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ABSTRACT

We introduce a technique to support decoupling in component-
based, modular software architectures as a means to enhance non-
functional requirements, i.e., to increase reusability, portability, and
adaptability. The core idea utilizes a semantic description of in-
terfaces and component interplay in the area of Intelligent Real-
time Interactive Systems (IRIS). Semantic descriptions are encoded
as OWL-based models, which build a Knowledge Representation
Layer (KRL) of relevant interface constructs and component fea-
tures. These models are automatically transformed into program-
ming language code of a given target language. The result of that
transformation forms a semantically grounded database of relevant
system aspects that programmers can use to develop their applica-
tion. Examples, taken from an application that was developed with
the Simulator X framework, illustrate the different aspects of the
proposed method and demonstrate its practicability.

Index Terms: D.2.11 [Software Engineering]: Software
Architectures—Domain-specific architectures I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Virtual Re-
ality

1 INTRODUCTION

Realtime Interactive Systems (RISs) in areas like Virtual Reality
(VR), Augmented Reality, or computer games are often character-
ized by a multitude of functional and non-functional requirements.
The functional requirements reflect the various aspects of state-of-
the-art interactive environments. This typically includes support for
a wide variety of input/output devices and interaction methods, high
quality graphics and sound rendering, physics and haptics simula-
tion, as well as behavior simulation and Artificial Intelligence (AI)
to name just the common ones.

Interactivity is the primary non-functional run-time requirement.
Reusability, portability, and adaptability are of equal importance
during development time. Implementation is often split between
different development groups with respect to certain development
skills. Core-system developers are responsible for the underlying
central architecture and its provided development paradigms. Com-
ponent developers are specialists for a certain functional require-
ment, which they want to integrate into an application, e.g., graph-
ics or AI specialists. Content creators (or game designers) want
to utilize all functional features provided, to realize their target ap-
plication. RIS-programming skills may vary significantly between
these groups. The design of appropriate interfaces which provide
the respective functionality to each group becomes crucial. These
interfaces should support scalability, operability, and usability with
respect to a development view.
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From a technical point of view, interfaces between components
may become quite complicated. For example, behavior or AI com-
ponents often need to access the objects residing in the virtual world
at certain times during the simulation loop. Access times might not
be pre-defined by a fixed schedule but might be based on possibly
concurrent events. Accessing those objects should ideally be per-
formed in the same way as done by regular components, to avoid
programming overhead. Since variable and function names are gen-
erally inaccessible to the AI component, semantic reflection [29]
would be necessary to achieve that goal.

From a different point of view, a generalized interface is desir-
able as well: As the hardware environment is a subject to change,
every once in a while it may become necessary to replace compo-
nents to keep the system up to date. Unfortunately, in many cases
new hardware is incompatible to the software used before. Hence,
to render expensive reimplementation unnecessary, modularization
is a very important aspect of a RIS.

Apparently, the ideal case would be to have a single general in-
terface, which connects all aspects of a RIS. Due to the diversity of
components such a system may consist of, this interface is required
to be highly flexible. For example, an Intelligent Virtual Environ-
ment (IVE) [2] will probably be composed of a rendering compo-
nent, a physics engine, a user interface, and an AI component. If the
rendering component should be replaced by, e.g., a ray-tracer, this
will usually necessitate considerable effort. However, if all compo-
nents would make use of the same interface, each component could
be easily replaced. Furthermore, new components could be added
without any changes to the existing system.

2 RELATED WORK

Recent work discusses the value of decoupling for computer sci-
ence [10] and especially for RIS-development [31].

The task to provide interfaces and description languages in or-
der to decouple parts of RIS-frameworks has been tackled by var-
ious groups of researchers. Early approaches focused on specific
aspects of a framework. A very important primary requirement
is independency of input devices, e.g., by providing abstract soft-
ware interfaces [5, 7, 26] and protocols or description languages
[13, 44]. Other groups focused on creating distributed environ-
ments [15, 16, 35] and knowledge based systems [24, 29, 34].

Several techniques commonly applied to RIS-developments sup-
port decoupling in various flavors, e.g., data-flow oriented architec-
tures [1, 41, 45], shared databases [7, 15], remote procedure calls
[16], event propagation [7, 25], and integration of KRLs [9, 29, 34].

More recent work points out that a common data format [3] and
the automatic conversion from and to such a format [33] are desir-
able features. Simulator X [32], the RIS-software utilized for the
work described here, provides a virtual shared database as well as
an event propagation system and supports a common data format
and automatic data type conversion, which is detailed in section 3.

Further important aspects of RIS-development are content de-
scription techniques, used to define and access elements of virtual
environments (VEs). A common approach uses specialized model-
ing languages, like VRML [8], X3D [21], or COLLADA [27].

