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ABSTRACT

This article presents a platform for software technology research in
the area of intelligent Realtime Interactive Systems. Simulator X is
targeted at Virtual Reality, Augmented Reality, Mixed Reality, and
computer games. It provides a foundation and testbed for a variety
of different application models. The current research architecture is
based on the actor model to support fine grained concurrency and
parallelism. Its design follows the minimize coupling and maxi-
mize cohesion software engineering principle. A distributed world
state and execution scheme is combined with an object-centered
world view based on an entity model. Entities conceptually aggre-
gate properties internally represented by state variables. An asyn-
chronous event mechanism allows intra- and interprocess commu-
nication between the simulation actors. An extensible world inter-
face uses an ontology-based semantic annotation layer to provide
a coherent world view of the resulting distributed world state and
execution scheme to application developers. The world interface
greatly simplifies configurability and the semantic layer provides
a solid foundation for the integration of different Artificial Intel-
ligence components. The current architecture is implemented in
Scala using the Java virtual machine. This choice additionally fos-
ters low-level scalability, portability, and reusability.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality D.2.11 [Software Engineer-
ing]: Software Architectures—Domain-specific architectures, Pat-
terns

1 INTRODUCTION

Software technology is of central importance for real-time inter-
active systems (RIS), i.e., for VR, AR, MR, and computer games.
Current technological challenges are hard- and software diversifi-
cation as well as concurrency, from small scale parallelization to
networking. Simulator X is an evolutionary platform for software
technology research in the area of intelligent RIS. The current ar-
chitecture (see Figure 1) incorporates some well known abstrac-
tions and good practices as well as some interesting experimental
features:

• Unified concurrency model based on actors [14].

• Shared entity model using a distributed state.

• Component architecture using the concurrency model.

• Functional/OOP approach based on Scala.

• Semantic binding for the integration of AI.

• Generic support for multimodal interfaces.
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This paper concentrates on the first four aspects. After this intro-
duction, we will first discuss related work. The following sections
match the Simulator X architecture bottom to top, hence we start
with the description of the core system followed by a description of
the world interface. Each section includes discussions and reflec-
tions of lessons learned which will be summarized in the conclud-
ing section alongside some remarks regarding future work.

Application Development

World Interface

Symbolic Binding

Low-level Actor System

Shared State with State Variables

State ObservationEntities

Components

Event System

Figure 1: General architecture of the Simulator X platform. The core
system is based on the actor model to realize a distributed state,
state observation, and entity model. A semantic layer connects the
core system with a world interface which provides a high-level event
and component & configuration system as well as a general semantic
access scheme.

2 RELATED WORK

A RIS middleware provides a software frame for recurrently re-
quired simulation tasks ranging from tracking, input processing,
collision detection, physics simulation, Artificial Intelligence (AI),
graphics, audio, and haptics rendering, to networking etc. The uti-
lized coupling method is critical with respect to reusability and scal-
ability [10, 25, 18]: Dedicated libraries for certain simulation tasks
often require proprietary (1) data representations and (2) execution
schemes. For example, a close coupling to scene graph libraries
like OpenGL PerformerTM, Open Inventor, Open Scene Graph,
OpenSG [24], or X3D is a source of several drawbacks [6, 2].

Data flow networks are a typical and well established RIS execu-
tion scheme, see, e.g., [7, 28, 1, 11, 9, 16]. They are simple to un-
derstand but they are also restrictive in their expressiveness [9]. Hy-
brid execution schemes which additionally incorporate, e.g., pro-
cedural elements [9], asynchronous events [16], or messages may
cause severe consistency problems [9]. Still, a component-based
or even service-oriented approach [5, 21] based on an event system
provides reasonable decoupling and usually scales well in terms of
networking [8, 13].

