

On the Art of the Evaluation and Presentation of RIS-Engineering

Marc Erich Latoschik*
University of Würzburg, Germany

Wolfgang Stuerzlinger°
Simon Fraser University, Toronto, Canada

ABSTRACT
This article analyses the tasks of presenting and evaluating
relevant scientific research in the field of Real-time Interactive
Systems (RIS), i.e., in areas such as Virtual, Mixed, and
Augmented Reality (VR, MR, and AR) and advanced Human-
Computer Interaction. It identifies different methods for a
structured approach to the description and evaluation of systems
and their properties, including commonly found best practices as
well as dos and don’ts. The article is targeted at authors as well as
reviewers to guide both groups in the presentation as well as the
appraisal of system engineering work.

Keywords: System Evaluation, Publication, System Engineering,
Real-time Interactive Systems (RIS), Engines, Frameworks,
Toolkits

Index Terms:	 A.1	 [Introductory	 and	 Survey];	 D.2.11	 [Software	
Engineering]:	 Software	 Architectures;	 D.2.1	 [Software	
Engineering]:	 Requirements/Specification;	 D.2.5	 [Software	
Engineering]:	 	 Testing	 and	 Debugging	

1 INTRODUCTION
Real-time Interactive Systems (RIS) are an increasingly important
field of research. Application areas range from Virtual, Mixed,
and Augmented Reality (VR, MR, and AR) to advanced Human-
Computer Interaction, real-time simulation, and computer games.
Several RIS aspects are equally relevant to ambient and pervasive
computing as well as to robotics. These different fields have
crucial commonalities with respect to the software engineering
problems and solutions involved. All RIS-applications depend on
a set of three overall functional requirements:

1. Close coupling of user and system
2. Multimodal input and output (I/O)
3. Interactive 3D content and representation

Close coupling describes the tight integration of the user into a
(possibly partly) computer- and technology-controlled
environment where inputs are analyzed and stimuli are generated
continuously, taking into account human cognitive and perceptive
constraints in terms of restricting factors, such as temporal and
spatial resolution, latencies, and continuity.

Multimodal input/output describes the property that systems
process a variety of different media interactively. That is, possible
input methods range from classic WIMP-oriented (Windows,
Icons, Menus, Pointer) interfaces using 3D-adopted devices (3D
mice, Spaceballs™, stylus, ...), over generic devices (gloves, 3D-
tracker, exo-skeletons, ...), specialized input methods and devices
(props, Shape Tapes, CubicMouse™, ...), classic desktop devices,
touch devices for more direct interaction, to natural
communication styles using, e.g., gesture and speech.

Output is generated on the basis of physics for multiple human
senses, such as vision, touch, and hearing. Historically, the first
RISs were largely vision-oriented. Hence image generation played
– and in part it still plays – a driving role in RIS development.
Most importantly, 3D computer games and their market massively
influenced graphics hardware improvements during the last two
decades. A variety of spatial graphics displays like head-mounted
displays (HMDs) and projection-based large screen systems
(workbenches, walls, CAVEs™, ...) try to cover as much of a
user's field of view (FOW) as possible to provide spatial cues.

Interactive 3D content and representation describes a central
aspect of the depicted applications. The environments are
dynamic and animated, and interactivity couples the input side to
the output generation. In one way or the other they process spatial
information, which is a central aspect of the embodiment of users
in the real world. In VR, for example, presence and immersion
likely depend on an unobtrusive embodiment that closely couples
users into the environment to dissolve the real-to-virtual borders.

These three functional requirements entail several critical non-
functional requirements, such as latency, speed, reusability,
portability, and scalability. This often leads to an increased
complexity of RIS-applications, which makes the task of
engineering new RIS challenging.

1.1 Motivation

Figure 1: Ratio of system papers at IEEE VR and its predecessor.

Percentage includes sketches.

Too often, there is ongoing re-invention of well-known
architectural ideas in RIS-developments. As a result the rate of
progress in the field of RIS architectures and software has been
diminished, if not – in some areas – almost stopped. As evidence
see Figure 1, which was initially presented at the IEEE VR 2012
panel “Systems engineering science: Obsolete or Essential?”[15].

So-called systems papers are generally regarded as hard to
publish and often receive higher reject ratios in peer-review
processes. This is in harsh contrast to the overall engineering costs
and efforts. In contrast to smaller-scope RIS-engineering
challenges, we have identified a diminishing concern on the
architectural and large scale software aspects in recent years.

Many projects nowadays rely on commercial simulation and
game engines. Often this might be the right solution from a cost-
benefit analysis viewpoint. While this is not a problem in general,
there are some longer-term concerns that arise. First, experience

0%	
5%	
10%	
15%	
20%	
25%	
30%	
35%	

• *marc.latoschik@uni-wuerzburg.de
• °http://ws.iat.sfu.ca

shows that successful projects often live longer than initially
planned for. They will be modified and extended to points hardly
foreseeable at the beginning. Even the underlying requirements
might change drastically. Hence, one cannot rely on a given tools’
capability to cover all potential future requirements. Second, the
scientific community has a different focus from the gaming
community. Both will certainly benefit from an optimized content
development tool chain and ever-improving simulation quality.
But when it comes to the causality, observability, and
controllability of the simulation in terms of objective, scientific
measures, such as frame rate or latency, the requirements of both
groups differ. What is tolerable in terms of enjoyment and
playability often does not fulfill the requirements for a strict
experimental setting. Possible other reasons for the decreased
interest in challenges and results of RIS-development are
manifold and are partly out of scope here. Lastly, the scientific
community is also (largely) responsible for the education of the
next generation of experts. This points to a need to maintain
knowledge for the development and improvement of our scientific
tools, to enable the next generation of experts to be taught the
state-of-the-art for building such tools. To ensure this, the
Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS) working group is dedicated to build a body of
knowledge for RIS-technology. The group also organizes special
events, such as workshops and panels, at the annual IEEE VR
conference.

