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ABSTRACT

This article illustrates the design and development of distribution
properties for Realtime Interactive Systems (RIS). The approach
is based on the actor model for concurrent computation. The ac-
tor model provides a unified API for intra-node as well as for
inter-node distribution and strongly facilitates the development of
concurrent applications. Several benchmarks analyze vital perfor-
mance properties to support the design decisions taken. The bench-
marks describe typical setups found in RIS-applications, i.e., dis-
tributed rendering for large screen and tiled displays in immersive
VR setups. Actual and potential performance impacts caused by
the actor middleware are analyzed and identified and alternative so-
lutions to overcome these impacts are provided.

Index Terms: I.3.2 [Computer Graphics]: Graphics System—
Distributed/network graphics

1 INTRODUCTION

Typical application areas of Realtime Interactive Systems (RIS)
span from Virtual Reality (VR), Augmented Reality (AR), multi-
modal human-computer interaction (HCI), robotics, to computer
games. A main characteristic of such systems is the integration
of multiple functional properties to analyze live user input and to
synthesize appropriate and consistent output in real-time. A com-
mon task during RIS developments is the integration of existing
software modules and libraries that provide the required functional
properties. They most likely will use incompatible data structures
and control flows.

RIS-related integration tasks increasingly face distribution re-
quirements. The computational power of modern computer hard-
ware is commonly achieved by so-called intra-node parallelism of
multicore CPU and GPU architectures. Additionally, inter-node
distribution based on compute clusters plays an important role for
high performance computing and the RIS area. For example, a com-
mon requirement of various VR systems is the distributed rendering
of a coherent virtual scene. But developing distributed software has
its own pitfalls like dead locks, live locks, heisenbugs, or stochastic
behavior which complicate development drastically.

This article describes and analyses the actor model [13, 2] as an
alternative RIS distribution model. It is applicable for intra-node
as well as inter-node distribution and addresses many of the typical
problems associated with distributed computing. The article starts
with the reflection of related work followed by a brief description
of the software platform [16, 15] which is utilized to implement a
unified distribution API based on the actor model. Several bench-
marks provide comprehensive results which compare the inter-node
efficiency to the intra-node efficiency. The benchmarks expose an
unexpected and severe bottleneck. This bottleneck is identified by
subsequent low-level benchmarks leading to a solution presented at
the end.
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2 RELATED WORK

Intra-node distribution, aka clustering, has been a well-proven
concept to provide the computational power for RIS applications
[25, 6, 4, 18, 22]. Typically, clustering is used to serve multiple
stereoscopic displays or to perform highly complex computational
simulations in real time.

Historically, dedicated computer systems like the SGI ONYX se-
ries have been used in this domain. They utilized a parallel CPU and
graphics hardware design with inter- and intra-node characteristics
and provided a dedicated API to handle the expensive hardware.
Since the development of high-quality consumer graphics in the PC
market, inter-node clustering of Of-The-Shelf (OTS) equipment be-
came a cost-efficient alternative to dedicated computer systems.

In addition, increasing computational power by raising CPU
clock frequencies became uneconomical [23, 24] due to heat pro-
duction. Since the beginning of the 2000’s computational power is
mainly increased by parallel on-die architectures utilizing multiple
CPU cores. These multicore CPUs are the dominant architecture
for PC hardware as of today (2013) [20, 3].

The advent of multicore CPUs has a large impact on mainstream
software development down to the consumer level. As a result,
distribution became increasingly important for the gaming area as
well. Sophisticated games have to take advantage of intra-node as
well as inter-node distribution. The latter is important for online
gaming and massive multiplayer games [12, 22]. The clustering
paradigms usually applied in such scenarios are n:1 or N:m client-
server models where central game servers collect and distribute the
changing game states to and from clients.

