
Engineering Variance: Software Techniques for
Scalable, Customizable, and Reusable

Multimodal Processing

Marc Erich Latoschik and Martin Fischbach

HCI group, University of Würzburg, Germany,
marc.latoschik@uni-wuerzburg.de,
martin.fischbach@uni-wuerzburg.de

WWW home page: http://hci.uni-wuerzburg.de

Abstract. This article describes four software techniques to enhance the
overall quality of multimodal processing software and to include concur-
rency and variance due to individual characteristics and cultural context.
First, the processing steps are decentralized and distributed using the
actor model. Second, functor objects decouple domain- and application-
specific operations from universal processing methods. Third, domain
specific languages are provided inside of specialized feature processing
units to define necessary algorithms in a human-readable and comprehen-
sible format. Fourth, constituents of the DSLs (including the functors)
are semantically grounded into a common ontology supporting syntactic
and semantic correctness checks as well as code-generation capabilities.
These techniques provide scalable, customizable, and reusable technical
solutions for reoccurring multimodal processing tasks.

Keywords: Multimodal processing, interactive systems, software architecture,
actor system, DSL, reactive manifesto, software patterns

1 Introduction

Variance is a central aspect of multimodal utterances. For example, the tempo-
ral correlation between the occurrence of deictic markers in gesture and speech
has been studied for decades [10]. Such surface patterns identify intervals, not
singular points in time, in which a co-occurrence is likely and a semantic relation
implied. This variance pervades various aspects of the phenomenology of multi-
modal utterances. Individual characteristics as given by users’ personalities and
physiology as well as cultural context have a notable impact on such variances.

As a result, variance has to be a central characteristic at various stages of
multimodal processing models. These models must be capable of expressing vari-
ance on the surface structures as well as on deeper layers like, e.g., the semantic
extend of referential expressions, or the semantic grounding of surface utter-
ances. In addition, multimodal utterances often combine parallel signals from
various channels. Sequential processing architectures and strategies often fail to

man
us

cri
pt

2

capture this inherent concurrency and have to include technical complexities due
to interleaved processing and buffering.

Technical systems for processing of multimodal utterances have to cope with
the functional aspects implied by variance and concurrency. In addition, a lack
of common technical solutions [16] has a negative impact on the overall progress
in the field. This article illustrates four software techniques targeted at scal-
able, customizable and reusable technical solutions for reoccurring multimodal
processing tasks.

2 Related Work

Multimodal processing has to deal with variance from low-level sub-tasks like
signal processing to high-level multimodal fusion and analysis tasks. For example,
gesture analysis and detection based on machine learning approaches, e.g., neural
networks [17, 1] incorporates variance implicitly as predetermined by the variance
encoded in the training samples. Template-based approaches like in [14] have to
deal with variance explicitly, e.g., by inserting fuzzy constraints.

As a second example, procedural methods (e.g., transition networks [8, 13]),
alternative parsing strategies [4], and frame-based approaches [11, 2] gained a
lot of interest as fusion methods in the field of interactive systems due to a
potential performance advantage compared to unification [9, 7]. They all have to
explicitly deal with variance during the central matching operation of two fusion
candidates. The advantage of unification is its generalizing aspect due to the
abandonment of domain-specific adaptations. Correlations are expressed via the
so-called agreement between uniform features but agreement is usually mapped
to equality which does not consider variance. Similar observations hold true for
almost all sub-tasks of multimodal processing.

In addition, software quality requirements have been identified to be a ne-
cessity for multimodal processing [16, 12]. Tight coupling of the multimodal pro-
cessing to a predefined execution scheme as well as hard-coded variance-handling
code scattered over the various processing sub-tasks greatly weakens scalability,
customizability, and reusability. This includes the overall architecture and execu-
tion scheme of the processing, i.e., the data and control flow. For example, initial
work was characterized by a tight coupling of the gesture processing and fusion
with the execution scheme of the simulation middleware used [14]. The Mudra
framework–as a recent approach–is coupled to CLIPS as the central rule-based
production system and semantic model [6]. Similar approaches often use staged
pipeline models. Such models condense and aggregate data from a sensor layer
to a final fusion layer, loosely following an hierarchical from signal to symbol
approach like in [18].