In this context, this article addresses the need for good
communication of RIS-research by using a closer analysis of the
scientific process of RIS-evaluation and presentation. It assists
authors and reviewers by presenting guidelines for the authoring
and evaluation of RIS publications:

• Authors: To assist in writing good papers. In our experience,
we regularly see a substantial subset of systems papers,
which often contain (the core of) good idea(s), but which get
rejected because the ideas are badly evaluated or badly
presented.

• Reviewers: To assist in consistent assessments of system
papers in the field. Our intent is explicitly not to come up
with quick-and-dirty rules of what is acceptable. That is for
every field to establish by itself. However, we give general
guidelines on how to present results, which meet the current
standard in the field or go beyond it.

We will analyze typical pitfalls in the evaluation and
presentation of RIS-engineering approaches. Our goal is to
provide and stimulate a structured and organized methodology for
the evaluation and publication of RIS-engineering as well as for
the assessment of such work.

The reflections are based on our in-depth experience in system
design: The authors have participated in many system projects as
chief software architects and maintainers of several large systems
in both academia and in industry and are now guiding young
researchers in similar tasks. They have taught related courses on
VR and software engineering for many years. As frequent
reviewers, many times program committee members and
conference chairs, and organizers of system tracks and workshops,
they have a combined comprehensive experience in the evaluation
and assessment of system engineering research.

However, others have also looked at papers that are targeted at
the description of systems research [5][6][11][12][16][19][20]
[23]. We have incorporated some of the most important and
relevant lessons from this previous work here. Even though parts
of this are fairly generic content, they are particularly applicable
to our context. Thus we decided to include them here for
completeness.

We also point out that we are not advocating a single, particular
style of presentation, similar to how there is not a single “perfect”
writing style. Yet, we discuss necessary elements for any good
RIS paper.

We will often use latency as an exemplary measure throughout
this paper. Yet, the advice here applies equally to all other
applicable technical measurements, such as frame rate, memory
consumption, or networking bandwidth.

This article is structured as follows: We begin with a discussion
on how to motivate the main problems and questions tackled by
an article or presentation in section 2. Section 3 sheds some light
on stylistic issues, from terminology to illustrations followed by a
closer look at the description of engineering content in section 4.
Section 5 discusses current evaluation methods applicable for
RIS-developments. Section 6 comments on typical RIS-related
evaluation targets. The article concludes with a summary and an
outlook on future endeavors to strengthen RIS-engineering as an
important area of research.

2 THE CORE ISSUES: VALUE & MOTIVATION
It is the obligation of authors to provide a clear value to readers.
This is especially important for RIS architectures. After all, just
knowing that others replicated an existing system or created a
system that varies on some minor aspects from another is of low
value to the average reader. Given that reviewers, program
committee members, and program chairs have an obligation to
provide an interesting program for scientific events, papers
without a clear value are often easy candidates for rejection.

To bring out this value, an article initially has to first clearly
identify the core questions or problems the presented work will
attack or solve. Also, the document needs to spell out the
motivation for solving the problem(s) and review all relevant and
important previous work in this area. Then, a publication should
state its main claim(s) in one or two sentences, i.e. spell out what
the novel ideas are, before going into the core explanation of the
main contribution(s). The following evaluation then backs up the
claims with results. A discussion section then interprets the results
for the reader and identifies the value for the field. As reviewers,
we have seen substantial numbers of papers that leave out
essential parts of this progression. We give more detail about most
of these parts below in section 4.

In the progression of writing we have sketched out here, it is
essential that readers not familiar with your project can follow
your line of thought. Breaks in that the line of thought often lead
to misunderstandings and misinterpretation. Also, authors should
honestly accept the severity of the questions and problems they
are addressing.

3 STYLISTIC AND FORMAL ISSUES

3.1 Terminology
The discussion of engineering problem is not taking place in a
void. Software Engineering is a major field of computer science
and has established a very large body of knowledge as well as its
own terminology. Writing about software engineering has to
conform to the established terminology, as applicable. For
example, if you have a specific solution to some engineering
problem, make sure that the approach you are using is not already
known under a different term.

An often-encountered pitfall is the invention of your own
idiosyncratic terminology. The motivation frequently is to
highlight a unique characteristic of the individual work, which
separates it from – at closer look – similar approaches. For
example, a requirement is a requirement and not a demand,
request or property. These terms relate to each other to a certain

extent and could be used interchangeably in rare cases. E.g., a
specific system’s property may fulfill a requirement and hence
these two terms could be used interchangeably in contexts where
there is no dependency on the differences in the respective
meanings. However, in most cases terminology is well enough
defined through previous work or resources such as dictionaries.
Consequently, terminology has to be used with diligence and care.

Similarly, reviewers will (and should) pose questions if the
generic terms library, toolkit, framework, or engine are used
interchangeably. After all, they denote different architectural
approaches. If authors are unsure about the correct meaning of a
term, the reader can at least expect a definition upfront.

Correct terminology is important. Readers appraise your writing
based on their knowledge of the field and its concepts. Thus,
successful communication between readers and authors requires
an established vocabulary with a clear meaning. It is not unusual
that a reviewer finishes reading an article, only to discover at the
end that the authors talk about a well-known idea hidden behind
their own idiosyncratic terminology. This often makes it
(unnecessarily) hard, or even impossible for the reviewer to
understand the core ideas presented. More often than not, this will
lead to a bad assessment of the work, as the authors make it
effectively difficult for the reader to understand the message. This
also necessitates clear writing to ensure that the message is
unambiguous and easy to understand. For RIS-engineering this is
important to make it easier to understand the (often) complex
solutions that are necessary to address a given problem.