manuscript

We introduce a technique to support decoupling in component-manuscript

We introduce a technique to support decoupling in component-
based, modular software architectures as a means to enhance non-manuscript

based, modular software architectures as a means to enhance non-
functional requirements, i.e., to increase reusability, portability, andmanuscript

functional requirements, i.e., to increase reusability, portability, and
adaptability. The core idea utilizes a semantic description of in-manuscript

adaptability. The core idea utilizes a semantic description of in-
terfaces and component interplay in the area of Intelligent Real-manuscript

terfaces and component interplay in the area of Intelligent Real-
time Interactive Systems (IRIS). Semantic descriptions are encodedmanuscript

time Interactive Systems (IRIS). Semantic descriptions are encoded
as OWL-based models, which build a Knowledge Representation

manuscript

as OWL-based models, which build a Knowledge Representation
Layer (KRL) of relevant interface constructs and component fea-

manuscript

Layer (KRL) of relevant interface constructs and component fea-
tures. These models are automatically transformed into program-

manuscript

tures. These models are automatically transformed into program-
ming language code of a given target language. The result of that

manuscript

ming language code of a given target language. The result of that
transformation forms a semantically grounded database of relevant

manuscript

transformation forms a semantically grounded database of relevant
system aspects that programmers can use to develop their applica-

manuscript

system aspects that programmers can use to develop their applica-
tion. Examples, taken from an application that was developed with

manuscript

tion. Examples, taken from an application that was developed with
the Simulator X framework, illustrate the different aspects of the

manuscript

the Simulator X framework, illustrate the different aspects of the
proposed method and demonstrate its practicability.

manuscript

proposed method and demonstrate its practicability.

D.2.11 [Software Engineering]: Software

manuscript

D.2.11 [Software Engineering]: Software
Architectures—Domain-specific architectures I.3.7 [Computer

manuscript

Architectures—Domain-specific architectures I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Virtual Re-

manuscript

Graphics]: Three-Dimensional Graphics and Realism—Virtual Re-

Realtime Interactive Systems (RISs) in areas like Virtual Reality

manuscript
Realtime Interactive Systems (RISs) in areas like Virtual Reality
(VR), Augmented Reality, or computer games are often character-

manuscript
(VR), Augmented Reality, or computer games are often character-
ized by a multitude of functional and non-functional requirements.

manuscript
ized by a multitude of functional and non-functional requirements.
The functional requirements reflect the various aspects of state-of-

manuscript
The functional requirements reflect the various aspects of state-of-
the-art interactive environments. This typically includes support for

manuscript
the-art interactive environments. This typically includes support for

terface, which connects all aspects of a RIS. Due to the diversity of

manuscript

terface, which connects all aspects of a RIS. Due to the diversity of
components such a system may consist of, this interface is required

manuscript

components such a system may consist of, this interface is required
to be highly flexible. For example, an Intelligent Virtual Environ-

manuscript

to be highly flexible. For example, an Intelligent Virtual Environ-
ment (IVE) [2] will probably be composed of a rendering compo-

manuscript

ment (IVE) [2] will probably be composed of a rendering compo-
nent, a physics engine, a user interface, and an AI component. If the

manuscript

nent, a physics engine, a user interface, and an AI component. If the
rendering component should be replaced by, e.g., a ray-tracer, this

manuscript
rendering component should be replaced by, e.g., a ray-tracer, this
will usually necessitate considerable effort. However, if all compo-

manuscript
will usually necessitate considerable effort. However, if all compo-
nents would make use of the same interface, each component could

manuscript
nents would make use of the same interface, each component could
be easily replaced. Furthermore, new components could be added

manuscript
be easily replaced. Furthermore, new components could be added

manuscript
without any changes to the existing system.

manuscript
without any changes to the existing system.

2 R

manuscript
2 RELATED

manuscript
ELATED W

manuscript
WORK

manuscript
ORK

Recent work discusses the value of decoupling for computer sci-

manuscript
Recent work discusses the value of decoupling for computer sci-
ence [10] and especially for RIS-development [31].

manuscript
ence [10] and especially for RIS-development [31].

The task to provide interfaces and description languages in or-

manuscriptThe task to provide interfaces and description languages in or-
der to decouple parts of RIS-frameworks has been tackled by var-

manuscriptder to decouple parts of RIS-frameworks has been tackled by var-
ious groups of researchers. Early approaches focused on specific

manuscriptious groups of researchers. Early approaches focused on specific
aspects of a framework. A very important primary requirement

manuscriptaspects of a framework. A very important primary requirement
is independency of input devices, e.g., by providing abstract soft-

manuscriptis independency of input devices, e.g., by providing abstract soft-
ware interfaces [5, 7, 26] and protocols or description languages

manuscriptware interfaces [5, 7, 26] and protocols or description languages
[13, 44]. Other groups focused on creating distributed environ-

manuscript[13, 44]. Other groups focused on creating distributed environ-
ments [15, 16, 35] and knowledge based systems [24, 29, 34].

manuscript
ments [15, 16, 35] and knowledge based systems [24, 29, 34].

Several techniques commonly applied to RIS-developments sup-

manuscript
Several techniques commonly applied to RIS-developments sup-

manuscript
port decoupling in various flavors, e.g., data-flow oriented architec-

manuscript
port decoupling in various flavors, e.g., data-flow oriented architec-
tures [1, 41, 45], shared databases [7, 15], remote procedure calls

manuscript
tures [1, 41, 45], shared databases [7, 15], remote procedure calls



ball-entity

radius
Ontology

position

mass

graphical 
aspectaspect

physical 
aspect

Radius

Position

Mass

Radius

Position

Mass

Figure 1: A ball entity consisting of three state variables, semanti-
cally linked to an ontology by means of grounded symbols. The state
variable containing the ball’s position is shared by the graphical and
the physical aspect.

