
Joint Virtual Reality Conference of EuroVR - EGVE - VEC (2010)
T. Kuhlen, S. Coquillart, and V. Interrante (Editors)

Short Paper: Engineering Realtime Interactive Systems:
Coupling & Cohesion of Architecture Mechanisms

Marc Erich Latoschik1 and Henrik Tramberend2

1Intelligent Graphics Group, Bayreuth University, Germany
2Beuth University of Applied Sciences, Berlin, Germany

Abstract
This paper reviews coupling and cohesion as software quality criteria for the development of Realtime Interactive
Systems (RIS). The applicability of these criteria to evaluate RIS architecture mechanisms is examined while the
utilization of existing software metrics is discussed. Three commonly found mechanisms, scene graphs, event sys-
tems and entity models, are evaluated with respect to a minimization of coupling and a maximization of cohesion.
The paper motivates an analytical approach to the evaluation of software techniques as well as a strengthen-
ing of software technology aspects in the field of interactive simulations in general given current challenges of
diversification, parallelization, and interconnection.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality D.2.11 [Software Engineering]: Software Architectures—Domain-specific
architectures, Patterns

1. Introduction

Software technology is of central importance for application
development in the areas of Virtual, Augmented, and Mixed
Reality (VR/AR/MR). Hardware capabilities and software
requirements keep changing while expectations for applica-
tions rise continuously. Current technological challenges are
hard- and software diversification, parallelization on differ-
ent levels, and interconnection and networking. At the same
the, virtual worlds are expected to be rich and lively, intelli-
gent, and highly interactive.

To make matters worse, research institutions are often
characterized by a high degree of staff fluctuation. A new
generation of developers will need a long time to arrive at the
state-of-the-art and to be able to advance the field. Changes
in the research staff often lead to abandoned software sys-
tems that are replaced too often by ad-hoc and inferior re-
implementations. Reproduction of scientific results becomes
extremely difficult–if not impossible. Scientific progress will
be increasingly restrained without a solid and lasting techno-
logical foundation.

Architecture mechanisms and software techniques cur-
rently being used often appear to be outdated or poorly

adapted and implemented. There is a lack of a methodologi-
cal and comprehensive analysis and comparison of common
mechanisms and techniques as well as a lack of common ter-
minology customized to this specific field. As a result, engi-
neering knowledge essential for future research work can not
be communicated to the next generations and idiosyncratic
solutions are created.

Idiosyncrasy has a serious negative impact on the compre-
hensibility of software systems. Re-implementations are fa-
vored where maintenance and evolution of existing solutions
would be the better option. Yet, these re-implementations of-
ten suffer from the very same technical deficiencies and, at
the same time, are a significant drain on resources that could
better be used for the primary research objectives.

Remarkably little attention has been paid to RIS software
technology for years. There has been a conspicuous lack of
relevant expert articles, so-called "system papers", and the
quality of the articles that are published varies. This critical
development has been noticed and several initiatives have
been started as a consequence [BCW08, LRB∗10, SSLR10].

c© The Eurographics Association 2010.



Marc Erich Latoschik & Henrik Tramberend / Engineering RIS: Coupling & Cohesion

2. Coupling and cohesion

Abstraction and modularization play an important role with
respect to software quality criteria like functionality, usabil-
ity, reliability, performance/portability, and supportability
(FURPS+, [Gra92]). A modular architecture design should
minimize coupling and maximize cohesion defining

coupling as the measure of the independence of relations
between functional units and

cohesion as the measure of the semantic nature of relations
between components of a functional unit.

The application of these quality measures requires some
scale, ideally some quantitative metrics for objective evalua-
tions. Multiple metrics do exist [Gra92,LM06,Jon08] which
are based on the (automatic) analysis of source code, hence
on the analysis of static compile-time interdependences as
exposed by syntactic elements (function calls, parameters,
inheritance,...).

The application of such metrics during RIS development
is inherently difficult. Strong data and process dependen-
cies do exist, from 6DOF (degree of freedom) data or object
shape approximations in different modules, to complex in-
terdependent execution schemes and process flows in order
to simulate consistent worlds. Ideally, simulators would be
build around simulation properties which in turn would be
implemented by dedicated exchangeable and extensible soft-
ware components. Just how distant RIS technology is from
this goal is made clear by the mind experiment illustrated in
Figure 1.