3.1.1 Languages
Besides software engineering terminology, there are three basic

languages that are commonly used to communicate essential
ideas: Mathematics, declarative and programming languages (aka
code). A mathematical formula is unambiguous and provides a
compact representation. The same is true for reasonable pseudo-
code or a common declarative language, such as X3D. Both
languages should be used to describe central concepts and design
decisions, which will increase replicability. They can also serve as
a basis for a formal evaluation. Ideally, authors should try to reuse
existing notations as far as possible, again to make it easier for
others to understand the work. As new RIS work typically
involves new features, minor adaptations of notations are often
necessary and appropriate.

For different cases, code snippets in a real programming or
declarative language, instead of pseudo code, are helpful and
important: For requirements, such as code elegance, simplicity, or
compactness, real code examples are hard to beat as expressive
media. For example, possible users of the system will appreciate
and reviewers can appraise simplicity claims more easily, if these
are backed-up by a few lines of example code emphasizing the
actual idea and concept.

However, we caution authors that code or declarative examples
have to be well chosen and should be as succinct as possible. Few
reviewers are happy to wade through abundant Java module
definitions or lots of irrelevant code in a RIS publication. Thus we
recommend omitting all nonessential aspects in such examples.
Also, we advise simplifying and abstracting routine aspects as far
as possible. This will typically also lead to better code for the
whole system. More complete code examples are best relegated to
appendices or to on-line supplementary materials.

3.2 Illustrations and Diagrams
Good illustration of concepts and techniques are vital to any
documentation and presentation of a system. Given the
complexity of modern real-time interactive systems, such

illustrations are often necessary for good communication. Often,
the sheer complexity of processes and parts, modules, or
components involved, calls for some general depictive overview
to capture the essence of the specific topic discussed. If done
right, this aids the reader greatly in the understanding of the work.

Figure 2: Illustration of our system establishing a closed loop

between user and computer.
[This is not an example to follow, see text.]

Yes, illustrations must have a clear focus on the illustrated topic
as well as a decent level of detail. Figure 2 is a typical example of
an oversimplified and (almost) trivial illustration. This might be
OK as an eye catcher, but it is often superfluous to repeat
commonly agreed on facts in the respective area of research.

The polar opposite to Figure 2 is depicted in Figure 3. This
figure compiles a set of commonly found mistakes. First, the
illustration does not have a clear focus. It shows a collage of
hardware and software items at various levels of detail, down to
some object descriptions in the DB part. Even the
interconnections are conceptually on several different levels,
sometimes denoting hardware connections, sometimes protocols,
and sometimes connection types.

A better version of this diagram would likely break it into
several diagrams corresponding to different levels of detail. Also,
the interconnections should be clearly labelled by type, e.g. using
different line styles and legends, as well as having clear
directions. In addition, resist the urge to overload illustrations,
since this will likely make your labels small, which makes them
(almost) unreadable in print. Figure captions are another
noteworthy problem area. For example, the caption of Figure 3 is
much too brief to explain the complexity of the content of the
illustration. Here one solution is a brief caption with a reference to
the continuous text (which itself refers to each part of the figure),
or the caption must explain everything necessary to understand
the illustration.

Figure 3: Overall architecture of a proposed simulation engine.

[This is not an example to follow, see text.]

input

output

6DOF tracker

micro-
phone

camera

pre-
processing

gfxnod
es

Scene

in
pu

t d
ev

ic
es

ipx sim
hub

calibration

ramification

Scene
DB {

agent
size: 200
speed: 3
attack: 0
….

agent#2
size: 200
speed: 3
attack: 0
….

agent#4
size: 200
speed: 3
attack: 0
….

update

tcp/ip

RS 232

1/2

2/0

read write

SIM
control

hw
api

Additionally, Figure 3 will likely confuse readers due to its
layout and incoherent usage of stylistic elements. Stylistic
elements, such as symbols, colours, and fonts, should be used
consistently for the same type of information. Such consistency
greatly helps the reader to understand the system, as visual
similarity helps to identify commonalities in terms of meaning.
Often the layout of diagrams can be changed to have the
directionality of the flow of information be consistent with the
semantic content that is being communicated.

3.2.1 Existing Illustration Schemas
Illustration programs nowadays come with a large variety of
predefined and visually pleasing artwork, symbols, and
illustration schemas. However, one should not rely on such
predefined content without further thought, specifically if they do
not conform to any given established standard or best practice.

There are several widely used and partly standardised
illustration languages and schemas, from block diagrams, flow
charts, to the Unified Modelling Language (UML). The latter
nowadays is widely used and plays a prominent role, specifically
due to its good support for describing object-oriented designs and
architectures. These illustration schemas are well known and (to a
large extent) unambiguous, which makes them an advantageous
choice for illustrations.

The drawback of existing illustration schemas often is the level
of detail, which may be too fine- or large-grained for any given
case. We encourage authors to reflect in advance on the
appropriateness of the level of detail used to communicate with
the reader at a given point. Another problem lies in the
development paradigms that such schemas are based on. For
example, UML is heavily tied to the object-oriented approach and
has drawbacks when it comes to declarative (logic) programming
or functional languages. Consequently, we encourage authors to
use the correct schema for any given topic, preferably based on
existing schemas. We emphasize again in this context that any
illustration should focus on the core issue(s) and eliminate
superfluous, redundant, routine, or unessential aspects to clarify
the communication of the core idea(s). In other words, a complete
UML diagram is not appropriate and should likely only be part of
supplementary on-line materials.

Last, but not least, we point out that a scientific publication is
not meant to serve as system documentation due to the large
differences in both target audience and coverage of the work.
However, a scientific publication can provide a valuable
supplement to system documentation by providing a high-level
overview.

4 DESCRIPTION TARGETS
In this section we cover several guidelines related to the
description of the system and the novel contributions. We discuss
how architectures, algorithms, and alternatives should be
described and how the discussion section should also identify the
lessons learned.

For any publication it is essential that there is a clear focus on
the main new idea(s). Most systems replicate large amounts of
existing work in the field, and that previous work is in general
amply documented. Consequently, we advise authors to focus less
or even omit as many parts around those idea(s) as possible,
unless that work is directly relevant to your new idea(s).