A magnitude of tools has been developed to overcome the com-
plexity of such formats. However, expert knowledge still is required
when special features are to be used [6]. This lead to the insight that
a semantic description of VEs can provide a useful interface to the
VE for users [28] and developers [38]. The integration of semantic
descriptions, forming a KRL, eases multiple aspects of VE descrip-
tions: Natural language description of the virtual environment [9],
conceptual modeling approaches [11], decoupling of specific appli-
cation content from the internals of a simulation engine [29], action
representation [34], and many more.

Several projects apply ontologies to provide a KRL for VEs. Of-
ten the graphical representation is coupled with semantic informa-
tion [22, 37], but also more general approaches are proposed [39].
The advantages of ontologies in the field of software engineering
are pointed out by [17]. To reduce run-time overhead, often induced
by accessing semantic information via an additional loosely cou-
pled knowledge base, more recent work discusses automatic trans-
formations of ontologies into program code [23, 43, 46].

Simulator X utilizes the Web Ontology Language (OWL) [47]
to store ontologies. These are mapped into application code (see
section 5) to generate unique attribute identifiers in order to handle
the problem of symbol grounding [18, 34].

3 DECOUPLING

The presented approach is implemented using the Simulator X
framework, which utilizes the actor model [19] to decouple indi-
vidual components, e.g., functional building blocks like a render-,
physics-, or AI-engine. Although that model facilitates the process
of decoupling, the method presented in this paper does not depend
thereon. The only assumption made is that the underlying abstract
data model is entity centered, as suggested by [36] and [42].

3.1 Architecture elements

A central concept of Simulator X are so called state variables,
which are used to share single values between individual compo-
nents. The essential features of a state variable are reading, writing
and observing its value. The latter allows to register callback func-
tions, executed each time the variable’s value is changed.

Attributes of entities can be represented by combining such vari-
ables with semantic descriptions. These are provided by means of
symbols that link each variable to an asserted ontology entry. The
ontology defines all objects, concepts, and their various relations as
a semantic grounding for these symbols. By representing entities
and their attributes using those grounded symbols, a direct access
to the ontology and the diverse content-knowledge is provided.

Entities are conceptually subdivided into aspects, which are as-
sociated with components. For example, a virtual ball may have a
physical and a graphical aspect. The attributes of an entity can be
shared by aspects (see figure 1), e.g., the ball’s position typically
will be accessed by both, the physics engine and the renderer.

Since the set of all entities defines the application’s global state,
entities are an appropriate interface for developers and components.

Simulator X features a world interface, which serves as a registry
for architecture elements by means of grounded symbols and which
provides access to all entities at run-time. Furthermore, it acts as a
mediator, needed by the event system described in section 4.3. The
existence of a registry-service fosters decoupling of components:

As components and their functionality are developed indepen-
dently, they cannot know each other in advance. Therefore, there
has to be at least one mediating component, which allows to initial-
ize handshaking processes at run-time. A specific application might
require a component to access arbitrary selections of the world-state
with respect to the component’s aspect and the specific application
logic. Both features are realized by the world interface, providing a
common method and point of access.

3.2 Decoupling components

A component’s functional aspect defines the entity attributes, which
the component has to access. Internally, a component may still op-
erate on its own data representations. This complicates decoupling,
since either all components have to use the same types or type con-
version has to be performed. The first increases coupling a lot and
reduces exchangeability, as external libraries will most likely use
different data types. Fortunately, because entity attributes are the
only interface between components, the conversion process can be
hidden by means of encapsulation. In this way a component does
not depend on data types used by other components, and therefore
becomes an easily exchangeable black box.

The conversion process is shown in figure 2: Component A up-
dates an attribute in its local representation using the local data type.
A converter automatically transforms the value into the global data
type and transfers the update to the respective entity. From there
the value is propagated to another component B, where a converter
transforms it into the appropriate data type.

An important aspect of such converters is that not only data type
conversion may be performed, but also the data itself can be mod-
ified. This is useful, for example, when a renderer and a physics
engine employ different coordinate systems. The transformation
from one system into the other may be performed by respective
converters. Simulator X features a registry for different coordinate
systems, allowing to perform a look-up for the required coordinate
transformation.

The combination of attribute access (by means of grounded sym-
bols) with the conversion mechanism decouples components to a
great extend: The global state of the application is encoded in the
set of entities, which are accessed through the world interface using
grounded symbols. Each single attribute is accessible by the use of
grounded symbols as well. By employing the correct symbols and
utilizing the proposed conversion mechanism each component can
operate completely autonomous.

Converter A

type A => global

Component A Component B

Entity
Converter B

global => type B

Package A Package BApplication

State Variable
(local data type)

ref
State Variable
(local data type)

ref

State Variable
(global data type)

ref

Ontology

refref

ref

ref

Figure 2: Two components providing converters. While the compo-
nents internally use local data types, the entity contains the global
type.
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3.3 Variable- and entity descriptions

Local data types have to be encapsulated for the suggested auto-
matic conversion process. This encapsulation has to be linked to
the description of the respective global data type and has to include
type information to ensure type-safety at compile time. In addition,
a grounded symbol is required to specify the associated attribute.

Given identification of attributes using their unique semantics
and their local and global data types, appropriate converters can
be registered in advance and chosen and executed automatically at
run-time. When an entity’s attribute changes, the correct converter
is selected and applied to the global-type value, to provide the com-
ponent with the local data type.

Because grounded symbols are defined in an ontology, develop-
ers can easily recognize the semantics of the associated value. An
AI component can (to some extend) do the same by applying rea-
soning mechanisms to the ontology.