Execution scheme and data management are often strongly con-
nected. Here, entity like models have proven to be a highly advan-
tageous, reusable, and scalable representation [22, 16, 27]. Map-
ping of entities to objects in object-oriented programming (OOP) is
straight forward [12] but often links data representation to a given
execution scheme using the objects’ method interfaces. Simula-
tor X conceptually views entities only as sets of loosely associated
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properties, each having possibly independent execution schemes.
The general idea is similar to the remote distributed object seman-
tics found in Repo 3D [20]. However, the utilized actor model [14]
of Simulator X strongly decouples data representation from the
graphics representation and from given execution schemes. Sim-
ulator X actors are independent, asynchronous, and communicating
execution threads processing on a conceptual unified entity model
on top of a distributed state representation. They provide scalable
concurrency on multiple levels of granularity. This is a different
actor concept as in [3] where it is a collection of properties whose
changes are distributed by a data flow system or in [12, 13], where
it denotes special types of active objects.

Entity models in Intelligent Virtual Environments [4] (IVEs) re-
quire a semantic representation of scene content as the basis for
several AI methods, see, e.g., [26, 23, 15, 19]. Typical examples
include multimodal interactions as well as the simulation of human
like agents. A seamless integration of semantics into a simulator’s
data representation still is an open topic of research. Simulator X
provides a semantic binding for all entities and their properties us-
ing the concept of a world interface.

3 ACTOR MODEL AND STATE

Following the actor model, a Simulator X program consists of a set
of co-operating actors:

• Each actor represents a single thread of control. The level
of parallelism depends on the actor implementation and hard-
ware.

• Actors communicate exclusively via asynchronous message
passing.

• Storage of program state is managed locally by each actor.
There is no globally accessible shared state.

• Actors are light-weight, and new actors can be spawned at any
time.

actor#2

actor#1

actor#3

state variable
concept

value storage

identifying
references

Figure 2: A state variable is referenced by three actors. Concep-
tually, all three actors see the state variable as a piece of globally
accessible, shared world state. Technically, only actor#1, the owner,
locally stores the value of the variable and manages access to it.
The other actors carry opaque references to the variable and need
to communicate with the owner to access its value.

Many algorithms that can conveniently be formulated using es-
tablished shared state concurrency models need to extensively be
reformulated for the actor model. Communication via shared state
is an accepted programming model for concurrent VE applications.
Many frameworks use it as a basis for higher-level programming
abstractions like scene graphs or entities, and application develop-
ers have grown familiar to use it. Therefore, switching to a message
based programming model may at first lead to a regression in pro-
ductivity, or prevent adoption of the new model altogether.

To address the issues that arise from the inability of using shared
state for communication, the Simulator X architecture provides

state variables that create the illusion of consistently shared mu-
table state for the application programmer, but are implemented
using message passing. Figure 2 illustrates a state variable being
referenced by three actors.

State variables represent uniquely identifiable mutable global
variables that store immutable values. They are created and owned
by one actor, but are potentially visible and accessible to all actors
in the system. The state variable’s value is locally stored only at
the owning actor who can access and modify it directly. The owner
handles all access to an owned state variable from requesting other
actors.

3.1 Actors and Entities
Simulator X defines an entity as a collection of properties that de-
scribe an application object. A property associates a state variable
with a symbol that denotes it and that grounds it into an application
specific semantic representation of that property. Figure 3 shows an
entity with two named properties. The property values are stored in
state variables that are managed by two different actors.

actor#1

actor#2

entity#1

Figure 3: Entity#1 is a collection of two properties. Each property
associates a state variable with a symbol that serves as an anchor for
semantic information. The state variables are owned and controlled
by two different actors.

This representation of entities has two interesting characteristics
that differentiate our data model from the classic object-oriented
data model:

• Storage control and access of property values is decoupled.
Entities merely collect references to state variables and dele-
gate value management to the actors that control the respec-
tive state variables.