Developing reliable and maintainable multithreaded software is
a highly complex task. Dead locks, live locks, heisenbugs, and
stochastic behavior are just a few typical errors types frequently en-
countered during the development of multithreaded software. The
classical shared state concurrency where multiple threads working
on the memory and synchronizing with each other by using locks,
semaphores, or signals turned out be unmanageable for large soft-
ware [17]. Just having multiple cores to one’s availability or to
interconnect a bunch of PCs does not provide a means to take ad-
vantage of the computational power. Software models are required
which have to encompass inter- as well as intra-node concurrency
and clustering setups.

Hewitt’s actor model [13, 2] provides a promising programming
paradigm to write reliable and maintainable concurrent software.
Actors are independent flows of control. Each actor has its own
protected memory area, which can not be read or written by other
actors. Actors solely communicate with each other via messages.
The behavior of an actor describes an actor’s reaction to a message.
An actor can manipulate its own state, change its own behavior,
send messages to other actors, and spawn more actors.

Message passing is asynchronous. If an actor sends a message,
the sender does not have to wait until the receiver processes it. If
the receiver currently is busy, then the sent message is stored in the
mailbox of the receiver. The receiver retrieves the next message
from the mailbox after it finishes its current task.

A broad range of problems with different granularity can be en-
capsulated into actors. This makes the actor model highly adaptable
to many application scenarios. The main advantage of the actor
model is that it abstracts concurrency into a usable programming



model and avoids common pitfalls of concurrent programming. It
provides a unified approach that covers both, intra-node as well as
inter-node scenarios. For example, in the RIS context it can greatly
simplify transitions between clustered and local versions while al-
ways utilizing the underlying hardware economically.

Beside several advantages, the actor model has to be analyzed
in terms of potential disadvantages. Messages need to be created,
saved in the mailbox of the receiver, and decoded by the receiver
before processing it. Clearly, this is more expensive than a simple
function call. At first glance this causes an unnecessary overhead
for intra-node distribution. For inter-node distribution, the underly-
ing transport layer may have additional performance impacts. Also,
the asynchronous behavior of the underlying communication model
must be augmented by a synchronization layer to support coherent
computation for several RIS-specific tasks, e.g., synchronized ren-
dering across a cluster.

The remainder of this article will analyze the actor model in
terms of its functional and performance characteristics with respect
to RIS applications.

3 PLATFORM LAYER

The actor-based distribution model has been integrated into the plat-
form API of Simulator X [16, 15], an experimental RIS middleware
implemented in Scala. Scala is a modern multi-paradigm language
that contains object-oriented and functional language features [19].
Scala uses the actor model as the fundamental concurrency model
and provides its own native actor implementation [11]. Several al-
ternative actor model implementations [1] exist. As light-weight
concurrent constructs, multiple actors are dispatched to heavy-
weight threads of the underlying operating system by an internal
actor scheduling system. Typically, one heavy-weight thread exists
per CPU core, while several thousand actors may be created.

The Scala actor model library provides fundamental inter-node
abilities. Actors within the local process can be registered to the
remote actor service. Another process can connect through the net-
work and can create a local proxy of a registered actor. The proxies
are called remote actors and can be used like any local actor. If a
message is sent to a remote actor, it is serialized and sent over the
network.
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Figure 1: The overall architecture of the inter-node subsystem.

Figure 1 illustrates the overall architecture of the RIS mid-
dleware and the location of the actor-specific concepts. The
central programming concepts of the top-level platform API—
components, entities, and state-variables—and their integration
with the actor model are briefly described here.

Components
Components provide essential services for RIS applications within
Simulator X, e.g., rendering, physics simulation, or artificial intel-

ligence, etc. Components are functional high-level building blocks
providing different aspects of a simulation. During entity construc-
tion, components interpret associated entity descriptions and they
create state variables and initial values for properties relevant to a
components functionality. Components are implemented as actors
providing coarse-grained concurrency.

Entities
Entities encapsulate visible as well as invisible simulation objects.
They aggregate associated state variables. An entity can have state
variables for attributes like transformation, mass, surface friction,
and shininess. Each represents an attribute of the simulated object
that can be managed by different actors in the system. State vari-
ables like mass or surface friction are managed by an actor that
performs the physics simulation. Rendering attributes like shini-
ness are managed by an actor that renders the scene. For example,
a physics engine and a graphics engine typically communicate via
a transformation state variable. The physics engine writes a new
transformation to the variable and the graphics engine updates its
scene representation. The set of the entities of all simulated objects
provides a pseudo-global world state.