The follow-up sections will introduce the core ideas of the multimodal in-
teraction processing toolkit miPRO. miPRO contains several design and im-
plementation choices which improve scalability, customizability, and reusability
and hence provides a sophisticated middleware for engineering variance during
multimodal processing tasks.

man
us

cri
pt

3

3 Decomposition of Tasks: Processors and Meshes

The processing of multimodal input is decomposed into a loosely coupled mesh
of modular processing units communicating via events (see figures 1 and 2).
These processors transform input into output features, e.g., they may map the
raw position of the user’s left hand or the spoken words to ontology concepts
like LEFT HAND UP or SPELL COMMAND respectively. Input and output of proces-
sors range from raw sensor signals to intermediate or even end results, all uni-
formly accessed using concepts from the ontology. Processors define their input
requirements and resulting products in terms of these concepts. Input is always
buffered: A time series management facility provides simple temporal look-back,
interpolation, as well as advanced aggregation facilities potentially necessary.
The processor mesh is rearrangeable and provides individual execution schemes,
hence fostering customizability, and reusability.

Feature Requirement

Feature Production

Time Series Management

Event(s)

Event(s)Ontology

SPELL_COMMAND

LEFT_HAND_UP

CONCEPT#n

LEFT_HAND_POS

Fig. 1. A single processor (r) and its link into the ontology (l). Processors are executed
by individual actors (depicted by the gearwheel) and uniformly communicate with each
other by events.

The architecture of the multimodal processing framework is based on He-
witt’s actor model [5] to provide scalability based on distribution and concur-
rency features. It is implemented on top of Simulator X [15], a flexible open-
source simulation middleware for realtime interactive systems. This middleware
features an entity model to provide an object-centered access to the global sim-
ulation state and hence the target domain. In addition, an event system fa-
cilitates message passing using a provide/require pattern. Entities and events
are grounded into an ontology [19] in order to decouple components, to foster
uniform and human readable access patterns, as well as to provide an inherent
interface to the domain’s semantic description. The latter is highly beneficial for
symbolic artificial intelligence (AI) methods, necessary during the semantic and
pragmatic interpretation of the multimodal utterances.

Each processor and hence production is concurrently executed by a dedicated
actor. Flow of control follows the reactive manifesto. Execution inside of the

man
us

cri
pt

4

productions is event-triggered using the underlying actor message system. After
receiving new input, the processor executes its local production(s) and sends the
result(s) to registered receiving processors in the mesh via events. Currently, the
following production methods are supported:

1. Native: User-defined tasks (calculus, linear algebra, etc.).
2. State Wrappers: State change monitoring.
3. Native DSL: User-defined with domain-specific syntax.
4. Augmented Transition Networks: Parsing, classification, and fusion.
5. Unification: Parsing and fusion.
6. Supervised learning: Enhanced classification tasks.

The listed production methods are sorted in increasing levels of abstraction
and accompanied decreasing freedom of expressiveness. For example, interaction
engineers have to follow a rather predefined syntax inside of the productions
of 5 and 6. Here, they don’t have to cope with concrete algorithms but have
to define parameters for the underlying production method. On the other ex-
treme, the productions inside of native processors (1.) contain code written in
the native host language (Scala). Hence, they allow the full scope of potential
algorithms and, unfortunately, styles of programming. This expressiveness comes
at a price. Missing guidance and standards usually results in highly individual
code including self-defined identifiers and idiosyncratic solutions. This typically
leads to decreased software quality, i.e., poor comprehensibility, maintainability
and reusability.

The production methods 2. to 4. provide an alternative solution to the soft-
ware quality problem. They restrict the expressiveness to constructs necessary
for the domain and hence foster a high comprehensibility. The productions here
are based on Domain Specific Languages (DSLs) (see section 5). The DSLs them-
selves benefit from the semantic grounding of all major constituents involved.
Because the building blocks of the DSLs are generated from the ontology in
prior, the syntax check–to some extent–simultaneously checks for semantical
correctness at compile time. In addition all Scala-capable IDEs provide proper
highlighting and auto-completion while editing.