• Entity model and definition of behavior and execution scheme
is decoupled. Entities are just (references to) data. The behav-
ior of an entity as a whole is determined by potentially multi-
ple independent and concurrent actors observing its properties
and/or performing value changes.

Entities can be seen as an aggregation of different aspects that
describe an application object. An aspect here is a combination of
a set of properties and the definition of a behavior that operates on
the properties. Each aspect is provided and controlled by a specific
actor.

Most interestingly, this model does not specify the cardinality
of the resulting association between entity and actor. The aspects
of one entity may simultaneously be controlled by several actors,
while at the same time one actor may provide an aspect of any num-
ber or groups of entities.

4 WORLD INTERFACE

The world interface realizes an event system and component model
based on a symbol registration and lookup service built on top of the
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distributed state, state observation, entity, and actor model. It hides
technical details of the core system, e.g., internal data representa-
tions or execution schemes and interplay of processing components,
from application programmers.

The world interface provides access to relevant aspects of the
simulator’s internal operation as well as to the distributed world
state. Developers are free to define what they consider relevant.
That is, in contrast to a fixed and given set of events and state vari-
ables as, e.g., found in many game engines, the world interface pro-
vides an intermediate layer. Custom execution schemes and logic
components are developed on top of the core system to provide ap-
plication developers with tailored application models. Four main
operations are central for Simulator X’s world interface:

Notification of events of relevant state changes.

Execution of actions changing relevant states.

Processing of state queries.

Configuration of relevant events and permitted actions.

On the lowest level, the world interface provides an interface
to establish a symbolic binding for architecture elements (see Fig-
ure 1). It realizes a loosely coupled symbol-based registration and
lookup service for state variables, entities, and actors. The sym-
bolic binding eliminates the necessity to use direct references. This
decoupling of concept from implementation is highly advantageous
for symbolic AI methods and AI-oriented development styles where
human readability is of central importance, e.g., for the develop-
ment and maintenance of data- and knowledge bases.

4.1 Event System

Events communicate meaningful changes in and of the simulation.
The world interface realizes an extensible event system. Develop-
ers are free to add or remove events as appropriate for a given appli-
cation context or system configuration. The event system directly
utilizes the message passing facilities of the core system. Two types
of events are initially provided:

Generic events notify about any meaningful changes not neces-
sarily reflected by the world state directly.

Value-change events specifically notify about value changes of a
state variable.

In case of generic events, the world interface is responsible for
initial handshaking between event sender and event receiver. Pos-
sible event senders register themselves at the world interface as
providers of given events. Possible event receivers tell the world
interface that they require the events. The world interface com-
pares provided and required events and mutually informs both par-
ties about each other in case of a match. After this initial hand-
shaking, the world interface is removed as a middleman and event
routing is peer-to-peer.

Value-change events complement the change notification access
method of a state variable with an interface to register user defined
callback handlers. They are of central importance for the current
architecture.

The notification message sent by the core system consists of a
reference to the state variable and of the new value itself. As de-
scribed in section 3, state variables are always managed by the one
specific actor who owns a given state variable while they may be
referenced by an arbitrary number of different actors and entities
(see Figure 2).

4.2 Components
Components are Simulator X’s coarse grained application building
blocks. Each component realizes a specific functionality and adds
this aspect to user defined target entities. Simulator X currently
includes components for graphics rendering, physical simulation,
rule propagation and behavior (for Artificial Intelligence methods),
as well as for 3D selection and interaction devices, and multimodal
interaction (speech and gesture).

A component only requires a thin API layer on top of its internal
implementation. The actor paradigm already conveys consolidation
of related algorithms and data structures in independent functional
units to foster high cohesion. The core system’s state variable ac-
cess schemes as well as the world interface’s event system support
decoupling between components to a large extend.

An architecture of distributed functionality given an object cen-
tered entity model raises questions about the initial setup of the
combination of entities and components. A component will in-
evitably require access to properties relevant to the component’s
aspect, either to read out or to write new values. That is, compo-
nents provide aspects for an arbitrary (and user-defined) subset of
entities. In addition, each aspect requires access only to a relevant
subset of an entity’s properties.