4.1 Describing the Right Thing
Consider a new real-time interactive system whose innovative

architecture significantly decreases some measure, say latency,
relative to previous work as an example. Said system likely has

many other modules and functionalities, and probably has taken
years to create. Describing all those modules around it will
obscure and distract the reader from your main innovation.
Moreover, the other modules likely only replicate previous work,
and thus their description does not contain much value to the
reader. This is a frequent problem in RIS submissions. Conversely
and if your claims are targeting an improved modularity or system
architecture, do not describe individual modules in more detail
than necessary. Instead focus on convincing the reader that your
modular decomposition is significantly better than previous work
and explain how the module structure is established, how the
interplay is managed, or how the API is defined. For ways to
describe such claims see below in the evaluation section.

4.2 Describing Irrelevant Aspects
If you describe too many aspects of your system that are

irrelevant relative to your main claim(s), reviewers will see this as
rightfully as unnecessary “padding”. Too much padding will often
result either in rejection or in conditional acceptance. In the later
case you will be forced or at least heavily encouraged to rewrite
your paper to remove the padding. Some conferences enforce this
through conversion into a “short” submission.

Given this, it is better for authors to a priori focus a paper on
the aspects of the system that relate directly to their main claims
and to concentrate their efforts on substantiating these claims. As
examples, consider a paper that presents the benefits of well-
established concepts like a scene graph, a field propagation graph,
an event system, a scripting layer, or a component-based
architecture in depth. In terms of scientific novelty and benefit
this is information that can safely be assumed to be known to
every reader familiar with the domain. Thus, such a section will
almost certainly have to largely be reduced or even completely be
removed from the paper. A notable exception would be work that
presents a new variation of well-known concepts and solutions
that has clear benefits for the RIS community. Potential examples
for such cases are beneficial variations in terms of clever
implementation details and/or the improved conformance with
general non-functional software requirements important for RISs,
e.g., performance, scalability, extensibility, configurability,
controllability, maintainability, or reliability. To motivate and
justify novelty or improvement aspects it is mandatory to
extensively cover the state-of-the-art and to compare one’s
approach(es) to existing solutions.

For each claim that you make, it is very important that the claim
is stated clearly in a concise way, ideally in a sentence or two.
Papers that do not explicitly state their claims are very prone to
misunderstandings and (re-)interpretation by reviewers, which
typically weighs against the work. It is in general better to be
more specific here, rather than too general – a common reviewer
complaint is that a given submission “overstates its claims”, while
one rarely, if ever, sees the opposite. Around that you also need to
state what the RIS problem being solved is (even if it may be
obvious), what the new idea to solve it is, in which way the new
idea improves previous work, what you are comparing against,
how the new work stacks up, and what this means to the reader.

4.3 Describing too much
Authors should resist the urge to put too many new ideas into a
paper. They will end up with a document that either explicitly or
implicitly makes many claims, yet does not have enough space to
substantiate them all. Moreover, they will also need to review
previous work for each of the ideas adequately, present the
evaluation of each one of them and discuss what the results mean.
Likely, this will cause severe conflicts with the maximum length

typically allocated for conference papers. This is particularly
relevant for RIS submissions, as complexity naturally increases
the number of ideas in a system.

For previous work it is important to list an appropriate subset of
it, typically by focusing on the first examples, highly cited work,
and very recent work. It is good style to summarize previous work
briefly and in a fair manner. Papers that cite only a few external
sources and other work by the authors – neither in the previous
work section nor in the discussion section – are likely to get
rejected, as they do not adequately describe how the new work fits
into the field. This is a valid reason for rejecting a paper, as the
value to the reader is not presented in an appropriate way.

4.4 Describing Alternatives and Trade-offs
It is a good idea to mention noteworthy design trade-offs in the
main design section. If a particular trade-off is not well known in
the field or not covered by other publications, it is an excellent
idea to illustrate this trade-off with hard data in the evaluation and
then to discuss it later. If a particular decision was based on
previous work, it is a good idea to spell out which of the
underlying assumptions of said previous work still hold true
today, and which ones do not anymore. Alternatively, and if pilot
experiments were performed on (small-scale) prototypes, it is
appropriate to briefly describe the pilot experiment(s) and results
that led you to the decisions you made.

In the description of alternative implementations, it is very
important not to use conditional wording indiscriminately. While
this is a basic academic writing issue, it is particularly
troublesome in the context of interactive systems. If authors have
to use conditional working, they should make certain that the text
cannot be understood as “optional unimplemented extensions”
that you are speculating about. A bad, concrete example is the
sentence: The system can do A, B, C, or D. This leaves the
reviewer and reader wondering if the system actually does any of
these four alternatives. A better phrasing is: The system
implements A, B, and C. D is an unimplemented option that we
believe to fit well into the framework, because [give some
arguments(s) here].

4.5 The Discussion Section
The discussion section is likely one of the most important parts of
your paper. It typically follows the evaluation section, which
describes the main evaluation, its methodology and the raw
results. In the discussion, you summarize the main results of your
evaluation and explain to the reader what your results means to
the RIS field. Even if it seems obvious to you, this needs to be
spelled out in clear language. Otherwise you rely on the reviewers
and the reader to interpret your results correctly! In our
experience, this kind of ambiguity often backfires in unforeseen
ways and leads to a lot of frustration on the side of the authors.

Think about and describe how your work has been influenced
by past work, confirms current thinking in the field, and can
potentially influence future work by others. Ideally, this section
also distills guidance for others facing the same problem On the
other hand, it is important to also describe the context of your
results and to spell out the assumptions behind your work. If you
can characterize how sensitive your work is to smaller and larger
changes of these assumptions, you can generally strengthen your
claims significantly. All this highlights the value of your work to
others in an appropriate manner.