Figure 2 illustrates an excerpt from the processing mesh of a demo appli-
cation. In SiXton’s Curse [3], the user plays a wizard capable of multimodal
(speech/gesture) spells. One of the spells in the wizard’s arsenal is a protective
shield summoned by ”[Move Both hands up] create shield guard”. Movements
are tracked by a 6-DOFs (degrees of freedom) sensor and sent to the application
via VRPN (Virtual-Reality Peripheral Network). Speech input is captured using
the Sphinx speech recognition software. Two components decouple the sensing
equipment from the multimodal processing. The input layer of the processing
mesh monitors hand and torso movements as well as speech tokens. The in-
termediate layer consists of two alternative classification methods detecting the
occurrence of both hands being above the head. While the neural network pro-
cessor has learned the variance of the input during training, the fuzzy pattern
matcher deals with variance explicitly. Speech tokens are fead into and parsed

man
us

cri
pt

5

RIGHT

POSITIONHAND

TORSO

Mesh
Component

Application

VRPN
Component

Sphinx
Component

Ontology

RIGHT_HAND LEFT_HAND TORSO SPEECH_TOKEN

State
Wrapper

State
Wrapper

State
Wrapper

State
Wrapper

ATN

Unification

Supervised
Learning

Native
DSL

HANDS_UP FS_TEMPLATE

SPELL_COMMAND

LEFT

Fig. 2. An excerpt from the processor mesh of a demo application. Input is concurrently
processed on two paths with dedicated processors for gesture and speech and finally
integrated to form an interaction command provided to the application. Details see
text.

by an augmented transition network (ATN). The intermediate layers produce
feature structures as input for the multimodal fusion performed by a generalized
unification approach. Finally, an application actor registers for changes of the
fusion’s output, allowing reactions to processed commands.

4 Customizable Operators and Functors

Processing of multimodal utterances has to account for variance even on the level
of atomic operations. For example, unification parsers are based on the com-
bination of compatible grammar descriptions called feature structures. These
structures consist of feature-value pairs or they reference other feature struc-
tures recursively. Feature-value pairs represent grammatically relevant aspects
like gender, number, case, or–often used in multimodal grammars–time. At the
lowest level, unification applies a pairwise comparison of features to check if they
match, e.g, to check if two parsed words like an article and following noun agree
on the gender or if the article and the gesture agree on the time. Such an agree-
ment is used to define a semantic relation or even an association important for
the semantic analysis.

Agreement between matching features is achieved if either only one of the
compared features has a value, or if the two compared features have the same
value. The agreement is the central operator for unification parsers. It relies on

man
us

cri
pt

6

equality checks for the atomic feature-value pairs. However, this strict equality
does not account for variance: For instance, while a strict syntax check for gen-
der or number is conceptually sound, real-world utterances often disobey the
strict rules of grammar. A similar problem arises for equality checks of time
features. Technically, strict equality of temporal occurrences is as good as im-
possible to achieve given a) the independent sample cycles of the underlying
hardware, from tracking systems to speech recognition, and b) the internal vari-
ances caused by float point representations. In addition, temporal correlations
between multimodal streams are observed not to be absolutely precise. If any-
thing, these correlations are better be modeled based on imprecisely delimited
time ranges or by some probability distribution.

In summary, comparisons play an important role during multimodal pro-
cessing. Different types of comparisons are necessary due to inherent or explicit
variance. These types could, of course, be programmed individually using tai-
lored code fragments at the appropriate steps, again leading to code hard to
maintain with domain-specific parameters scattered around. As a solution to
this problem we exploit functor objects. Functors are highly customizable. They
encapsulate user-defined operations and they make these operations available as
first class objects inside of the source code. Functors inherit the type checking
feature of the programming language in use, thereby safeguarding against mis-
usage during compile time. In addition, definition and use of functors is now
decoupled. This allows developers to build clean and hence maintainable code
which, e.g., locates functor definitions at one central place.

A specific processing algorithm like unification now uses functor objects de-
fined like equals(type a a, type b b) instead of the built-in comparisons of
the programming language. These functors are provided for all necessary pa-
rameter types and their specific comparison semantic. The choice of the correct
functor is automatically performed by the type system, the underlying processing
algorithm remains plain and universal. Finally, certain programming languages
provide options for an alternative syntax which allows functors to be used as
operators. For example, a required fuzzy match functor can be written in Scale
like this: <exp> approximates <exp>. This feature is highly convenient for the
definition of human-readable and comprehensible code, i.e., for the design of
domain specific languages as described in the next sections.