Relevant parts of a respective class definition used by Sim-
ulator X are shown in listing 1: typeinfo holds the local
data type, base holds the description of the global data type
and semantics contains the grounded symbol. The method
newInstance creates a new instance of the local data type, con-
taining the default value specified in the ontology.

1 class SVarDescription[T, B](

2 val typeinfo : scala.reflect.ClassManifest[T],

3 val base : DescriptionBase[B],

4 val semantics : Semantics,

5 newInstance : => T

6 ) extends ConvertibleTrait[T] with Serializable {

7 val sVarIdentifier : Symbol = semantics.toSymbol

8 ...

9 }

Listing 1: State variable description class from Simulator X

Converters and local type definitions have to be shipped with
each component since the respective developers are the only ones
to know which data types will be used locally. This is done by pro-
viding an OWL file from which variable descriptions are generated
automatically (see sections 5 and 6). These can subsequently be
used in the application code.

An entity is conceptually composed of different aspects. Conse-
quently, an entity description is composed of aspects, which define
the attributes of that entity (see section 4.1 for examples). Grounded
symbols are used to link an aspect to the type of component for
which it was designed, and to specify its semantics. A component
has to recognize the latter at run-time and react appropriately. In
addition, the set of associated attributes and initial values are spec-
ified by each aspect. To relate an initial value to an attribute, the
concept of state values is introduced. These counterparts of state
variables are created by means of variable descriptions, and there-
fore implicitly linked to all other concepts presented. Consequently,
converters can automatically be applied to them as well. Figure 3
overviews the relations between all description concepts.

To instantiate an entity description a realize method is pro-
vided, which initializes the entity creation process described below.

3.4 The entity creation process

As an entity is shared by multiple independent components, its cre-
ation is more complex than simply calling a constructor. Each com-
ponent has to provide relevant attributes and initialize its local rep-
resentation on its own, in order to remain a black box. This is an
easy task as long as all initial values are independent from each
other, but when the initial value for an attribute depends on another
one, which is provided by a different component, a build order be-
comes necessary.
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Figure 3: Relations of description concepts

Two factors affect the build process: On the one hand, a compo-
nent may require an entity to be equipped with specific attributes,
which the component cannot provide on its own. On the other hand,
a component may depend on initial values from other components
to be able to instantiate its local representation and/or provide fur-
ther initial values (an example is given below). In complex cases a
component may be required to provide a subset of values to other
components, which subsequently calculate dependent values and
pass them to the first component, before it can continue providing
more values.

For this reason, aspects may contain sets of required and pro-
vided attributes, and components are given the ability to provide a
set of value dependencies for each attribute or initial value asso-
ciated with an aspect. Furthermore, components are given the ca-
pability to provide more attributes than specified by the respective
aspect.

To instantiate the entity from a description, initial values for all
aspects either have to be provided manually or must be calculated
by one of the involved components. Given all the above-mentioned
information a sanity check can be performed and the build order
can be calculated.

The instantiation of an entity is performed in three stages: First,
each involved component is passed the associated aspect. In answer
thereto it provides a set of value dependencies. A value dependency
contains a number of grounded symbols, which specify the values
required to provide the value associated with the dependency. If,
for example, a value dependency for the value Radius contains
the grounded symbols position and mass, this means that the
component requires initial values for the Position and Mass at-
tributes to be able to provide an initial value for the Radius at-
tribute. The first stage is completed by calculating the build order
from the retrieved sets of value dependencies.

In the second stage each component creates its local represen-
tation of the entity, inserts the requested attributes, and sets their
initial values. As described above, this stage may require the in-
teraction of multiple components, according to the calculated build
order. It is worth mentioning that, due to the automatic type con-
version introduced in section 3.2, each component is independent
from data types used by other components.

Finally, the entity is integrated into the simulation loop in the
third stage.
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Figure 4: The entity creation process of the ball-entity from figure 1

Figure 4 depicts the entity creation process: An exemplary de-
scription of the ball-entity from figure 1 is shown. Its physical
aspect is providing the mass and position attributes, whereas the
graphical aspect provides its radius attribute. In addition, the graph-
ics aspect requires the entity to have a position attribute.

The initial values for the position and radius attributes are pro-
vided indirectly by the graphical aspect (via the specified file). The
value for the mass attribute, which is calculated and provided by the
physics engine, depends on the radius value. A subsequent sanity
check is passed, since initial values are provided for each attribute.

The following build order is calculated from the sets of value
dependencies: The position attribute will be set first, since it is in-
dependent from other values. Its value will be read from the file
specified in the GfxFile state value and then be passed to the
physics engine. Since the mass attribute depends on the value of
the radius attribute, the radius attribute is created first.

In order to allow entities to have subelements, entity descrip-
tions may in turn contain entity descriptions. For this purpose a
subelement-aspect, which is handled by a dedicated component,
must be provided with the framework. Using this aspect, the sub-
entity becomes an attribute of the parent entity and is assigned a
grounded symbol.

In Simulator X the entity creation is started by an actor respon-
sible for the creation process, causing all creation processes to run
in parallel.

4 INTEGRATION INTO THE SIMULATOR X FRAMEWORK

Having presented a technique to decouple the elements of RIS ap-
plications, we will now focus on the consequences for component-
and application developers.

4.1 The component developers view

By means of the proposed methods components may be developed
completely independent from each other. To achieve this, new com-
ponents must implement the interface presented in listing 2.