Listing 1: Definition of two entity aspects as realized by a graphics
renderer component and a physics component.

1 c l a s s G h o s t D e s c i p t i o n{
2 p r i v a t e v a l g r a p h i c s P a r a m =
3 ShapeFromFi le ( ” models / a g e n t s / g h o s t . dae ” )
4 p r i v a t e v a l p h y s i c s P a r a m =
5 Sphere (1 f , Cons tVec3f (0 f , 0 f , 0 f ) )

7 v a l desc = new E n t i t y D e s c r i p t i o n (
8 Aspec t ( ’ r e n d e r e r , g r aph ic sPa ram ,
9 Onto logy . t r a n s f o r m
10 r e q u i r e d A s JVR . t r a n s f o r m
11 u s i n g JVR . t r a n s f o r m c o n v e r t e r ) ,
12 Aspec t ( ’ p h y s i c s , phys icsParam ,
13 J B u l l e t . t r a n s f o r m
14 prov idedAs Onto logy . t r a n s f o r m
15 u s i n g J B u l l e t . t r a n s f o r m c o n v e r t e r )
16 )
17 }

Listing 1 illustrates the definition of relevant aspects for a given
entity type, here for ghost-entities required in a virtual ghost hunt-
ing game.

To successfully match different data representations of proper-
ties in the various components, the semantic layer of Simulator
X provides an ontology of possible property types and data rep-
resentations while the components have to provide matching con-
verter methods. The last parameter of the Aspect constructor
(see lines 9–11 and 13–15 of Listing 1) defines a mapping be-
tween different data representations of entity properties as given
by individual components. In detail, lines 13–15 define that the
transformation value created by the physics component will be pro-
vided as a transform property and converted to the internal data
representation using the JBullet.transform converter.
Similar, lines 9–11 define that the graphics component requires
the transform property and that it will be converted using the
JVR.transform converter.

5 CONCLUSION

Simulator X’s current architecture already provides a unified and
scalable concurrent programming paradigm portable to all major
desktop and many mobile computing platforms. The use of the
Scala language incorporates modern functional language constructs
while Scala’s object oriented concepts have been highly beneficial
during the developers’ learning phase.
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The message passing concurrency used by the actor model is
augmented with an extensible entity model that creates the illusion
of a globally shared world state, which has proven to be useful and
easy to grasp even for unexperienced developers. Applications are
built from loosely coupled dedicated components. Component inte-
gration only requires a thin layer which couples components to the
world state. The system is highly configurable due to its reduced
mutual dependency of components.

The world interface provides a consistent API layer with an ex-
tensible event system, component configuration, and entity compo-
sition. All relevant world interface elements have a symbolic bind-
ing that links to additional semantic information. The symbolic
binding greatly simplifies world interface usage. In addition, it pro-
vides the necessary basis to incorporate AI methods as required for
intelligent RIS applications.

Several demo applications were developed to demonstrate the
usefulness and adequacy of the architecture and to provide some
coarse high-level performance cues. The applications already com-
bine physics simulation, high quality rendering, behavior simu-
lation as well as multimodal (gesture and speech) interactions in
game scenarios using immersive displays.

5.1 Future work
Future work will explore the usefulness of the current system’s de-
sign in multiple RIS-related application areas. The goal is to collect
more experiences for further technical refinements and alternatives.
This endeavor will go hand-in-hand with the development of new
components. A major task is the development of application mod-
els based on an integral AI-layer.

Probably one of the most interesting result of the Simulator X
experiment will be the assessment wether the benefits that come
with the all-out adoption of the actor model and the Scala language
are worth the trouble to adopt to a completely novel development
paradigm and language. So far, the results are promising but de-
tailed evaluations have to follow.
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