5 DSL-supported Feature Processing

The production methods 2. to 6. (see section 3) provide domain specific languages
to specify user-defined operations. The constituents of the DSLs are semantically
grounded into a common ontology. DSLs are checked for syntactic and (partly)
for semantic correctness at compile time. At runtime, terms and expressions are
substituted by corresponding implementations of the functors and operators and
the resolution result of grounded symbols. Listing 1 defines a set of variables (the
left-hand side) used throughout the following examples. The variables further

man
us

cri
pt

7

shorten reoccurring access to prominent concepts from the underlying semantic
layer.

1 val LEFT_HAND = Position of (left, hand)

2 val LH_REL = LEFT_HAND relativeTo (Transformation of torso)

3 val LA_LEN = Length of (left, arm)

4 val HANDS_UP = Occurrence of (hands, up)

Listing 1. Definition of semantically grounded feature descriptions required for the
examples. Definitions for torso, elbow, and shoulder as well as for the right side are
implemented analogously.

Concepts from the ontology are generated into corresponding static classes
(e.g. Position or Length) or variables (e.g. left or hand) and are combined
to describe features [19]. In addition, relations between concepts are used to
generate corresponding functions that are used to describe processing instruc-
tions (e.g. relativeTo). The implementation of these generated functions is
application dependent and can be used to cope with the variance of multimodal
utterances similar to the functor objects in section 4.

5.1 Unrestricted Native Processing

Listing 2 illustrates a DSL-free code snippet for a native approach to detect
HANDS UP as motivated in the initial example.

1 val handsUpEventDescription = EventDescription(hands :+ up,

2 hasToContain = Time :: HANDS_UP :: Nil)

3 val localCps = Map[SVarDescription, Vec3]()

4 EntityDescription(VRPNTarget(trackerUrl, id="8")).realize(e: Entity => {

5 val positionStateVariable = e.get(Position)

6 positionStateVariable.observe(newValue => {

7 localCps += (LEFT_HAND, newValue); produceFeature()})

8 }//... RIGHT_HAND is processed analogous.

9 def produceFeature() {

10 if(localCps.contains(LEFT_HAND) && localCps.contains(RIGHT_HAND))

11 handsUpEventDescription.emit(

12 Time(System.currentTimeMillis()),

13 HANDS_UP(localCps(LEFT_HAND).y > 2. && localCps(RIGHT_HAND).y > 2.)

14 }

Listing 2. Native processing of multimodal input (no DSL). Relative coordinates (e.g.
to the torso), or user-specific variance (e.g., the arm length), temporal variances or
time series management are missing. Details see text.

Processing starts with the declaration of the resulting event’s description
(lines 1-2). Then, a data structure for an actor-local copy of the most recent
hand positions (localCps) is set up. Next, an entity which wraps access to
tracking data is created (realize) and equipped with an individual initializer
(lines 5-7). This handler sets-up monitoring for the entity’s representation of the
hand positions. It registers the executing actor as an observer (observe, line 6)

man
us

cri
pt

8

which buffers new positions in localCps (line 7). If new position data for the
right and the left hand is available (line 10), a resulting event is emitted. The
event contains the current timestamp (line 12) and the result of a pre-defined,
hard-coded template match using absolute coordinate axis and values (line 13).

Note that neither individual variances, e.g. hand positions relative to torso
and the user’s actual arm length, nor temporal variances based on time series
management are considered for the sake of simplicity. Still, this example illus-
trates typical deficiencies arising from missing decoupling. It widely uses concepts
from the underlying software framework which makes it hard to understand for
non-experts and which complicates portability and hence maintenance. In addi-
tion, it hard-codes aspects sensitive to variance which makes it hard to customize
and reuse the developed products.

5.2 DSL-supported Processors

The first step to revise the example decomposes the overall task into (1) a layer
wrapping the raw sensor data (listing 3, lines 1-4), (2) a layer which transforms
absolute coordinates into relative measures (listing 3, lines 5-10), and (3) a layer
performing the actual detection (listings 4 to 6). Listing 3 first describes the
state wrapper which provides the position data for the user’s left hand. These
processors use a dedicated syntax to wrap sensor access (line 2) but already use a
uniform syntax for the specification of the provided feature(s) (line 3). Wrapping
of the user’s torso, left and right hand, elbow, and shoulder etc. is performed
likewise.