State variables
State variables provide the changeable state of a simulation. The
value change operation of state variables is built on top of the un-
derlying message-passing system of the actor model. State vari-
ables are typed handler constructs to read, write, and observe vari-
ables that are shared between actors. They represent an attribute
of a simulated object or a parameter of a system device like a key
on the keyboard. State variables are the finest-grained concurrency
concepts integrated into the platform API.

• Reading a state variable means requesting the current value of
the variable from the managing actor.

• If an actor wants to write to a state variable, it sends a message
that contains the new value to the managing actor.

• Observing a state variable means that the managing actor no-
tifies the observer on value changes.

• Writing to a state variable is interpreted by the managing and
observing actors.

4 REQUIREMENTS OF THE DISTRIBUTION LAYER

Components and state-variables provide appropriate targets for the
integration of the required distribution functionality into the plat-
form API. Several requirements have been identified in the relevant
literature on VR systems [5, 25, 21] and from analyzing the needs
of application programmers. Ideally, the desired distribution func-
tionality for intra- and inter-node distribution should fulfill all of
the following requirements:

• R1: Distributability—Non-distributed applications must be
easy to be migrated to clustered set-ups.

• R2: API-uniformity—The distribution API must be similar
for intra-node as well as inter-node applications.

• R3: Compatibility—An application that works locally on one
node should also work distributed in a cluster.

• R4: Flexibility—Beside actors that have access to specific
hardware, the developer should freely decide which actor runs
on which node of the cluster.

• R5: Configurability—Simple configuration of the clustering
subsystem and the distribution layout.



• R6: Transparency—As development of an application is
mainly done using a normal desktop computer, a development
mode that disables the cluster feature needs to be provided.

• R7: Manageability—Low administration overhead.

5 DISTRIBUTION LAYER

This section describes the architecture of the distribution layer. A
cluster for inter-node distribution is defined here as a networked set
of computing nodes. Each of the nodes has a unique name. At start-
up, the nodes connect to each other. The application starts after all
nodes are connected. Figure 1 illustrates the parts and layers of
the distribution model and how they are integrated into an existing
platform. From bottom up: The first three layers—OS, network
stack, and actor library—are provided by the operating system and
the Scala virtual machine. Creating an actor on a foreign node is
implemented by the remote actor creation layer. To create an actor,
it uses the actor library.

All actors in the cluster can create actors on any other node. All
nodes have the same rights, and no master node exists. Every node
in the cluster is connected to every other node in the cluster (Figure
2) by permanent TCP connections.
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Figure 2: All nodes in the cluster are connected to each other.

Actor creation
Creating actors on other nodes is a key feature of the inter-node sub-
system, but not originally supported by the actor library. To create
actors, a function called createActor is provided. Two overloaded
versions exist, one to create an actor on the local system, and one to
create an actor on a foreign node. Listing 1 shows how two actors
of the same type are created on the local and a foreign node.

Two actors are created in lines 1 and 3. Line 1 creates an actor
on the local node. The values of a and b are passed as parameters
for the constructor. Line 3 creates an actor of the same type on a
foreign node of the cluster.

Conforming to requirement R2 (API-uniformity), both calls only
differ by one parameter, the optional name of the target node. If no
name is passed, the actor is created on the local node. If a name
is passed, the actor is created on the specified node in the cluster.
Conforming to requirement R5 (Configurability), the distribution
layout of an application can be changed by simply adding a name
of a node or changing the name of the current target node. This is
the only point where local and remote actors are treated differently.
After the actor is created, the API to interact with both actors is
identical. Passing an optional name for a target node is the absolute
minimum difference. Hence, a non-distributed application is easy
to be migrated (R1 Distributability). According to requirement R3
(Compatibility), the application developer is free to choose if he
wants to create an actor on another node as he could also create

both actors on the local node or each one individually on any other
node in the cluster. Conforming to requirement R4 (Flexibility), the
actors that are created on a foreign node do not need to extend any
special base class but the base class of the underlying actor model
library.