The method getDependencies is called in the first stage of
the entity creation process (see section 3.4). In the second stage

requestInitialValues is called at least once, according to
the calculated build order. In this context the parameter given
contains a list of initial values, which were supplied before. Within
this method the component has to build its local representation of
the respective entity. In the third stage of the creation process
the method entityConfigComplete is called. The method
removeFromLocalRep is invoked each time an entity has to be
removed.

1 protected def getDependencies(

2 aspect : Aspect ) : Set[Dependencies]

3 protected def requestInitialValues(

4 toProvide: Set[SVarDescription[_, _]],

5 aspect: Aspect, e: Entity, given: SValList)

6 protected def entityConfigComplete(

7 e: Entity, aspect: Aspect)

8 protected def removeFromLocalRep(e: Entity)

Listing 2: The component interface

Component developers are meant to provide (or reuse) classes
that are derived from the Aspect class. In this way the correct
mapping of grounded symbols between an aspect and the related
component can be ensured. Suppose a developer specifies a phys-
ical aspect to describe a sphere. Hence, the grounded symbols
physics (aspect type) and sphere (semantics) will be assigned
(see listing 3). The aspect is probably specified to require or provide
the attributes Mass, Position, and Radius, which can be spec-
ified by means of variable descriptions. A physics engine then has
to recognize the sphere symbol and initiate appropriate actions
within the methods defined in listing 2.

1 case class PhysSphere( radius : Option[Float] = None,

position : Option[Vec3f] = None ) extends Aspect(

Symbols.physics, Symbols.sphere ){

2 def getProvidings = Set( Mass, Position, Radius )

3 def getFeatures = Set( Mass, Position, Radius )

4 def getInitialValues = {

5 val values = collection.mutable.Set[SVal[_]]()

6 if (position.isDefined) retVal += Position(position)

7 if (radius.isDefined) retVal += Radius(radius)

8 return values

9 }}

Listing 3: An physical aspect example

Since the symbols used throughout the application are grounded
in an external ontology (see section 5), all components are able to
use the same symbols. For this reason, aspects defined for one com-
ponent remain applicable for others that support the same type of
aspect. Even if the replacement component has a different fea-
ture set than the replaced one, an application can stay functional.
In terms of the example from listing 3, the replacement compo-
nent might only support Position and Radius attributes for
spheres. As long as no other component depends on the Mass at-
tribute (which can be verified by the sanity check of the respective
entity description), the application will remain operable.

4.2 The application developers view

An application developer is rarely interested in the interaction of
components with each other, but wants to focus on the design of
the virtual environment. Therefore, the specification of entities and
their behavior has to be decoupled from their instantiation and sim-
ulation.

Fortunately, this can also be achieved using the introduced tech-
niques. Utilizing the set of aspects shipped with the used compo-
nents, application developers only have to combine those aspects
in order to create new entity descriptions. An example is given in
listing 4, which results in the entity creation process from figure 4:
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1 val ballDesc = new EntityDescription(

2 GraphicsFile( file = "ball.dae" ),

3 PhysSphere()

4 )

5

6 ballDesc.realize{

7 (e : Entity) => println("new ball " + e + " created")

8 }

Listing 4: EntityDescription and instantiation of a virtual ball

The classes PhysSphere (cf. listing 3) and GraphicsFile,
which are subclasses of the Aspect class, are shipped with the
respective components (see section 4.1). Besides the functional-
ity inherited from their base class, they provide a constructor with
named parameters to simplify their instantiation. Furthermore, the
grounded symbols, which allow the aspects to be recognized by the
respective component, are hidden. The invocation of the realize
method creates a new entity from the description, as detailed in sec-
tion 3.4.

Obviously, an application developer only has to select aspects
and specify attribute values in order to create entities and needs
only little component-specific knowledge. Furthermore, compo-
nents can easily be replaced by others, as long as they are com-
patible with respect to the used aspects.

Because aspects are represented in the ontology (see section 5),
it is possible to define a set of basic aspects for each component
type. In this way a minimal feature set can be defined, whereby
basic functionality for each type of component is ensured. Compo-
nent developers can extend those aspects but are also free to define
completely new ones.

The feature of automatic data conversion results in the fact that
the application developer only has to care about the global data
types. Even if a component is replaced by another one, which is us-
ing different data types, the automatic conversion feature will hide
this from the developer. For the same reasons as given for aspects
in section 4.1, whole entity descriptions may be reused in different
applications.

The rules of interplay within an application are often defined in
the manner of if-then clauses (e.g. ”if the ball collides with the
table, then play a sound”). To enable the application developer to
define such rules, the Simulator X framework provides event de-
scriptions and events, as described below.

4.3 The event system

An event has features similar to an aspect. Its semantics is spec-
ified by means of a grounded symbol. Furthermore, it contains a
list of state values which is used to particularize the event. As men-
tioned before, state values are described by state variable descrip-
tions, for which reason they can be accessed by means of grounded
symbols. Finally, a set of affected entities may be attached to an
event. As with aspects, the receiving component can use the as-
signed grounded symbol to identify the event’s type and react ap-
propriately.

To decouple components and applications, event requests have to
be mediated (e.g. by a world interface). The mediating component
has to handle registrations of event providers and event handlers.
After a handshaking phase, events can be passed in a peer-to-peer
manner. In this context it does not matter which participant regis-
ters first, as event providers and event handlers can be stored and
matched each time a new registration request is received.