1 new StateWrapper {

2 Obtained from Id("8") of VRPNSource(trackerUrl)

3 Produces feature LEFT_HAND

4 }//... RIGHT_HAND, TORSO, LEFT_ELBOW, and LEFT_SHOULDER analogous.

5 new NativeDSL {

6 Requires features (LEFT_HAND, LEFT_ELBOW, LEFT_SHOULDER)

7 Produces feature LA_LEN as

8 (Length of (LEFT_ELBOW - LEFT_SHOULDER)) +

9 (Length of (LEFT_HAND - LEFT_ELBOW))

10 }

Listing 3. Implementation of a state wrapper for tracking data and a native DSL
processor calculating the length of the user’s left arm.

A specific subset of the wrapped input data is then processed and transformed
into relative measures. Lines 5-10 illustrate the production of the new feature
LA LEN, the length of the user’s left arm. The DSL inside of the productions
consists of identifiers which map to concepts and relations from the ontology, or,
to be more specific, to auto-generated classes and static variables establishing
references to the ontology. The Scala programming language supports the DSL
syntax by allowing the definition of operators and thus ease the common handling
with vectors in this domain (lines 8 and 9). As can be seen, this code already
increases comprehensibility significantly.

man
us

cri
pt

9

The first example to build a HANDS UP-processor at the detection layer is
illustrated in listing 4. It uses a fuzzy template match. The processor requires
the hands’ positions, the torso, and the length of the left arm (assuming both
arms to be approximately equal in length). The required features LEFT HAND

and RIGHT HAND are accessed at lines 4 and 5 as LH REL and RH REL via functors
performing relative transformations.

1 new NativeDSL {

2 Requires features (LEFT_HAND, RIGHT_HAND, TORSO, LA_LEN)

3 Produces feature HANDS_UP as

4 ((Height of LH_REL since Time(500)) approximates LA_LEN) and

5 ((Height of RH_REL since Time(500)) approximates LA_LEN)

6 }}

Listing 4. A native DSL processor uses a fuzzy match to detect the hands up gesture.

The production defines a conjunction of two fuzzy matches for the left and
right hand. The fuzzy matches account for temporal variance using the since op-
erator provided by the implicit time series management available for all features.
In addition, they account for individual variance using the predefined functor
approximates. This functor is application dependent and auto-generated from
the ontology. Finally, the DSL contains additional identifiers providing access to
the the ontology, e.g. to resolve the upward direction necessary to determine the
Height of a position.

The second example to build a HANDS UP-processor is illustrated in listing 5.
It uses an ATN. In addition to the already described DSL-concepts, it includes
ATN-specific identifiers to set-up individual networks consisting of named states,
named and directed transitions (arcs), and conditions guarding these transitions.
Supplementary, some ATN-specific properties can be set, like an automatic reset
of the ATN after 500 ms of receiving no new input.

1 new ATN {

2 Requires features (LEFT_HAND, RIGHT_HAND, TORSO, LA_LEN)

3 Create StartState ’start withArc ’lhRaised toTargetState ’lhUp

4 andArc ’rhRaised toTargetState ’rhUp

5 Create State ’lhUp withArc ’rhRaised toTargetState ’end

6 Create State ’rhUp withArc ’lhRaised toTargetState ’end

7 Create EndState ’end

8 Create Arc ’rhRaised withCondition

9 {Height of RH_REL approximates LA_LEN}

10 Create Arc ’lhRaised withCondition

11 {Height of LH_REL approximates LA_LEN}

12 Set autoReset to Time(500)

13 Produces feature HANDS_UP(true) onEntryOf ’end and

14 HANDS_UP(false) onEntryOf (’start, ’lhUp, ’rhUp)

15 }

Listing 5. A DSL-supported ATN processor detecting the hands up gesture.

man
us

cri
pt

10

The ATN-DSL extends the syntax of the productions by explicitly mapping
features to be processed to potential transitions (lines 12 and 13) and hence
connects the flows of control of the ATN and the processor. Like in the previous
example, the concrete implementations of auto-generated ontology relations, e.g.
approximates, or the definition of time-related ATN properties, like the auto
reset, allow to cope with variance explicitly.