Listing 1: Creating two actors using the distribution API. The first
actor is created on the local node. The second actor is created on
another node in the cluster.

1 createActor[ActorType]( a, b )
2 ( handler )()
3 createActor[ActorType]( a, b )
4 ( handler, ’nodeB )()

Abstract class for applications

The distribution layer provides the abstract class
SimXClusterApplication to facilitate the develop-
ment of intra-node applications. According to requirement R7
(Manageability), it interprets a simple set of command line
arguments to configure the distribution layer. In accordance to
requirement R6 (Transparency), the inter-node distribution can be
disabled by one parameter. A single function call is necessary in
the API to configure and boot the cluster. To conclude, an inter-
node capable application differs from an intra-node application
by the application base class used and one additional line in the
source code. As the inter-node subsystem can easily be disabled,
inter-node applications can run as a intra-node application without
additional work.

Programming

Listing 2 shows an example of an inter-node application. The appli-
cations class needs to extend the SimXClusterApplication
class. Lines 1 and 2 show that the base class consumes an Array
of String as an argument. This should be the command line ar-
guments array handed over to the main function by the JVM. Lines
4 and 5 configure and boot the cluster. The setter method cluster-
Configuration takes a set that contains the names of all nodes in
the cluster as parameter. This method blocks until all nodes have
joined the cluster. Because this function is called within the class
definition body, the creation of an instance via the new operator in
the main function blocks until the cluster is started.

The main function is shown in lines 10 – 13. A new instance
of the BootExample class is created and the command line argu-
ments are passed as parameters. The line bootExample.start() starts
the actor. At this point the cluster is already set up and all nodes are
connected to each other.

Listing 2: Small example that uses the abstract class
SimXClusterApplication

1 class BootExample( args : Array[String] )
2 extends SimXClusterApplication( args ) {
3
4 clusterConfiguration = Set() + ’simulation
5 + ’left + ’right
6 ...
7 }
8
9 object BootExample {
10 def main( args : Array[String] ) {
11 val bootExample = new BootExample( args )
12 bootExample.start()
13 }
14 }



Example: Distributed graphics rendering
A typical distribution scenario for immersive VR systems requires
multiple rendering nodes to operate on commodity hardware. List-
ing 3 illustrates a display setup description for a powerwall with
two video projectors connected to two different nodes. The nodes
have already been initialized following Listing 2.

This display setup description is interpreted by the rendering
component that creates actors on every cluster node connected to
a described surface. The actors on the node open required windows
on the specified ports to render the scene.

Listing 3: A display description that opens two windows on different
nodes in a cluster.

1 val pos = ConstMat4f(
2 Mat3x4f.translate(
3 Vec3f( 0.0f, 0.0f, -1.0f )
4 )
5 )
6 val displayDesc1 = new DisplayDesc(
7 resolution = None,
8 size = (3.73, 2.33),
9 transformation = pos,
10 view = new CamDesc( 0, Eye.LeftEye )
11 )
12 val displayDesc2 = new DisplayDesc(
13 resolution = None,
14 size = (3.73, 2.33),
15 transformation = pos,
16 view = new CamDesc( 0, Eye.RightEye )
17 )
18 val displayDevice1 = new DisplayDevice(
19 hardwareHandle = None,
20 displayDescs = displayDesc1 :: Nil,
21 linkType = LinkType.SingleDisplay,
22 // Node for the left eye
23 node = Some( ’left )
24 )
25 val displayDevice2 = new DisplayDevice(
26 hardwareHandle = None,
27 displayDescs = displayDesc2 :: Nil,
28 linkType = LinkType.SingleDisplay,
29 // Node for the right eye
30 node = Some( ’right )
31 )
32 val displaySetupDesc = new DisplaySetupDesc()
33 displaySetupDesc.addDevice(
34 displayDevice1, 0 )
35 displaySetupDesc.addDevice(
36 displayDevice2, 1 )
37 renderer ! ConfigureRenderer(
38 displaySetupDesc,
39 ...
40 )

6 DISTRIBUTED RENDERING BENCHMARKS

This section describes the benchmarks and results to evaluate the
distribution model. The benchmarks were first performed using
intra-node distribution to obtain base-line values for the later per-
formed inter-node versions.