Each part of an application can register for the respective type of
event by sending an event description to the mediating component.
Similar to variable descriptions, event descriptions and events are
linked by sharing the same grounded symbol. As suggested in [42],
a filtering function may be added to an event description to simplify
the specification of related events.

If, for example, a physics component provides events of the type
collision, this information is stored by the mediator. An ap-
plication developer can request those events from the mediator, as
shown in listing 5. The used methods are implemented by the
abstract EventHandler class, provided with the Simulator X
framework. The mediator will answer to the request with a list,
containing all collision-event providers. The EventHandler im-
plementation will automatically contact each of those components
and register itself for the reception of events. After this procedure,
the application will receive collision events from the physics en-
gine. In listing 5 each received event is printed to the console.

1 //Within a subclass of EventHandler:

2 requestEvent( EventDescriptions.collision )

3 override def handleEvent(e: Event) { e.type match {

4 case Events.collision => println(

e.affectedEntities.mkString(" and ")+"collided" )

5 } }

Listing 5: Application registering for collision events

Events should only be used for incidents that do not reflect states.
Every incident that has a duration can be realized with the help of
state variables and their observe functionality. This is reasonable,
because each ”start-xy” event would require the implementation of
a ”stop-xy” event, making the code less maintainable. Sending mul-
tiple events for the duration of the incident is disadvantageous as
well, as it would prevent the possibility to distinguish between two
events of the same type, which take place almost simultaneously.

5 THE OWL ONTOLOGY

In the previous sections we introduced a method to reduce the cou-
pling of RIS components to the agreement on a set of symbols and
associated (global) data types. However, it has to be ensured that
those symbols are used and interpreted equally by each developer.
As mentioned before, this corresponds to the problem of symbol
grounding [18].

In order to solve this problem, those symbols and data types must
be generally accessible. In addition, they have to be integrated into
a taxonomy to disambiguate their meaning. These requirements
bring techniques into focus, which were developed in context of
the semantic web [4]. From those, the representation by means of
the Web Ontology Language (OWL) [47] was chosen for multiple
reasons:

First of all, it is reasonable to employ an external data format in
order to obtain independence of a specific programming language.
This is achieved by defining transformations from OWL into pro-
gram code. Next, the choice of a standardized, widely accepted
knowledge representation language offers the opportunity to utilize
external resources. There is a large number of OWL ontologies on
the web, which can be employed to semantically annotate the at-
tributes and entities used in the developed application (see section
5.3). Besides the valuable fact that AI components can benefit from
those annotations, sophisticated queries on the set of entities are
rendered possible. Especially when interaction with the virtual en-
vironment includes natural language input the application of such
a KRL is beneficial [9]. Furthermore, it allows to define rules that
have to be observed when inserting new information. Compliance
with those rules can be checked automatically by the application of
a reasoner. Finally, domain experts can model virtual environments
without being forced to use a low-level scripting language [6]. By
the use of OWL editors (like Protégé [40]) the need for program-
ming skills can be reduced even more.

5.1 Structure

The ontology is split into three layers, which are distributed over
multiple files. The structure of these layers is shown in figure 5:
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The architecture elements of the framework and basic classes,
individuals, and properties, which are used within dependent files,
are defined in the core layer. The respective files are shipped with
the framework and are almost never subject to changes.

Files from the second layer are provided by the group of com-
ponent developers: At least one OWL file is shipped with each
component. Therein definitions from the core ontology are utilized
to define symbols, aspects, and state variable descriptions that are
used by the respective component. In addition, component specific
knowledge may be contained in these files. It is important that all
components use the same grounded symbols to ensure exchange-
ability. Therefore, the concepts (which are represented by grounded
symbols) must be imported from external ontologies, which contain
the world knowledge (see section 5.3).

The third layer is composed of files which are provided by the
group of application developers. They contain descriptions of en-
tities and configurations of components for specific applications.
For this reason, definitions have to be imported from the OWL files
which are shipped with the components that are used by the respec-
tive application.

5.2 Representation of Architecture Elements

Symbols, data types (in form of global and local variable descrip-
tions), entity descriptions, as well as templates for aspects are rep-
resented in the ontology. The classes and object properties that
are defined in the core ontology, are shown in figure 7. Besides,
the OWL data properties hasDataType and hasConstructor
(not shown in the figure) are defined.

The SimulatorX_Concept class is the base of all concepts
that are transformed into program code. Grounded symbols are
generated on the basis of the Internationalized Resource Identifier
(IRI) [12] that is associated with each of its subclasses. In this man-
ner an unambiguous assignment of ontology concepts and grounded
symbols is obtained.

Grounded symbols for component types are generated from
the subclasses of the Component class (e.g. from the classes
Graphics and Physics in figure 6).

State variable descriptions are generated from OWL individu-
als whose type is a subclass of the StateVariable class. As
mentioned before, these descriptions contain a grounded symbol as
well as variable descriptions for the local and the base data type.
The variable descriptions are specified using the basedOn and
hasDataType properties, whereas the grounded symbol is pro-
vided by the IRI of the individual’s type. Obviously, each com-
ponent developer can specify an own data type for every con-
cept, since classes can have multiple individuals. In Simulator X
the default constructor (see listing 1) is defined by means of the
hasConstructor property.

As described in section 3.3, an entity description is composed
of aspects. Templates for aspects can be defined by asserting a
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Figure 6: OWL representation of the ball entity from previous exam-
ples. The coloring reflects the belonging to the layers shown in figure
5. Concepts having a double border are suggested to be taken from
an external ontology.

subclass of Aspect and adding provides, requires, and
forComponent property expressions.