4.5.1 Lessons Learned
Beyond the consequences of the main evaluation, the discussion
section is also the right place to describe the “lessons learned”. If

the authors did not learn anything that they already knew based on
previous work, it is likely not worthwhile to write a scientific
publication about the endeavor. Consequently, these learned
lessons should be communicated to the reader. We especially
encourage RIS authors to describe in the discussion section how
the choices made in the beginning turned out. It is acceptable to
admit that a particular aspect of the work turned out far from
optimal, especially if you have gained insights into what a better
choice might be! If you have such insights, it is best to list them.

One interesting lesson that should be reported is new insights
about hidden costs of architectural decisions. As a (somewhat)
trivial and/or outdated example, consider that it may seem a good
system engineering idea to take object oriented programming to
its logical conclusion by creating a classic boundary
representation for geometry with separate objects for every entity,
including each vertex. However, it is today well known in RIS
engineering that this has severe drawbacks. First, it has a high
memory overhead. Second, the “killer aspect” of this idea is the
increased number of cache misses. Especially when the data gets
much larger than the secondary cache, this will lead to hundreds
to thousands of CPU stalls. Consequently, it is important for the
field to identify such hidden costs caused by various components
of the system, be it by the memory subsystem, OS scheduling,
network architectures, I/O interfaces, etc. This is one of the
fundamental reasons why timings and benchmarking are so
important for RIS engineering, as they can reveal deep insights
into architectural decisions.

On the other hand, we advise authors to avoid the urge to
generalize too far or to make unsustainable claims about
scalability. One common problem with scalability claims is that
scaling by more than one order of magnitude beyond established
results very likely changes the nature of the main bottleneck and
its location from one part into a very different (unforeseen) one.

Another kind of software engineering claim is that a specific
approach is more general than previous work. Often this takes the
form of a new software toolkit/framework that supports one or
more specific features (say hardware abstraction or clustering)
better than previous approaches. Another kind of approach
presents a module, convention, or standard on top of other
approaches to make a specific feature widely available. A third
approach presents a new language for describing systems, with the
aim to spur new abstractions and/or research. For all of these
claims it is essential that the authors provide adequate evidence
for the generalizability of their work. Simply arguing for
generalizability is rarely sufficient, as in our experience reviewers
are very good with identifying contexts where a particular
approach will break or severely degrade, due to their different
experience. Thus it is more appropriate if the authors identify the
assumptions behind their approach a priori and state the
limitations to generalizability. An even better form of support
form of such claims implements a given approach in several
contexts, such as different platforms, and reports on the
experience.

Finally, we encourage authors to identify potential extensions
either as the very last part of the discussion section or after the
conclusions. In both cases it is important that the presentation of
such future extensions clearly identifies them as not yet
implemented.

5 EVALUATION METHODS
An evaluation of a system has to be concise and meaningful.
There are several methods to evaluate claims regarding properties
a system has or requirements it fulfills. The methods differ in
information value and significance to the field of application. The

predominant evaluation methods applicable to system papers at
the time of writing are:

1. Formal Verification, e.g., [2]
2. Black-box tests, e.g., [20]
3. White box tests, e.g., [20]
4. Software metrics, e.g., [8][9][10]
5. Usability tests and user studies, e.g., [7]

In addition, some evaluation methods can be performed
dynamically or statically, depending on the proposition to be
checked. These evaluation methods are now an integral part of
state-of-the-art software engineering to assure the quality of the
software at the diverse testing stages. We will discuss the
applicability of each evaluation method to RIS-engineering in the
following sections.

5.1 Formal Verification
A formal verification of a piece of software is a mathematical or
logical proof of the correct behaviour of that software. That is, it
verifies conformity to a given formal specification. This answers
the question: “Are we building the system right?” Hence,
verification is mainly concerned with the evaluation of non-
functional requirements. This is in contrast to validation, which
evaluates the functional requirements: “Are we building the right
system?”.

Formal verification has its value during the evaluation of a
system’s correctness. Its mathematical basis is sound from the
ground up and provides the highest degree of informative value
and significance.

A general drawback of this approach is the prerequisite of a
formal specification of the system behaviour. Such a specification
is still rarely found for complete systems. This is especially true
for state-of-the-art agile development methods, which often
perform multiple short circles of design-develop-evaluate with
several prototypes in between.

A more specific drawback concerns the types of requirements
targeted by a formal verification. These requirements must be
accessible to a formal mathematical approach. For example,
requirements like reusability, scalability, or parameterization,
which are often found as claims in software architectural designs,
are hardly accessible to formal methods. In addition, a formal
verification is often voluminous even for small evaluation targets.
As a result, formal verification currently is almost non-existing in
RIS publications. However, it should be noted, that formal
methods are promising approaches for certain problem areas,
including hard real-time systems. Specifically, latency and
performance measures may potentially be candidates for a formal
verification, as appropriate methodologies become available.

5.2 Black-box testing
A black-box test is a valid approach to dynamically evaluate the
correct behavior of software, i.e., the correct implementation of
functional requirements, without assumptions about the internal
workings of the system. This should be considered as a
prerequisite for any software. A black-box test cannot reveal any
insights into the architecture of a system; its test target is the
executable of the software.

A black-box test can also be useful in the evaluation of non-
functional requirements. Supported by a sophisticated test harness
and appropriate test data, a black-box test can derive system
properties associated with non-functional requirements, such as
bandwidth, performance, and latency. For the latter cases, the
results should be backed up by an analysis of how the test-harness
interferes with the software itself and how the test data, here also
known as benchmarks, are defined. Moreover, it is important to

consider how the results map to cases that have not been tested,
specifically how they apply to real-world scenarios.