Figure 1: A mind experiment: Imagine a virtual agent in a
virtual world. A user is coupled to this virtual world through
different input and output channels. Agent and user can per-
ceive and act and freely interact with each other and the
environment. The challenge is the following: to transfer the
agent to an alternative virtual environment while maintain-
ing all his properties.

Even if such an abstract description layer for a simula-
tion would exist, the interdependences in such systems are
largely of a semantic nature and hence in general inacces-
sible to syntax based analysis tools. They may be exposed
in the syntactic structure, but most compile time interde-
pendences can be hidden by replacing them with runtime

checks, e.g., using runtime-type information. This problem
is noticeable with respect to coupling, it is obvious with
respect to cohesion since its definition already relates this
property to the semantics of relations. In addition, an evalu-
ation based on a specific code base will evaluate exactly that
systems while we are interested in the evaluation of specific
architecture mechanisms in general.

As a result, a qualitative evaluation will be necessary
to evaluate given RIS architecture mechanisms. We will
now analyze three common mechanisms with respect to the
coupling and cohesion criteria. Exemplary discussions will
point out the pros and cons of each mechanism to hint in a
direction of a potential discussion methodology and termi-
nology.

3. Scene graphs

Scene graphs are an architectural mechanism present in
many RIS platforms. Potential uses and applications, how-
ever, have been subject to long, intense and divergent discus-
sions [BBC∗99]. The problem is that in terms of an adequate
representation of an architectural mechanism intended to re-
spond to a specific problem, many scene graph systems are
deficient. They add additional functionality and data to the
scene graph (in some cases in extensive numbers), which
compromises cohesion and contributes to the coupling ef-
fect.

Figure 2 shows a typical example of such an augmented
scene graph. As a simple data structure, its main objective
is to describe spatial relationships between geometries in the
scene. The evaluation of a scene graph, i.e. rendering, is per-
formed by recusive traversal functions. Additional informa-
tion, like interaction or animation nodes, is not only ignored
by these traversals, but establishes irrelevant couplings to
other subsystems.

And yet, complete applications are built around extended
scene graph mechanisms. These applications add additional
node types for application-specific tasks, in accordance with
the object-oriented paradigm. In general, inheritance prin-
ciples are utilized in the implementations. Such a design is
characterized by strong coupling and weak cohesion.

In terms of the need for greater diversification, paralleliza-
tion and networking, this design has many disadvantages.
For example, the inheritance strategy complicates replace-
ment of the underlying graphics renderer. Sometimes ob-
ject oriented software patterns, like the visitor pattern, are
used to decouple the traversal functions from the data rep-
resentation. However, the visitor pattern is often regarded as
a crutch for a deficient programming language and, in this
case, solves only half of the coupling problem.

Parallel evaluation can only be realized here with diffi-
culty. A general temporal dependency exists for scene graph
traversals. Camera, light, and render traversals must be ap-

c© The Eurographics Association 2010.



Marc Erich Latoschik & Henrik Tramberend / Engineering RIS: Coupling & Cohesion

(lambda (a)
  (myEvaluate)
  (display "ev a"))

onEval
(lambda (a)
  (fieldChange)
  (display "fc a"))

onChange

#1

Figure 2: Typical example of an augmented scene and ap-
plication graph with inner nodes for transformation and
grouping and leaf nodes for object geometries (shapes), ma-
terial properties, light sources and cameras, but also for
sound, animation and interaction nodes. The event system
constitutes an additional value propagation layer indepen-
dent from the transformation hierarchy.

plied sequential or will introduce latencies in a pipelined ar-
chitecture using state copies. Dividing the graph into par-
tial graphs to be concurrently processed is obstructed by the
horizontal dependency potentially caused by functional se-
mantics of special node types, e.g., material nodes, in the
traversal strategy. This is a consequence of the statefulness.
Networking is only possible using shared state.