An entity description can be specified by creating a subclass
of Entity and specifying hasAspect property expressions that
reference subclasses of the Aspect class.

The OWL representation of the ball entity, which was used in
previous examples, is depicted in figure 6. For reasons of clarity the
hasDataType and hasConstructor relations are not shown.

5.3 World Knowledge

As mentioned in the beginning, all developers have to use the same
repository of symbols to ensure interoperability between all archi-
tecture elements. Therefore, either a central repository has to be
created or an external ontology providing those symbols has to be
used. The advantages of using an external ontology are the lesser
effort necessary to gather symbol identifiers, and the fact that (in
most cases) additional information is already linked to those sym-
bols, which can be reused.

For example, the concepts Position, Radius, and Mass,
shown in figure 6, are likely to be found in an external ontology.
To use foreign definitions, the external ontology has to be imported,
an rdfs:subclassOf relation between the foreign class and the
StateVariable class has to be specified, and a hasDataType
relation defining the global data type must be asserted. In this way,
external information is preserved and can be used to infer new infor-
mation on the respective object. Of course, files containing further
world knowledge can be created and imported as well.

SimulatorX_Concept

StateVariable
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Aspect

owl:Thing

Component

Figure 7: OWL classes defined in the Simulator X core ontology

manuscript

architecture elements of the framework and basic classes,manuscript

architecture elements of the framework and basic classes,
individuals, and properties, which are used within dependent files,manuscript

individuals, and properties, which are used within dependent files,
are defined in the core layer. The respective files are shipped withmanuscript

are defined in the core layer. The respective files are shipped with
the framework and are almost never subject to changes.

manuscript

the framework and are almost never subject to changes.

Files from the second layer are provided by the group of com-

manuscript

Files from the second layer are provided by the group of com-
ponent developers: At least one OWL file is shipped with each

manuscript

ponent developers: At least one OWL file is shipped with each
component. Therein definitions from the core ontology are utilized

manuscript

component. Therein definitions from the core ontology are utilized
to define symbols, aspects, and state variable descriptions that are

manuscript

to define symbols, aspects, and state variable descriptions that are
used by the respective component. In addition, component specific

manuscript

used by the respective component. In addition, component specific
knowledge may be contained in these files. It is important that all

manuscript

knowledge may be contained in these files. It is important that all
components use the same grounded symbols to ensure exchange-

manuscript

components use the same grounded symbols to ensure exchange-
ability. Therefore, the concepts (which are represented by grounded

manuscript

ability. Therefore, the concepts (which are represented by grounded
symbols) must be imported from external ontologies, which contain

manuscript

symbols) must be imported from external ontologies, which contain
(see section 5.3).

manuscript

(see section 5.3).
The third layer is composed of files which are provided by the

manuscript

The third layer is composed of files which are provided by the
group of application developers. They contain descriptions of en-

manuscript

group of application developers. They contain descriptions of en-
tities and configurations of components for specific applications.

manuscript

tities and configurations of components for specific applications.
For this reason, definitions have to be imported from the OWL files

manuscript

For this reason, definitions have to be imported from the OWL files
which are shipped with the components that are used by the respec-

manuscript
which are shipped with the components that are used by the respec-

Symbols, data types (in form of global and local variable descrip-

manuscript
Symbols, data types (in form of global and local variable descrip-
tions), entity descriptions, as well as templates for aspects are rep-

manuscript
tions), entity descriptions, as well as templates for aspects are rep-

of

manuscript

of
reference subclasses of the

manuscript

reference subclasses of the
The OWL representation of the ball entity, which was used in

manuscript

The OWL representation of the ball entity, which was used in
previous examples, is depicted in figure 6. For reasons of clarity the

manuscript

previous examples, is depicted in figure 6. For reasons of clarity the
hasDataType

manuscript

hasDataType

5.3 World Knowledge

manuscript
5.3 World Knowledge

As mentioned in the beginning, all developers have to use the same

manuscript
As mentioned in the beginning, all developers have to use the same
repository of symbols to ensure interoperability between all archi-

manuscript
repository of symbols to ensure interoperability between all archi-
tecture elements. Therefore, either a central repository has to be

manuscript
tecture elements. Therefore, either a central repository has to be
created or an external ontology providing those symbols has to be

manuscript
created or an external ontology providing those symbols has to be
used. The advantages of using an external ontology are the lesser

manuscript
used. The advantages of using an external ontology are the lesser

manuscript
effort necessary to gather symbol identifiers, and the fact that (in

manuscript
effort necessary to gather symbol identifiers, and the fact that (in
most cases) additional information is already linked to those sym-

manuscript
most cases) additional information is already linked to those sym-
bols, which can be reused.

manuscript
bols, which can be reused.

For example, the concepts

manuscriptFor example, the concepts Position

manuscriptPositionshown in figure 6, are likely to be found in an external ontology.

manuscriptshown in figure 6, are likely to be found in an external ontology.
To use foreign definitions, the external ontology has to be imported,

manuscriptTo use foreign definitions, the external ontology has to be imported,
rdfs:subclassOf

manuscriptrdfs:subclassOf relation between the foreign class and the

manuscriptrelation between the foreign class and the
StateVariable

manuscriptStateVariable class has to be specified, and a

manuscriptclass has to be specified, and a hasDataType

manuscript hasDataType

relation defining the global data type must be asserted. In this way,

manuscriptrelation defining the global data type must be asserted. In this way,
external information is preserved and can be used to infer new infor-

manuscriptexternal information is preserved and can be used to infer new infor-
mation on the respective object. Of course, files containing further

manuscript
mation on the respective object. Of course, files containing further

manuscript
world knowledge can be created and imported as well.

manuscript
world knowledge can be created and imported as well.