5.3 White-box testing
White-box testing assumes knowledge of the “inside” of the box,
i.e., the particulars of the system to be investigated. White-box
tests include static inspection-based evaluations, performed, e.g.,
as an expert review where professionals study the test target, i.e.,
the code and/or any related engineering documents and formal
descriptions. But purely static tests hardly reveal any insights into
the behavior of the running system or the fulfillment of functional
requirements, hence white-box testing also includes dynamic run-
time tests which, e.g., test control and data flow coverage based
on test data [13]. Other approaches to white-box testing
investigate bottlenecks inside a system by specifically biasing the
tests in various directions. One well-known example in computer
graphics is vertex-heavy vs. pixel-fill-heavy render tests.

White-box testing is a method that communicates insights from
one professional to the other one. This is a frequent task during
system engineering [18]. It is capable of deriving deep insights
into the architecture of a system. Here, terminology and a clear
objective are crucial during the analysis. Used as a method which
backs up claims made beforehand, a review has to pinpoint the
specific problems a chosen design or algorithms solves. For such
tests, evaluators should make sure to discuss alternatives and rate
the chosen approach with respect to the alternatives. This method
fosters replicability to a large extent, which makes it a valid
approach for RIS-engineering.

Simulation is another approach to white-box testing of a RIS
prototype. Typically, this replaces specific components of a
system, such as networking, with a simulator or a set of
predefined data sets. Then the performance of the system is
assessed under such conditions, in a repeatable fashion, which can
help to optimize the system. Yet, we caution that this approach is
always dependent on the explicit and implicit limitations of the
simulator and/or data sets. Thus, the generalizability of the results
of such simulation-based tests is always limited.

5.4 Software Metrics
Software metrics are trying to back up the engineering part of
computer science with quantitative measures towards objective
and reproducible data and proof of concepts. Software metrics are
supported by various development environments, which include
modules to automatically capture certain metrics.

The debate of the usefulness of software metrics has continued
for decades. In the words of Tom DeMarco: "I can only think of
one metric that is worth collecting now and forever: defect count"
[4]. A central problem is the complicated relationship between
requirements, system properties, and measures. Most properties
cannot be measured by just one metric but are based on the
combination of several metrics, as property surrogates hiding the
mutual dependencies between metrics and properties [3]. The
shortcomings of lines of code as a measure highlight this to an
extent. This problem is severe in the case of RIS-architectures,
which exhibit certain properties not easily captured by available
metrics. For example, module coupling in RIS-architectures often
is sensitive to the current application context and hence changes
dynamically. This semantic module coupling is poorly reflected
by a syntactic analysis of mutual function calls [1][14] and hence
is hardly accessible to automatic methods.

The call for objective measures is understandable, and software
metrics can support the evaluation of certain properties for simple
cases. Still, this approach is far from a bulletproof method that is
always applicable. After all, RIS-development and system design

is essentially a part of the engineering science aspect of computer
science. Yet, in contrast to hard real-time systems, which always
have to meet timing guarantees, RIS systems have somewhat
softer constraints. Typically, the rendering subsystem of a RIS
prototype is considered to be good enough if it works stably at 60
or 120 Hz (depending on the use of stereo) and drops only
“rarely” below this speed. Good RIS papers will thus quantify
how often such slowdown episodes occur, how long they last, and
what the most frequent causes for slowdowns are. Conversely,
RIS engineering is far from empirical approaches that are
important and necessary in other scientific fields.

5.5 Usability Tests and User Studies
Usability tests and user studies are the primary evaluation method
of human-computer interaction. These evaluation methods rate the
subjective properties of a system as perceived by users. Hence,
they are a type of black-box test for user-centred properties and
requirements, usability being the premier requirement here.

As an evaluation method for RIS-systems, usability can be
tested for at least three different groups of users:

1. Core developers perform development tasks at the
core system, e.g., maintenance, porting, or low-level
extensions, that is, extensions that are not provided by
a supported plugin API-concept.

2. Application/Content developers perform application
building tasks, e.g., module configuration, content
design, or development of high-level extensions on
top of a supported plugin API.

3. Application users are the end-users of the system.
Their goal is to perform an application specific task.
They should ultimately not be aware of the
underlying system operation.

While the third group naturally is a target group for usability
tests and user studies, similar system requirements are hard to
evaluate with these methods for the first two groups. The main
problem of usability evaluations with these groups is usually a
lack of sufficiently large enough numbers of people of said groups
for sound statistical analysis. This is especially true for novel
systems often still in a prototype stage.

The second problem is a lack of sophisticated measures
applicable to the programming and development tasks. Consider
groups 1 and 2: One would have to start with an evaluation of the
usability of the underling programming language and paradigm
and then evaluate the concepts and approaches built on top of it –
after all the usability of the whole will also depend on these parts.

Usability tests and user studies are a valid and well-known
method. However, they are applicable only in very specific cases
of RIS-evaluations, i.e., for end users or for a sufficiently large
group of developers, say more than 100. They are often useless
for the analysis of architectures and system designs.

5.5.1 API-Evaluation in a Research Context
For authors that aim to evaluate the usability of APIs with

group 2, we encourage them to consider using their system for
assignments or projects targeting one or two new plugins with a
sufficiently large number of students (say 20 or more) in a
teaching context. Then report what parts of your system were used
correctly, where students ran into problems and analyze in detail
what these problems were.

Similarly and for systems that are in the public domain, an
empirical study of the experience of outside plugin developers can
similarly identify parts that work well and parts that do not. If
insights that are valuable for the field are identified through this
process, it makes sense to report them in a publication. With such

evaluations it is also important to identify the cost of learning
explicitly. After all, a seemingly simpler API may be harder to
learn, due to conceptual difficulties. Or there may be some
unfortunate interaction with some difficult programming language
semantics.

An even better approach is to have two separate, roughly
equivalent, student populations that use two different systems (or
versions of the same system) that differ only in a few well-chosen
aspects. A cross-comparison can then reveal the relative value of
the differences. We rarely see such comparisons to evaluate
system API design choices.

6 EVALUATION TARGETS
We give here several examples how to describe an evaluation. We
mention examples for approaches that do not meet the current
standard, those that meet the current standard, and approaches that
may form an appropriate standard in the future.