Hence, scene graph centered designs are suboptimal and
fall especially short in relation to decoupling, and a maxi-
mized cohesion.

4. Event system and routing

Event systems are a popular RIS architecture mechanism
providing inter- and intra-plattform communication as well
as an execution scheme. Event systems have different levels
of flexibility. On one end of the spectrum are systems that are
hard-wired by the platform’s architecture providing a well-
defined but inflexible execution scheme. On the other end are
extensible systems in which different schemes can be imple-
mented and used. Figure 2 shows the inflexibly wired event
logic in a field-routing system. Here, state modifications are
monitored by guarding value changes and passing them to
potential receivers. Application behavior is implemented by
registering user-defined routines as call-back functions. The
dispatch order of these functions is hard-wired.

One critical aspect of event-based programming is its ten-
dency to reverse the control flow [HO06]. The classic proce-
dure is the following: instead of, for example, reading user
inputs via the selection of blocking operations, the event
handlers are distributed over the software and installed in

places determined by the architecture. Their implementation
is delegated to other locations in the source code. Two prob-
lems result: 1) fragmentation of the interactive logic of the
program and 2) a coupling of the execution model to the
shared state access.

The fragmentation of the interactive logic generally weak-
ens cohesion. This fragmentation is typically accompanied,
however, by object-oriented modeling. Here the event re-
ceivers are the objects of the simulation (e.g., as entities,
see below). Since these can be regarded as semantic units,
it is imperative that object functionality within the architec-
tural design be anchored to them, thus strengthening cohe-
sion. Technically event systems lend themselves very well to
decoupling. Conceptually this is not so obvious.

An event system with a fixed execution scheme tends to
increase coupling, since it defines process dependencies. In
contrast, a loose event model with few dependencies de-
creases coupling, while an anchoring of the functionality to
the objects of the simulation tends to increase coupling. This
too can be counteracted with a skillful selection of software
design patterns.

An event system can adequately satisfy the need for di-
versification. This ability depends on the selection and avail-
ability of the programming language as well as suitable util-
ity libraries.

Event systems can easily be networked by relegating the
transport layer of the events to an inter-platform mechanism.
If one reduces the inflexible wiring and data dependencies,
the evaluation of event systems can easily be parallelized.
And yet, inflexibly wired systems with a pre-determined ex-
ecution scheme and inherent data dependencies lead to par-
allelization primarily on the level of only the event-handlers.
This requires a fine grained parallelization method. System
threads are too corse and require frequent context switches
that are expensive, while the concurrent tasks are often small
in terms of computational complexity. For this reason, so-
called micro threads have been discussed and utilized for
many years in computer game development. But their uti-
lization requires separate custom-built scheduling systems.

5. Entity model

Steed summarizes many years of experiences made during
the development of VR/AR applications. For the plethora of
projects carried out at his institution, a considerable num-
ber of RIS tools and platforms have been tried out. He
identifies one single architectural mechanism that has been
reused again and again: an entity model as an abstract data
model [Ste08].

An entity represents the smallest semantic unit of a RIS
application. Entities link together different functional prop-
erties which are maintained by various modules. This ap-
proach can be seamlessly integrated into aspect-oriented de-
sign techniques. An entity model offers a level on which the

c© The Eurographics Association 2010.



Marc Erich Latoschik & Henrik Tramberend / Engineering RIS: Coupling & Cohesion

world can be described. Figure 3 shows the use of such a
central entity model in a typical RIS design.

cogn.

gfx

inter
action

phy-
sics anim.

(KRL)
entities

Figure 3: Abstract entity model on a RIS platform. A cen-
tral entity model based on a knowledge representation layer
combines different elements, such as graphic representa-
tion, interaction, animation, cognition or physical behav-
iors. These elements are carried out by different compo-
nents depending on the modular design. The detailed illus-
tration shows the connection between a scene graph compo-
nent with a representation of the user, the virtual agent and
various scene objects [LBW05].

An analysis of cohesion and coupling shows strong analo-
gies to the statements made about the event system. This
is due to the fundamental similarities between the object-
oriented design and entity model. At the same time an entity
model raises the discussion to an abstract level of aspects.
This abstraction is precisely the decoupling of functionality
from the object model and the transfer of this functionality
to the domain of specialized function units. As such it leads
to both greater decoupling and stronger cohesion.