Entity StateVariable

Aspect Component
forComponent

pr
ov

id
es

re
qu

ire
s

h
a
s
A

s
p
e
c
t

has

b
a
s
e
d
O

nfo
rC

o
m

p
o
n
e
n
t

Figure 8: Object properties defined in the Simulator X core ontology

6 CODE GENERATION

While the previous sections presented the concepts and techniques
to decouple components, and thus to separate the work of differ-
ent groups of developers, this section provides suggestions for the
realization of those methods.

A problem related to the use of grounded symbols is the fact that
errors like mistyped symbol names cannot be detected at compile
time. Therefore, grounded symbols should not be represented by
strings but instead stored in variables. As this would force a de-
veloper to define those symbols at least twice (in the ontology and
in the program code), we generate such variables, since mistyped
variable names can be detected at compile time.

To avoid further programming-related difficulties, like the risk of
misused grounded symbols, it is reasonable to generate most of the
code referencing those symbols as well. In particular this means
that architecture elements, which are represented in the ontology,
should be transformed into program code.

6.1 Implementation Details

In Simulator X the ontology is accessed using the OWL API [20].
All architecture elements that are represented in OWL files are
transformed into Simulator X code. For this purpose, a set of prede-
fined classes is provided. All relevant information can be provided
by means of their constructors (see the SVarDescription class
in listing 1 for an example). Therefore, generated classes do only
have to be derived and necessary parameters have to be filled in.
The predefined classes and their relationships are illustrated in the
UML diagram shown in figure 3.

All generated objects are named according to the associated
classes in the ontology. The GroundedSymbol class does not de-
pend on other elements. It stores the identifier of a grounded sym-
bol and is used to establish the link between the program and the
ontology. Each subclass of the VariableDescription class
needs to provide three parameters: A (local) data type, a semantic
description, and an (optional) base class, which is also represented
by a VariableDescription instance. As all of those parame-
ters are generated, the implementation is straightforward.

The generation of aspects is more complex: An aspect has
to be linked with its associated component. It also has to con-
tain a grounded symbol, to represent its semantics. In addition,
it can specify the attributes which an entity having this aspect
must contain. This is done by means of an arbitrary number of
Provide and Require instances, each of which carries exactly
one VariableDescription. Currently, initial values are not
stored in the ontology, for which reason only templates for aspects
can be generated. For example, a physical aspect which dictates
all derived aspects to have at least a position, a mass, and a shape
attribute could be defined. A component developer then may create
subclasses of such a template and define constructors which take
the initial values as parameters. It is planned to store initial values
in the ontology and generate complete aspects in the future.

To generate entity descriptions, the set of attributes, which must
be provided by the aspects composing the respective entity, has to

be specified. This is achieved by means of the has relation (see
figure 8), which relates an Entity class to a StateVariable
class. The aspects associated with the described entity are checked
to provide all required attributes within the sanity check mentioned
in section 3.4. If the check is passed, the entity is created as de-
scribed. If one or more attributes are not provided by the given
aspects, a revealing error message is produced.

With the help of these transformations the use of grounded sym-
bols is hidden for the most part, whereby the risk of accidental mis-
use is reduced.

7 CONCLUSION AND FUTURE WORK

We presented a technique to decouple the process of developing
RIS components and applications. In this context entities provide
an interface for developers and components, since the application’s
global state is encoded in the set of their attributes as a whole. On
the technical side we use converters to decouple components, which
are automatically applied to isolate the data types that are used by
single components. In this way, independence of data types, as
requested by [33], is obtained. Our approach reduces coupling to
the agreement on global data types and symbols, which are used to
access the attributes of an entity.

An ontology is utilized to overcome the related problem of sym-
bol grounding. The concepts defined therein are transformed into
code of a given target language, to reduce the risk of a mix up of
symbols. The ontology also contains descriptions of basic architec-
ture elements and entities. By transforming these descriptions into
code as well, the description of VEs can be separated from the pro-
gramming task. Furthermore, the use of grounded symbols can be
hidden in most instances, reducing the risk of confusion of symbols
even more.

Since the above-mentioned transformations are performed at
compile time, and the comparison of symbols is equivalent to the
comparison of references, the presented technique does hardly af-
fect the application’s performance at all. Look-ups of attributes and
converters have to be performed only once per attribute and entity
to store a local reference, which is subsequently used.

The presented approach was already adopted in [14], showing
its practicability in a more complex scenario. Since state variables
can contain an arbitrary data type, our approach was even used in
combination with a skeletal animation component. However, the
more specialized the contained data becomes, the smaller the set of
components supporting that data will be.

Future work will address the integration of AI methods to permit
querying the application’s state. The modification and creation of
tools to edit the ontology will be a relevant task as well. Currently
a plugin for the Protégé editor, facilitating the process of symbol-,
aspect-, and entity-definition, is being developed. Furthermore, a
fourth layer shall be added to the ontology structure to store and
restore an application’s state.
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