6.1 Evaluating the “Right” Measure “Right”
In system evaluation it is important to pick appropriate measure(s)
and to evaluate them in an appropriate way. Here it is important to
realize that the standard in any given scientific field changes over
the years. For example, and while it may have been acceptable to
provide a single frame-rate measurement 20 years ago, it is today
necessary to test with multiple, sufficiently different geometric
data sets and to give a range of frame-rate values. We expect that
soon a characterization of frame-rates in the form of average and
standard deviation will be the norm, or better yet a confidence
interval or another equivalent form of characterization of the
distribution of frame-rates. Similar for other RIS measures, such
as latency, tracking accuracy, tracking precision, etc.

6.1.1 Benchmarks
In general, it is appropriate to use existing data sets, test
methodologies, and/or benchmarks to evaluate a RIS system. Such
data sets, test methodologies and benchmarks enable comparisons
across the work of different groups and systems. This is an
integral part of the scientific approach and helps the overall RIS
field to progress.

To illustrate the importance of this topic, we point out that
authors using non-standard data sets always have to be prepared to
answer the question if their specific data set is appropriate to test
their system and can adequately demonstrate the generality of
their RIS approach.

6.2 Evaluating Performance
Any publication that claims superior performance in a given
aspect needs to back this claim up through experimental
measurements. For example, if the presented system architecture
is associated with a claim that latency is reduced through design
decisions, a latency measurement has to be performed and
presented. Surprisingly, we still see submissions that do not meet
this basic requirement.

Yet, a single measurement is not enough by today’s standards
to adequately support a claim. Computing an average over
different scenarios is more reasonable, but often does not provide
the whole picture. A better alternative is to provide a combination
of average and standard deviation, a 95% confidence interval, or
some other characterization of the distribution of values.

In comparisons two (or more) solutions are compared through
some metric. Many RIS-papers showed improved performance of
one approach over others by simply comparing averages. While
such a comparison can yield some insights, it ignores the issue
that distributions may overlap to a degree that makes them
indistinguishable. Consequently, we encourage the field of RIS-

engineering to use well-established and robust statistical
comparison mechanisms, such as t-tests and analyses of variance
(ANOVAs).

6.2.1 Frame rate vs. Latency
One particular topic that is important for the design of VR
systems is the trade-off between frame rate and latency. While the
two are coupled to some degree, there is clearly no one-to-one
correspondence. Yet, we regularly see statements by authors that
high-frame-rate systems have low latency. This is only true if
there is no pipelining involved. For example, it is fairly easy to
develop a 120Hz system, which has 200ms of latency – all one
needs to do is to send the data through a long multi-hop network
link. That system will likely have also high variability in latency,
which is disastrous for human performance see e.g., [17]. This
problem is also well known in gaming circles, where “laggy”
systems and systems where the frame rate varies substantially are
universally criticized. Based on this and other reasons, modern
game systems aim for a (reasonably) constant frame rate.

Consequently, we encourage authors to evaluate both for frame-
rate as well as the latency. Both measures should ideally not be
expressed just as an average, but also compute and list a standard
deviation, a 95% confidence interval, or equivalent information.

6.3 Evaluating Usability/Immersion/Fun/…
There are few systems papers that evaluate the usability,
immersion, simulator sickness, the fun factor, or other “soft”
requirements or qualities, of an application running in the system.
These types of measures are usually assessed through (subjective)
questionnaires. The influences of architecture or software
engineering aspects on such measures are indirect and causalities
between both areas are often hidden.

In our opinion it is much better in this case to also measure
(intermediate) “hard” quantities, such as frame-rate and latency
and to report the outcome of both evaluations. Then interested,
more specialized, readers can take such results further to
investigate, e.g., the link between latency and simulator sickness.

We still point out that the design of the user interface API for a
system has interesting effects on the usability of applications
based on said system. For example, a system where the API does
not provide special methods for objects in contact is likely
suboptimal when used for applications where (almost) every
object is in contact with another object – like in the real world. In
such an application context, naïve users will expect objects to stay
in contact with others and not to have objects interpenetrate
without explicit user actions. Consequently, the overall usability
of this system may suffer see e.g., [22].

However, the only way to adequately prove this is to do a cross-
comparison between different user groups faced with different
conditions or with a repeated measures experimental design. This
kind of experiment will by nature only focus on the usability issue
and thus will be best reported as a stand-alone publication and not
as part of a system paper.

7 CONCLUSION
During RIS-development, engineering tasks, i.e., the design and
implementation of novel approaches targeting a specific
shortcoming or problem, are essential. In contrast to the
increasing complexity of systems and the high development and
maintenance costs of systems, research results in this area are
increasingly hard to publish. The reasons for this are manifold and
are partly out of scope for this article. However, one common
issue is the lack of a proper and structured approach to the
description and evaluation of systems and their properties.

This article identified, collected, and summarized different
methods for such a structured approach. We included best
practices and dos and don’ts whenever appropriate. Similar to
software engineering, there is no “silver bullet” which one can
follow step-by-step. Yet, authors are strongly advised to present
and evaluate their main contributions using at least some of the
methods and concepts presented here. Reviewers and readers may
use this article as a collection of templates and best practices,
which they can utilize to assess the value a contribution.

As evaluation methods, white- and black-box tests were
identified as applicable to typical RIS-requirements. Formal
verification and software metrics are considered to be of lesser
importance. They do have their niche, but one has to plan
beforehand when and how to apply them. Usability tests and user
studies are a primary human-computer interaction evaluation
method, but are mainly applicable during evaluations with end-
users. Usability studies rarely yield strong value for assessment of
developers, unless they are used with sufficiently large developer
groups.