Scenario
In the benchmark application illustrated in Figure 3 the model of a
medieval city is rendered. The user can spawn single barrels and a
stack of barrels in the middle of the scene. A large barrel can be
pushed forward to collide with the stack of barrels.

The application consists of two components. The physics com-
ponent simulates the movement and collision of the barrels. The
renderer renders the scene. The physics component performs the

Figure 3: Screenshot of the barrel stack benchmark application.

whole simulation within one actor. The rendering component man-
ages several render actors. A render actor opens one window and
renders the scene to this window. One render actor runs on every
node that is connected to a display or video projector. Typically,
each of the render actors render a different view frustum, e.g. for
the left the right eye or for a part of a tiled display. The render ac-
tors observe the transformation state variables of the entities of the
scene. Hence, the communication between the physics component
and the render actors are the updated transformations of the entities.
Ten barrels are simulated in the performed benchmarks. Including
trigger messages, 720 messages per second are sent to each render
actor.

Setups

Two typical setups are covered by the benchmarks:

• A high quality powerwall, where the image for each eye is
rendered by one node.

• A 3x3 tiled display, where each tile of the assembly is con-
nected to one node.

The powerwall setup measures the latency and synchronization
between the nodes. A high latency or failed synchronization be-
tween the nodes—where both nodes render different world states—
will result in a failure of the stereoscopic impression.

The rendering and simulation hardware of the powerwall con-
sists of the three computers (Table 1). The video signals are fed to
two projectors that project the images onto the same screen using a
KVM switch and DVI splitters. All three computers are connected
by a fully switched 1 GBit Ethernet. The tiled display setup mea-
sures the scalability of our distribution model. Ten computers were
used for the tiled display tests (Table 2). All ten computers are con-
nected by a fully switched 1 GBit Ethernet.

Table 1: Hardware of the powerwall.

simulation server render node
CPU 2x AMD Opteron

6168 12-Core 1.9GHz
AMD FX-6100 6-
Core 3.3GHz

RAM 16 GB 8 GB

graphics card 2x AMD Radeon HD
6950 1GB

AMD Radeon HD
6950 1GB



Table 2: Hardware of the tiled display.

CPU Intel Core 2 CPU 6600 2.4 GHz

RAM 6 GB

graphics card NVIDIA GeForce 9600 GT

VSYNC
The benchmark application is designed to run with at least 60 fps on
the used hardware. Still, the frame rate will never exceed 60 fps due
to activated VSYNC. Higher frame rates could be achieved without
VSYNC but hardware and view frustum dependent effects would
interfere with the target measurements as a result. In the tiled dis-
play scenario each tile renders a different view frustum. Each view
frustum contains frustum-specific geometry of individual complex-
ity and materials. Hence, tile-specific frame rates due to individual
rendering processes would interfere with measurements of the inter-
node distribution. This problem would even be potentially exacer-
bated due to the varying hardware of both scenarios, which would
lead to results hardly comparable to each other in case of disabled
VSYNC.

Configuration
Under both setups the benchmarks were performed with different
configurations. In both setups an intra-node version were exe-
cuted to generate a comparison value. In the intra-node version
the physics component, the rendering component, and one render
actor runs on the same node. This comparison value shows how
many fps are achieved without inter-node distribution.

In the inter-node powerwall setup one node performs the simu-
lation (e.g. physics simulation) while up to two nodes perform the
rendering. The physics and the render component run on the sim-
ulation server, while the two render actors each run on one render
node. In the inter-node tiled display setup one node performs the
simulation and 9 nodes perform the rendering. Again, the physics
and the render components run on the simulation node, while each
of the render actors run on individual nodes of the cluster.

