Difference in between the real tracker rotation and the
reported tracker rotation on the HMD screen reported as delay in ms
as deduced by the rotation speed of the tracker. The difference was
measured for every frame of the HMD. Most latencies are close to
the mean value with few latency spikes. There are regular reoccuring
spikes and irregular spikes.

4.3 Experiment 3: Load Analysis

We stress the computer running the application “HeavyLoad” [13]
that creates load on both the main processor and the graphics card.
This leads to a CPU load of 100% on all cores, and a GPU load close
to 100% causing other applications running concurrently to suffer.

We assume to encounter a fixed angular offset between the mo-
tor rotation and the motor rotation reported on screen, as long as
the computer has sufficient free resources. Stressing the computer
here with a background benchmark or in general with a demanding
simulation should evoke similar spikes in angular difference as in
the previous experiment, where latency was introduced in a prede-
termined period. The expected difference is a varying latency spike
duration with varying occurrence.

5 RESULTS

5.1 Baseline Measurements

Figure 5 shows parts of a test run. We discard the first four seconds
of the motor accelerating. Most of the latency measurements gather
around one value differing only by one stepper motor step differ-
ence equaling 1.25 ms. Repeated outliers to both sides represent
disturbances in the tracking or processing resulting in latency jit-
ter. We do not have any insight where the latency jitter originates.
Examples of sources can be the tracking, different components like
scheduling and background tasks, application stage like specifics in
the employed engine, the display, or any stage in our setup.

The mean latency in the baseline test run was 56.14 ms with
a standard deviation of 1.6 ms. There is no difference between
using a Vive tracker of the first generation compared to the second
generation version. The plots here show a test run with a tracker of
the second generation.

We measure repeated latency spikes followed by a period of lower
latency that degrades to the mean after few samples. Figure 6 shows a
segment with two such patterns. These patterns occur approximately
every 61.4 seconds. The measurement in Figure 5 features three
occurrences with in between times of 61.443 ms and 61.432 ms.
There are irregular outliers besides this periodic pattern.

5.2 Artificial Latency Jitter

Introducing artificial latency jitter every 16th frame for two frames
shows the angular difference to increase in the first not updated
frame and to increase further in the second not updated frame as
was expected (cf. Figure 7). The smaller time differences visible
in the graph are quantised to the measurement accuracy of 1.25 ms.
The mean latency in the latency jitter test run was 58.20 ms with
a standard deviation of 6.22 ms. The comparison plot in Figure 9
shows two bands representing the two introduced delays.

5.3 System Load

Measuring latency with the computer brought to its capacity shows
many and irregular latency spikes. Compare Figure 8 for a visualisa-
tion. The load test had a mean of 54.51 ms with a standard deviation
of 8.62 ms. In addition to the many outliers with increased latency,
there are some latencies below the MTP latency mean.

5.4 Comparison

The histogram of latency measurements in Figure 11 shows the
majority of the samples gathering around 55 ms latency as does the
scatterplot of Figure 9. Frequent outliers are delayed only by a small
amount of time, while a decreasing number of outliers exhibit higher
latency. Note that the y scale of the figure is logarithmic to better
show the distribution. The figure shows the result of a stacked-z test
following Stauffert et al. [30]. It assumes that latencies are normally
distributed and applies a z-test to detect outliers. The test is then
recursively applied to the outliers again. A first outlier category to
start at larger latencies indicate a bigger variation of the underlying
distribution.

The baseline measurement describes a narrow normal distribution
with outliers close to the mean. The outliers themselves have a small
variation and therefore create multiple outlier groups that are each
close to a mean. The samples around the mean contribute 88.1% of
all the samples with the first outlier group containing 11.6%. The
remaining 0.3%. The artificial latency condition shows the two
introduced peaks in latency. Its distribution has a larger variation.
The z-test separates the main values (76.1%) from the introduced
latency jitter (23.9%). The load condition has a large variation which
comprises 95.4% of the samples in the main part with 4.5% in the
first outlier category. All conditions show rare extreme outliers.

62 s 75 s 88 s 100 s 112 s 125 s
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Figure 6: Detail of Figure 5 to show the repeated occuring pattern
of latency spikes. We observe a regular pattern with a big spike in
latency followed by lower latency that converges back to the mean
latency.
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Figure 7: Measurements with artificial latency spikes: A spike, delay-
ing tracking information for two frames, was introduced every 16th
frame. The latency measurement returns the introduced pattern of
one frame with an increased latency by 11 ms and the subsequent
frame with an increased latency by 22 ms. The orange vertical lines
mark the first delayed sample.