The third example to build a HANDS UP-processor is illustrated in listing 6.
It uses a supervised learning approach, i.e., a neural network. In contrast to the
ATN-example, the topology of the neural network is not defined explicitly using
the DSL since the variability of useful topologies do not vary as much compared
to potential ATNs.

1 new SupervisedLearning {

2 Requires features (LEFT_HAND, RIGHT_HAND, TORSO, LA_LEN)

3 Uses NeuralNetwork "./hands-up.nn"

4 Produces feature HANDS_UP

5 }

Listing 6. A DSL-supported supervised learning processor detecting the hands up
gesture.

The number of input neurons is defined by the number of required features.
Converters automatically map the data types of the required features to an
array of floating-point numbers. The number of required features determines the
number of neurons in the input layer. A default architecture with one hidden
layer and a heuristic to determine the optimal number of hidden layer neurons is
applied. The number of output layer neurons is implicitly defined by the number
of produced features, again using converters to map an array of floating-point
numbers to feature types. For many cases this specification already provides a
reasonable number of suitable neural network architectures.

The necessary training and supportive tools are not discussed here, since they
do not effect the actual description of the SupervisedLearning processor. In
contrast to the latter examples, the neural network approach deals with variances
implicitly, as they are an intrinsic property of the utilized training set or–later
on–a part of the trained neural network parameters.

6 Conclusion

This article presented four software techniques which enhance the overall quality
of multimodal processing software as motivated by [16, 12] and own preceding
work. The techniques target reoccurring multimodal processing tasks, specifically
taking into account variance, e.g., due to individual characteristics and cultural
context.

The first technique decomposes the overall task into smaller units dedicated
to well-arranged and well-defined sub-problems. While this approach is similar
to common functional decomposition, the implementation of these units as ac-
tors provides concurrent execution schemes and distribution facilities adequately
matching the inherent concurrency of multimodal utterances.

man
us

cri
pt

11

The second technique uses functors as a means to weaken the negative impact
of often hard-coded constraints dealing with variance. Using functor-objects, the
core algorithms stay plain and universal and fundamental features of the under-
lying programming language like type and syntax check are exploited, which
raises the overall code quality.

The third technique uses domain-specific languages to reduce the diversity of
user-generated algorithms, idiosyncratic identifiers, and highly individual pro-
gramming styles. In combination with programming languages which support
syntactic variants for method calls, e.g., like Scala, DSLs can conveniently be be
expressed and tailored for the application domain.

The fourth technique uses a semantic grounding of the identifiers used for the
functors and the DSL tokens in a common ontology. Auto-generated from the
ontology, these identifiers match classes, constants, and variables inside of the
native programming language. This supports automatic syntax checks, including
proper code highlighting in the development environments. In addition, it partly
ensures semantic correctness due to the reproduction constancy between the
ontology and the corresponding constructs of the programming language. Finally,
the ontology binding is highly beneficial during the final semantic and pragmatic
interpretation of the multimodal utterances.

All four techniques together provide scalable, customizable, and reusable
solutions for reoccurring multimodal processing tasks. They have been imple-
mented inside of miPRO, a realtime-capable processing architecture for multi-
modal interactions used in Virtual, Augmented and Mixed Reality applications.

References

1. Böhm, K., Broll, W., Sokolewicz, M.: Dynamic gesture recognition using neural
networks; a fundament for advanced interaction construction. In: Fisher, S., Mer-
rit, J., Bolan, M. (eds.) Stereoscopic Displays and Virtual Reality Systems, SPIE
Conference Electronic Imaging Science & Technology. vol. 2177. San Jose, USA
(1994)

2. Bouchet, J., Nigay, L., Ganille, T.: ICARE software components for rapidly de-
veloping multimodal interfaces. In: ICMI ’04: Proceedings of the 6th international
conference on Multimodal interfaces. pp. 251–258. ACM, New York, NY, USA
(2004)

3. Fischbach, M., Wiebusch, D., Giebler-Schubert, A., Latoschik, M.E., Rehfeld, S.,
Tramberend, H.: SiXton’s curse - Simulator X demonstration. In: Virtual Reality
Conference VR, 2011 IEEE. pp. 255–256 (2011)