Additionally, the synchronization between the nodes is modified.
In the synchronized configuration all render actors on the nodes
are synchronized to the rendering component actor on the simula-
tion node using the standard actor message passing. The rendering
component on the simulation node triggers the rendering nodes and
waits until they complete the rendering. Then the next frame is
rendered. In the unsynchronized configuration every render actor
triggers itself after it finishes a frame. The rendering actors just
render the last known state and trigger themselves after processing
all messages that are stored in the queue while rendering.

Results
The results of the distributed rendering benchmarks are summa-
rized in tables 3 and 4.

Table 3: Results of the powerwall benchmark scenario.

intra-node inter-node (2 Render nodes)
sync 60 5

no sync 60 60

Powerwall intra-node sync/unsync
Over the full runtime of the application, the average frame rate was
60 fps. This is the expected frame rate and confirms the results of

Table 4: Results of the tiled display benchmark scenario.

intra-node inter-node (9 Render nodes)
sync 60 5

no sync 60 60

existing demo applications[8, 9, 10, 7].

Powerwall inter-node sync
This benchmarks achieved a frame rate of 5 fps. This low frame
rate was not expected after the high frame rate of the intra-node
benchmarks.

Powerwall inter-node unsync
With disabled synchronization between the render actors and the
renderer component actor the frame rate rises to 60 fps on all nodes.

Tiled display intra-node sync/unsync
Like in the Powerwall intra-node sync/unsync benchmarks, the av-
erage frame rate was 60 fps. Also, this frame rate is the expected
value.

Tiled display inter-node sync
Like in the Powerwall inter-node sync benchmark, the average
frame rate was 5 fps. As Powerwall inter-node sync and Tiled dis-
play inter-node sync were executed on different hardware, the low
frame rate in a inter-node scenario does not depend on the used
hardware.

Tiled display inter-node unsync
Like in the Powerwall inter-node sync, the frame rate of all nodes
rise to 60 fps without synchronization. The synchronization be-
tween the render actors and the renderer component seems to be
the source of the low frame rate.

Overall discussion
While a high frame rate is achieved for intra-node setups with
disabled synchronization, enabled synchronization leads to a low
frame rate for inter-node setups. Disabling the synchronization in
general is not acceptable, as the nodes often render different world
states. This is most notable in Powerwall inter-node unsync, as the
images for both eyes are not in sync and the stereo impression fails
for moving objects.

To identify the causes for the poor performance given by the
previous cases, we formulate three hypothesis about which layer
causes the low frame rate. Each of them covers one of the layers
illustrated in Figure 1.

• H1 A performance problem of the platform layer.

• H2 A performance problem of the distribution layer.

• H3 A performance problem of the implementation layer.

7 LOW-LEVEL BENCHMARKS

The following low-level benchmarks test the throughput and la-
tency of the system under different conditions and aspects. The
benchmarks were executed using different configurations in order
to try to falsify the three hypothesis. To falsify H1 the benchmarks
were implemented on top of the platform layer and on top of the un-
derlying distribution model implementation–the Scala actor model
library. To falsify H2 the benchmarks were reimplemented upon
Akka, an alternative distribution model implementation. As the
causes of the poor performance could already be located in these



configurations, there was no need to falsify H3. However, if neces-
sary, it would require a reimplementation of the benchmarks using
a different distribution model.

Scenarios
Throughput
The throughput benchmark scenario measures the maximum
throughput of messages per second over the network. As illustrated
in Figure 4, two types of actors are involved. The sender sends
messages to a receiver.

sender receiver

Start Token

Payload Messages

End Token

Ready Token

Start Token

Next 
measurement

Payload Messages

Figure 4: Communication order in the throughput benchmark sce-
nario.