If the right description language is used, an entity model
is quite tolerant to diversification. The question as to which
language and architectural mechanism are most suitable for
the entity layer leads us into the field of model driven soft-
ware design (MDD). This area is of importance for current
research, and the usefulness of a wide range of architectural
mechanisms must be tested. Some work now favors a knowl-
edge representation layer with an ontological link between
the entities and their aspects by means of a semantic repre-
sentation (see Figure 3).

6. Conclusion

There is a need for an analytical evaluation of RIS related
software technology required for VR/AR and MR. Future
research work calls for a solid technological foundation
that cannot just consist of a amalgamation of idiosyncratic
software solutions. To set out into new territory, existing
mechanisms and techniques have to be questioned and re-
evaluated. This endeavor should be flanked by a common
methodology and terminology. A RIS software technology
body of knowledge should identify possible solutions for re-
curring problems and identify their applicability, strengths,
and weaknesses. This would be the basis for innovative ap-
proaches which answer current and future challenges.

Acknowledgements: Supported by the BMBF Germany,
program IngenieurNachwuchs, project SIRIS (#17N4409).

References
[BBC∗99] BETHEL W., BASS C., CLAY S. R., HOOK B., JONES

M. T., SOWIZRAL H., VAN DAM A.: Scene graph apis: wired
or tired? In SIGGRAPH ’99: ACM SIGGRAPH 99 Conference
abstracts and applications (New York, NY, USA, 1999), ACM
Press, pp. 136–138. 2

[BCW08] BRUNNETT G., COQUILLART S., WELCH G.: 08231
abstracts collection – virtual realities. In Virtual Realities
(Dagstuhl, Germany, 2008), Brunnett G., Coquillart S., Welch
G., (Eds.), no. 08231 in Dagstuhl Seminar Proceedings, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. 1

[Gra92] GRADY R.: Practical Software Metrics for Project Man-
agement and Process Improvement. Prentice Hall, 1992. 2

[HO06] HALLER P., ODERSKY M.: Event-based programming
without inversion of control. In Proc. Joint Modular Languages
Conference (2006), Springer LNCS, pp. 4–22. 3

[Jon08] JONES C.: Applied Software Measurement: Global Anal-
ysis of Productivity and Quality, 3. ed. McGraw-Hill Osborne
Media, 2008. 2

[LBW05] LATOSCHIK M. E., BIERMANN P., WACHSMUTH I.:
Knowledge in the loop: Semantics representation for multimodal
simulative environments. In Proceedings of the 5th Interna-
tional Symposium on Smart Graphics 2005 (Frauenwoerth Clois-
ter, near Munich, Germany, 2005), pp. 25–39. 4

[LM06] LANZA M., MARINESCU R.: Object-Oriented Metrics
in Practice: Using Software Metrics to Characterize, Evaluate,
and Improve the Design of Object-Oriented Systems. Springer,
2006. 2

[LRB∗10] LATOSCHIK M. E., REINERS D., BLACH R.,
FIGUEROA P., DACHSELT R. (Eds.):. Software Engineering and
Architectures for Realtime Interactive Systems (SEARIS), Pro-
ceedings of the annual IEEE Virtual Reality 2008–2010 work-
shops (2008–2010), Shaker Verlag. 1

[SSLR10] SLATER M., STEED A., LATOSCHIK M. E., REINERS
D. (Eds.): Reflections on the Design and Implementation of Vir-
tual Environment Systems, vol. 19 of PRESENCE journal special
issue. MIT Press, 2010. 1

[Ste08] STEED A.: Some useful abstractions for re-usable virtual
environment platforms. In Software Engineering and Architec-
tures for Realtime Interactive Systems (SEARIS), proceedings of
the IEEE Virtual Reality 2008 workshop (2008), Latoschik M. E.,
Reiners D., Blach R., Figueroa P., Dachselt R., (Eds.), Shaker
Verlag, pp. 33–36. 3

c© The Eurographics Association 2010.