4. Fitzgerald, W., Firby, R.J., Hannemann, M.: Multimodal event parsing for in-
telligent user interfaces. In: Proceedings of the 2003 international conference on
Intelligent user interfaces. pp. 53–60. ACM Press (2003)

5. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: IJCAI’73: Proceedings of the 3rd international joint con-
ference on Artificial intelligence. pp. 235–245. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA (1973)

6. Hoste, L., Dumas, B., Signer, B.: Mudra: A unified multimodal interaction frame-
work. In: Proceedings of the 13th International Conference on Multimodal Inter-
faces. pp. 97–104. ICMI ’11, ACM, New York, NY, USA (2011)

man
us

cri
pt

12

7. Johnston, M.: Unification-based multimodal parsing. In: Proceedings of the 17th
International Conference on Computational Linguistics and the 36th Annual Meet-
ing of the Association for Computational Linguistics COLING-ACL. pp. 624 – 630
(1998)

8. Johnston, M., Bangalore, S.: Finite-state methods for multimodal parsing and
integration. In: Finite-state Methods Workshop, ESSLLI Summer School on Logic
Language and Information,Helsinki, Finland. pp. 74–80 (august 2001)

9. Johnston, M., Cohen, P.R., McGee, D., Oviatt, S.L., Pittman, J.A., Smith, I.:
Unification-based multimodal integration. In: 35th Annual Meeting of the Associ-
ation for Computational Linguistics, Madrid. pp. 281–288 (1997)

10. Kendon, A.: Gesticulation and speech: Two aspects of the process of utterance.
In: Key, M.R. (ed.) The Relation between Verbal and Non-verbal Communication
(1980)

11. Koons, D.B., Sparrel, C.J., Thorisson, K.R.: Intergrating simultaneous input from
speech, gaze and hand gestures. In: Intelligent Multimedia Interfaces. American
Association for Artificial Intelligence (1993)

12. Lalanne, D., Nigay, L., Palanque, p., Robinson, P., Vanderdonckt, J., Ladry, J.F.:
Fusion engines for multimodal input: A survey. In: ICMI-MLMI ’09: Proceedings
of the 2009 international conference on Multimodal interfaces. pp. 153–160. ACM,
New York, NY, USA (2009)

13. Latoschik, M.E.: Designing Transition Networks for Multimodal VR-Interactions
Using a Markup Language. In: Proceedings of the Fourth IEEE International Con-
ference on Multimodal Interfaces ICMI’02, Pittsburgh, Pennsylvania. pp. 411–416.
IEEE (2002)

14. Latoschik, M.E.: A user interface framework for multimodal VR interactions. In:
Proceedings of the IEEE seventh International Conference on Multimodal Inter-
faces, ICMI 2005. pp. 76–83. Trento, Italy (October 2005)

15. Latoschik, M., Tramberend, H.: Simulator X: A scalable and concurrent archi-
tecture for intelligent realtime interactive systems. In: Virtual Reality Conference
(VR), 2011 IEEE. pp. 171–174 (March 2011)

16. Nigay, L., Bouchet, J., Juras, D., Mansoux, B., Ortega, M., Serrano, M., Lawson,
J.Y.L.: Software engineering for multimodal interactive systems. In: Tzovaras, D.
(ed.) Multimodal User Interfaces, pp. 201–218. Signals and Commmunication Tech-
nologies, Springer-Verlag (2008)

17. Väänänen, K., Böhm, K.: Gesture-driven interaction as a human factor in virtual
environments – an approach with neural networks. In: Gigante, M.A., Jones, H.
(eds.) Virtual Reality Systems. Academic Press (1993)

18. Wagner, J., Lingenfelser, F., Baur, T., Damian, I., Kistler, F., André, E.: The
social signal interpretation (SSI) framework: Multimodal signal processing and
recognition in real-time. In: Proceedings of the 21st ACM International Conference
on Multimedia. pp. 831–834. MM ’13, ACM, New York, NY, USA (2013)

19. Wiebusch, D., Latoschik, M.E.: Enhanced decoupling of components in intelligent
realtime interactive systems using ontologies. In: Software Engineering and Ar-
chitectures for Realtime Interactive Systems SEARIS, proceedings of the IEEE
Virtual Reality 2012 workshop (2012)

man
us

cri
pt