The quantile-quantile plot in Figure 10 shows how the distri-
butions compare to one another. If a distribution is the same, its
quantiles lie on a line as seen in the diagonal. All distributions have
one or two big outliers at the 100% quantile. The lower quantiles
are similar. The comparison between the baseline and the artificial
latency jitter condition shows a similar distribution until the latency
timing of the first spike. The second spike shifts the q-q plot further
from the diagonal. The comparison between the artificial latency
spike and the load condition show more percentage of the samples
for the latency spike condition in the latencies of the provoked spikes
and then more samples above those latencies in the load condition.
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Figure 8: Measurements with artificial load: The processor and graph-
ics card were stressed by a background software. Multiple irregular
latency spikes result. The majority of samples still gather near the
mean. Interesting is the increase in samples with latencies lower than
the mean.
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Figure 9: Scatterplot comparing the measurement runs with different
conditions. The baseline run samples form a narrow band. The
artificial latency jitter run samples show two additional bands that
equal the two injected delays. The load condition shows multiple
outliers. All conditions show some outliers.
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Figure 10: Quantile-quatile plot to compare the distribution of the
different measurement runs. The distributions are similar, i.e., close to
the diagonal, in their lower quantiles. The higher quantiles show the
two introduced latency spikes in the latency jitter condition. The load
condition has more samples in the higher quantiles. The few extreme
outliers are clearly visible and independent of the condition.

6 DISCUSSION

The evaluation of our approach validates that the injected artificial
but controlled latency is properly reflected in the measured data. We



PREPRIN
T

1. outliers
2. outliers
3. outliers

4. outliers 5. outliers

10 4

10 3

10 2

10 1

sa
m

pl
es

 n
or

m
al

ize
d Baseline

1. outliers
2. outliers

10 4

10 3

10 2

10 1

sa
m

pl
es

 n
or

m
al

ize
d Artificial latency jitter

1. outliers
2. outliers

3. outliers

0 ms 31 ms 62 ms 94 ms 125 ms 156 ms 188 ms 219 ms 250 ms
delay between reality and virtuality

10 4

10 3

10 2

10 1

sa
m

pl
es

 n
or

m
al

ize
d Load

Figure 11: Illustration of the stacked z-test of the latency measurements for the three load conditions. Top: the baseline condition without any
additional load. Middle: system behavior with injected latency jitter. Bottom: system behavior under load stress. Without any load, the majority of
the latency measurements gather around a mean as a central tendency. The different latency distribution patterns depending on the load condition
slowly move this mean to the right since the variance and hence the jitter increases. This mean does not accurately reflect the latency-related
system behavior. The stacked-z test shows outliers of the assumed normal distribution and therefore encodes the variance as well. Notably, our
approach detects that the no-load baseline condition is already affected by two groups of outliers which would result in repeated reoccurring lost
frames not well represented by one mean value. Also, the injected latency (middle) is well detected and reported by our apparatus. The heavy-load
condition at the bottom reports a system behavior which can be assumed to generate a severe negative impact on usability and user experience.

find that a normal test run carries both distinct patterns as shown in
Figure 6 as well as less regular outliers. The stacked-z test works
well to separate outliers. It separates the regular outlier pattern in the
baseline run, separates the introduced latency spikes in the artificial
latency jitter run and splits the majority of outliers from the rarer
more extreme outliers in the load condition. A q-q plot proves to
be a suitable tool to compare different behaviors. It allows to test
the system with a baseline measurement and then compare what
changes in more taxing situations.

A computation between motion and photon or an interaction of
multiple parts takes longer and therefore misses one screen refresh
to create the distinct pattern in Figure 6. This computation occurs
in regular intervals. As the rotational difference between the real
tracker and the reported rotation is below the mean difference after
such a spike, we assume that the tracker recalculates its rotation
based on the external reference system, and the samples afterwards
that approach the mean value again are the increasing drift of the
sensors. The nature of MTP latency entails that this can only be
speculation. Other parts in the pipeline like drivers receiving the
signal, the VR application, other applications in the background or
the display could be sources of this emerging pattern which can only
be analyzed further by separately analyzing the different subsystems.

Our prototype setup uses photodiodes directly attached to one dis-
play of the Vive HMD. Mounting the photodiodes on the lens would
allow easier baseline measurements of VR hardware. However, tests
revealed that it produced less distinct patterns. It would also have an
impact on the usability and would potentially induce measurement
artifacts since then the photodiodes and cabling would be visible by
the users, hence we did not follow this approach but placed the pho-
todiodes directly on the display. Today’s HMDs usually don’t utilize
all pixels of the displays. The circular lenses only cover parts of the
rectangular displays, leaving unused pixels around the display edges,
prominently in the corners of the rectangular screens as can be seen
in Figure 3. The photo illustrates this partial coverage of the screen
clearly in the bottom left corner. It shows how the circularly shaped

rendered image leaves the corner of the rectangular display dark. A
similar partial coverage is detected for the other three corners not
seen so prominently in Figure 3. However, physical access to these
unused areas of the screens requires a more invasive approach to the
hardware of the HMD. For example, with our currently used HMD
the photodiodes would require to get attached via drilled holes on the
side of the HMD chassis enclosing the view cones. In addition, this
placement requires rendering to the uncovered areas. We currently
refine our prototype and investigate other HMD types to support
these features.