The sender sends a start token to the receiver at the beginning of
each measurement . The start token contains the number of mes-
sages that will be sent in this step. Afterward, the sender sends the
messages with a given payload. After sending the payload mes-
sages, it sends an end token. On processing the start token, the
receiver saves its own local start time. The payload messages are
just read from the inbox queue. On processing the end token, the
receiver calculates the time span and logs it.

Next, the receiver sends a ready token to the sender. After the
sender receives the ready token, it starts the next step.

Ping
The ping benchmark tests the latency between two actors that are
communicating in an inter-node configuration. One actor receives
a ping message and sends back a reply message to the sender (Fig-
ure 5). After the sender received the reply message it immediately
sends the next ping message. The latency is determined by calculat-
ing the time span between sending the ping and receiving the reply.
The benchmark ran for 2 minutes and the average was calculated
for this time span.

Setup
All benchmarks were executed on the powerwall hardware. In the
inter-node throughput scenario, the sender actor runs on the simu-
lator server, while the receiver runs on the render node hardware.
In the ping scenario, the sender runs on the simulation server, while
the reply actor runs on the render node hardware.

Reply Message

ping reply

Ping Messages

Reply Message

Ping Message

Next 
measurement

Figure 5: Communication order in the ping benchmark scenario.

Configuration

Both, the ping and the throughput benchmarks were implemented
once on top of the platform layer and circumventing the platform
layer. The latter were directly realized on top of the native Scala
actor model library and on top of Akka, an alternative actor model
implementation. The throughput benchmarks were executed locally
on the simulation serverand between the simulation server and one
render node.

A payload of 64 bytes was used, which represents a 4x4 transfor-
mation matrix consisting of single precision float values.This pay-
load was choosen, because transferring transformation matrices is
one of the most common tasks within an interactive 3D application.
For example, it is used to update the position of simulated objects,
of input devices like a WiiMote with a tracking marker, or of the
user’s head position.

Results

The results of the low-level benchmarks are summarized in tables
5 and 6. The Throughput intra-node Scala benchmark was not per-
formed, because the performance in intra-node setups is good and
the focus were put on inter-node setups.

Table 5: Results of the throughput benchmarks in messages per sec-
ond.

Platform Scala Akka
intra-node 120,000 — 1,140,000
inter-node 11,400 11,400 90,000

Table 6: Results of the ping benchmarks in seconds.

Platform Scala Akka
0.2 0.2 < 0.001

Throughput intra-node platform layer

The throughput of the platform layer is about 120,000 messages per
second, locally on one node.



Throughput intra-node Akka
The throughput of Akka is about 1,140,000 messages per second,
locally on one node. This is about 10 times more than in the Scala
actor model library.

Throughput inter-node platform layer
The throughput of the platform layer in an inter-node setup with
one node is 11,400 messages per second. Sending messages over
the network to a remote actor is orders of magnitude slower than on
the local node. The measured throughput is lower than expected.
But it does not cause the low frame rate in the distributed rendering
benchmarks, because only 720 messages per seconds are sent to
each render actor.

Throughput inter-node Scala
The throughput benchmark on top of the Scala actor model library
yields the same result as Throughput inter-node platform layer.
This benchmark shows that the low throughput is not caused by
platform layer, but by its underlying actor model library. So, the
hypothesis H1 is wrong.

Throughput inter-node Akka
The throughput benchmark on top of Akka reaches 90,000 mes-
sages per second. The throughput is about 10 times higher than in
the platform layer and the Scala actor model library. This bench-
mark shows, that the hypothesis H2 is correct, as the low through-
put is caused by the Scala actor model library.

Ping platform layer
A ping and reply needs 0.2 seconds on average. An ICMP ping
between the same node needs less than 1ms. This high latency in
an inter-node setup causes the low frame rate, as only 5 pings can be
send within one second. Sending messages to an actor on another
node introduces a high latency.

Ping Scala
This benchmarks yields the same results as Ping platform layer.
This benchmark shows that the high latency is not caused by plat-
form layer, but by its underlying actor model library. So, the hy-
pothesis H1 is wrong.