7.1.1 Future Work
The area of RIS-engineering could greatly benefit from a more
focused body of knowledge directly associated to this field. This
body of knowledge should summarize well-known approaches
and their rationales and applicability, similar to a set of blueprints
developers can utilize when appropriate. This would greatly
reduce the potential for constant re-invention and would help
researchers, specifically when new to the field. This idea can and
should be used for description and evaluation tasks as well, to
establish a more concise structure to follow. As an example,
consider how the field of human-computer interaction has
benefitted from the standardization of pointing tests via Fitts’ law
studies.

A similar path is the development of agreed-on benchmarks.
RIS-applications will certainly vary to a large degree concerning
their functional properties. Still, we envision a set of benchmarks
of increasing complexity and scope, which can be applied to
several evaluation methods and which will boost the significance
of black-box tests for non-functional requirements. Such
benchmarks could be structured based on their functional
requirements, e.g., if they require graphics, physics, audio,
haptics, or what kind of interaction they are based on. The
benchmarks can then serve as test data within a unified test
harness. Current developments to use large gaming platforms,
such as Unity or Unreal, for RIS development are very promising
for this, as they implicitly unify platform usage and thus provide
ideal preconditions for such benchmarking.

However, relying completely on platforms borrowed from a
different application area is risky as well. Given the multi-billion
dollar industry of gaming has different objectives compared to
VR, MR and AR, borrowing technologies can also import some
undesired properties. E.g. generation of stereo images inside
graphics drivers may be appropriate for games, but usually does
not provide enough control for VR, MR and AR, type stereo
systems. Hence, this cannot be a complete substitute for novel
RIS-developments, even given the close relationship between the
fields. After all VR, MR, and AR are constantly pushing the limits
of novel human-computer interactions.

ACKNOWLEDGMENTS
We thank the reviewers for their feedback, which led to
substantial improvements of this paper.

REFERENCES
[1] E. B. Allen and T. M. Khoshgoftaar, "Measuring Coupling and

Cohesion: An Information-Theory Approach," in METRICS '99:
Proceedings of the 6th International Symposium on Software
Metrics, ed. Washington, DC, USA: IEEE Computer Society, 1999,
p. 119.

[2] P. Bjesse, "What is formal verification?," SIGDA Newsl., vol. 35, p.
1, 2005.

[3] C. K. a. W. P. Bond, "Software Engineering Metrics: What Do They
Measure and How Do We Know?," presented at the METRICS
2004, 2004.

[4] T. DeMarco, "Why Does Software Cost So Much?," IEEE Software,
vol. 10, 1993.

[5] O. Goldreich. (1996, 13.9.1012). "Ho NOT to write a paper."
Available: http://www.wisdom.weizmann.ac.il/~oded/PS/writing.ps

[6] O. Goldreich. (2004, 13.9.2012). "How to write a paper." Available:
http://www.wisdom.weizmann.ac.il/~oded/PS/re-writing.ps

[7] ISO, ISO 9000:2005 Quality management systems - Fundamentals
and vocabulary. Geneva, Switzerland: ISO International
Organization for Standardization, 2005.

[8] ISO/IEC, ISO/IEC TR 9126-2:2003: Software engineering - Product
quality - Part 2: External metrics. Geneva, Switzerland: ISO
International Organization for Standardization, 2003.

[9] ISO/IEC, ISO/IEC TR 9126-3:2003: Software engineering - Product
quality - Part 3: Internal metrics. Geneva, Switzerland: ISO
International Organization for Standardization, 2003.

[10] ISO/IEC, ISO/IEC TR 9126-4:2004: Software engineering - Product
quality - Part 4: Quality in use metrics. Geneva, Switzerland: ISO
International Organization for Standardization, 2004.

[11] R. E. Johnson, K. Beck, G. Booch, W. Cook, R. P. Gabriel, and R.
Wirfs-Brock, "How to Get a Paper Accepted at OOPSLA," presented
at the OOPSLA 1993.

[12] J. Kajiya, "How to get your SIGGRAPH paper rejected". Available:
http://www.siggraph.org/publications/kajiya.pdf, 1993.

[13] M. E. Khan, "Different Approaches to White Box Testing Technique
for Finding Errors" in International Journal of Software Engineering
and Its Applications 5: 1–6, 2011.

[14] M. E. Latoschik and H. Tramberend, "Engineering Realtime
Interactive Systems: Coupling & Cohesion of Architecture
Mechanisms," in Proceedings of the Joint Virtual Reality
Conference of Euro VR - EGVE - VEC, ed, 2010, pp. 25-28.

[15] M. E. Latoschik, S. Feiner, D. Schmalstieg, and C. Cruz-Neira,
"Systems Engineering Science: Obsolete or Essential?,", IEEE VR
2012 panel, 2012.

[16] R. Levin, D. D. Redell, “An Evaluation of the Ninth SOSP
Submissions” or “How (and How Not) to Write a Good Systems
Paper”, ACM SIGOPS Operating Systems Review, 17(3), 35-40,
July 1983.

[17] A. Pavlovych and W. Stuerzlinger, "Target Following Performance
in the Presence of Latency, Jitter, and Signal Dropouts," Graphics
Interface, 2011.

[18] M. Ryschkewitsch, D. Schaible, and W. Larson, "The Art and
Science of System Engineering," ed: NASA, 2009.

[19] H. Schulzrinne. (2012). "Writing Technical Articles". Available:
http://www.cs.columbia.edu/~hgs/etc/writing-style.html

[20] M, Shaw. (2003). "Writing good software engineering research
papers: minitutorial". In Proceedings of the 25th International
Conference on Software Engineering (ICSE '03), 726-736.

[21] A. Spillner, T. Linz, and H. Schaefer, Software Testing Foundations:
Rocky Nook inc., 2011.

[22] W. Stuerzlinger, C. Wingrave, “The Value of Constraints for 3D
User Interfaces”, Virtual Realities: Dagstuhl Seminar 2008, Springer
Verlag, 203-224, Jan. 2011.

[23] J. Wilkes, "How to write a good [systems] paper," in 2006 EuroSys
authoring workshop, 2006.