We evaluated the feasability of our approach with the setup shown
in Figure 1. The Vive HMD is disassembled to get access to the
display. Photodiodes are then attached to measure brightness in
distinct regions of the screen. This setup can be extended as shown
in Figure 12 to be used during normal VR usage: The photodiodes
are attached at the corners of the display as described before. Most
of the screen can then be used by the actual VR application, with
only a small area reserved for the brightness readings. The better
the photodiodes are attached, the smaller the reserved region needs
to be, as adjacent brightness values don’t influence the readings as
much. The encoded data can be rendered over the scene in the same
way a user interface is rendered on top of a 3D computer game. The
wires can be led along the cable of the HMD. Some tracked object
needs to be in the tracked space to follow a known rotation. The
tracked object can be placed in a corner to not obstruct the users
pathway.

The tracked movement was chosen to be a rotation, which is not
common for human movement. Input devices, however, include
algorithms to improve tracking for human motion [12]. Start and
stop movements show an initial and settling delay [4], which we
ignore, by disregarding the first measurements when the tracked con-
troller accelerates and stopping the measurement before the tracked
controller is brought to rest again. The rotation has the benefit of
providing a continuous signal that is easy to control with a micro-
controller. Non continuous movement patterns potentially introduce
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more tracking artifacts due to inertia influencing the sensors incon-
sistently.

We chose to use a Vive tracker as the tracked device fixed in the
setup. This frees the normal motion controllers and the HMD to get
used in an experiment. The HMD only needs few additional wires
to attach the sensors which can be guided alongside the existing
cables. The measured latency can only be taken as a guideline and
does not need to express the latency between a movement of the
HMD and its respective effect on screen. Some optimizations such
as asynchronous timewarp [34] only apply to the HMD to reduce the
perceived latency. Late-latching [3] renders controllers with updated
positions, which are not reflected in our approach.

The latency mean of the measurements with load is lower than
the one without load. The plot shows many outliers with increased
latencies, but there are more readings below the mean as well. A
possibility is that a system under load might be pressed to sometimes
read the tracker information later, and therefore closer to the next
display scanout. The effect could be similar to an unvoluntary late-
latching.

The described setup measures the total MTP latency but does not
provide insight into where the latency originates. Finer details can be
obtained by feeding the tracker data directly into the microcontroller,
by means of its exposed pins to estimate the tracker influence or cut
out the tracker of the setup by providing the tracking signal directly
from the microcontroller via e.g., the audio input as in the approach
by Di Luca [7].

Our setup assumes the motor to actuate the change in position
perfectly, and without time variant latency. We did not test the
motor and motor circuit latency which needs to get deduced from
the measured end to end latency.

The setup is not restricted to HMDs, but can be used for large
screen systems as well. The aquisition of screen brightness values is
currently fitted to the Vive display and would need to get adapted
for different displays.

7 CONCLUSION

Latency in Virtual Reality (VR) applications can have numerous
detrimental effects, e.g., a hampered user experience, a reduced
user performance, or the occurrence of cybersickness. Today, mea-
suring latency in VR systems usually is restricted to report mean
values sampled over some dedicated and often isolated application
runs which do not accurately reflect overall system behavior un-
der varying load conditions. This paper introduced an apparatus to
continuously measure per-frame latency and that therefor is able to
capture latency spikes and hence latency jitter. A microcontroller
drives a motor with an attached Vive tracker. The tracker’s orienta-
tion is encoded by a VR application onto parts of the HMD screen
as regions of different brightness. The microcontroller reads this
data with photodiodes and calculates the difference between the real
tracker orientation and the reported orientation as MTP latency. The
apparatus can pick up the addition of artificial latency into a VR
application for validation.

We evaluated our approach under three different load conditions.
We inject artificial latency in a VR simulation and showed that la-
tency jitter artifacts already occur without system load, potentially
caused by the tracking of the specific HMD, and how mean latency
and jitter increase under system load, leading to an overall degraded
system performance. In contrast to previous approaches, the sys-
tem does not rely on the HMD to be fixed to an external apparatus,
can be used to assess any simulation setup, and can be extended to
continuously measure latency during run-time. We stress the fact
that continuous measurements of latency behavior of VR application
should be a central means to monitor and control an important charac-
teristic of VR systems to assure a high usability and user experience
and hope we could contribute an adequate approach to implement
such measurements. The source code for the setup is available at

Figure 12: Proposed extension: The photodiodes are positioned at
the rim of the screen to be minimally disturbing the experience. If the
HMD allows to render outside the visible area, attach them there. The
wires that connect to the photodiodes can be led alongside the HMD
cable.

https://github.com/Nighink/latency-rotation.
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