Ping Akka
A ping on top of the Akka actor model library needs less than 1 ms
on average. The latency is very close to the latency of an ICMP
ping. This benchmark shows, that the hypothesis H2 is correct, as
the high latency is caused by the Scala actor model library.

Overall discussion
Communication between two actors over a network is certainly
much more expensive than local communication on a node, as the
benchmarks confirmed. While 120,000 messages per second can
be sent within one node, only 11,400 messages per second are pos-
sible over the network in the platform layer and the Scala actor li-
brary. Akka allows about 10 times more messages per second. The
throughput in the platform layer and the Scala actor model library
is low, but not the reason of the low frame rate in the distributed
rendering benchmarks.

It turned out, that the Scala actor model library introduces a high
latency of 0.2 seconds, while Akka only has less than 1 ms latency.
We identified the high latency as the reason for the low frame rate of
the distributed rendering benchmarks. The low-level benchmarks
show that the low throughput and high latency is not caused by
the paradigms and API of the platform layer, but by the chosen
underlying actor model library. The concurrency concepts of the
platform layer, the components and state variables, do not add extra
latency to the system.

The latency and throughput highly depends on the used concrete
low level implementation. A latency close to the latency of the
underlying network connection is usable for many application sce-
narios. The throughput of message might become a problem. The
current demo applications work well after replacing Scala’s native
actor library by Akka.

8 CONCLUSION

We described and analyzed the actor model as an alternative RIS
distribution model applicable for intra-node as well as inter-node
distribution. Several benchmarks provided comprehensible results
which compared the inter-node efficiency to the intra-node effi-
ciency. The benchmarks identified an unexpected bottleneck. The
roots of this bottleneck were identified by a series of low-level
benchmarks and a solution was presented.

The latency measured is close to the latency of the underlying
network technology. The latency that is introduced by the distribu-
tion models and the additional layers is minimal.

The actor model as a programming model is a good foundation
for RIS. It abstracts concurrency in a very usable paradigm. The
distribution API presented here provides a unified programming
model for intra- and inter-node distribution. Both types only differ
during bootstrapping and by one additional parameter for the actor
creation function. The latter can even completely be eliminated by
integrating an external configuration that contains the target node
for each actor in the system.

Abstraction is highly beneficial and can make the development
of reliable concurrent software manageable. However, abstraction
does not release developers from the responsibility to perform tests
and benchmarks on every abstraction layer carefully, to identify
bottlenecks and unforeseen behavior of abstraction layers. Devel-
oping concurrent software becomes easier with the right abstrac-
tions, but utilizing concurrency for performance gains continues to
be a demanding task.

9 FURTHER RESEARCH

Since latency is mission critical with respect to synchronization,
there are two promising options to further improve performance of
the distribution model. First, alternative transport layers, e.g., net-
work technologies like InfiniBand, provide a much lower latency
for inter-node setups out of the box. Akka already supports the
exchange of the transport layer and hence is the right choice in
that sense. Second, synchronization messages usually are very spe-
cific. They require very low latency but the usually do not need
any payload. They are tailored signals. Tailored hardware connec-
tions, e.g., based on USB or LPT ports, with built-in hardware pri-
ority could be used. They would replace the heavy-weight message
de/serialization and dispatching by only one electric signal while
they could be hidden behind the uniform API of the message sys-
tem which is easily achieved by Scala’s extension mechanisms.

In addition, the message transmission could be optimized by
an optimized serialization and message dispatching. In all bench-
marks, the standard de/serialization mechanism of the underlying
JVM was used. An optimized dispatching mechanism may im-
prove the performance even more. Scenarios with an extensive de-
mand for a high number of messages will require additional mes-
sage caching and aggregation facilities cumulating multiple small
messages of lower payload into fewer fat messages of higher pay-
load.

During the performed low-level benchmarks we did not per-
formed any benchmarks to falsify H3, as we already identified H2
as the reason for the poor performance. However, the results of
benchmarks that examine the performance in contrast to implemen-
tations of alternative distribution models would give valuable infor-
mation to evaluate the general performance of the actor model in
contrast to these alternatives.
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