
A Uniform Semantic-based Access Model

for Realtime Interactive Systems

Dennis Wiebusch∗ Marc Erich Latoschik†

University of Würzburg

ABSTRACT

This research presents a uniform semantic simulation state repre-
sentation and access model for realtime interactive systems (RIS)
in the field of Virtual, Augmented, and Mixed Reality. The role
of this model is to provide a uniform interface to a centralized vir-
tual world state, and simple mechanisms to manage all simulation
components acting on it. It addresses the low maintainability and
reusability of the traditional non-uniform world access schemes.
The proposed model is based on two fundamental requirements:
sharing a common simulation state and updating it via events. The
state is structured around an entity-model, which is combined with
a central registry that provides symbol-based semantic access.

Index Terms: D.2.13 [Software Engineering]: Reusable Software;
K.6.3 [Management of Computing and Information Systems]: Soft-
ware Management—Software development

1 INTRODUCTION

Realtime Interactive Systems (RIS) built for Virtual, Augmented,
and Mixed Reality often combine a wide variety of different hard-
and software elements. A plethora of input and output devices
as well as dedicated software exists, including low-level device
drivers, special-purpose libraries for, e.g., graphics, physics, or ar-
tificial intelligence, and complete high-level software frameworks.

As a result, RIS applications often are closely coupled in order
to fulfill a specific use case. This prevents modularity, which in
turn considerably hinders maintainability, reusability, and extensi-
bility of RISs. Modification of such systems requires a holistic un-
derstanding of the interrelationship of the involved software parts,
which are often complex, not documented, and only fully under-
stood by few members of the core development team.

In addition, RIS applications need to exploit available com-
putational resources due to their realtime nature. Scalability on
parallel architectures often relies on shared-memory and multi-
threading concepts. Hence, the need for synchronization mecha-
nisms instantly arises, often resulting in even more incomprehensi-
ble, closely coupled program code.

RIS-architectures should aim for decoupling and high cohesion
to allow specialized developers to concentrate on their area of ex-
pertise and to alleviate the need for an understanding of the un-
derlying complex system. A common approach to the coupling
problem is to adopt some form of component-based development
(CBD) and to define software interfaces in order to decouple sim-
ulation engines and application content. But, given such an inter-
face, there still remain numerous different ways to handle and ma-
nipulate application-content (e.g., virtual objects), simulation en-
gine settings (e.g., global gravity), and hardware configuration (e.g.,
available sensors or cluster nodes).

∗e-mail: dennis.wiebusch@uni-wuerzburg.de
†e-mail:marc.latoschik@uni-wuerzburg.de

While component-based approaches facilitate reusability and
parallelization, they do not ensure the creation of comprehensible
application code. Reasons for this include low cohesion, cryptic
identifiers, and vast, complex software interfaces.

In this paper we present our approach of a uniform symbol-
based access model for Realtime Interactive Systems. Its human-
readable, cohesion-furthering, minimalistic nature aims at easing
the development and maintenance of RIS applications for simula-
tion engine developers, application developers, as well as game de-
signers. At the same time, it facilitates the creation of extensible,
concurrent programs and furthers decoupling of simulation compo-
nents. In addition, its inherent link to an ontology provides a se-
mantic grounding for all aspects of a RIS. This is highly beneficial
for symbolic AI approaches, which are necessary for, e.g., virtual
agents with reasoning capabilities or advanced human-machine in-
terfaces using speech and gesture.

2 RELATED WORK

2.1 Aspects of RIS Development

A plethora of RIS frameworks and toolkits has been developed in
the past decades [20]. Despite the huge amount of research and
software development work on this topic, many unsolved problems
still exist [25, 29]. For example, the complexity of large virtual
reality (VR) applications is addressed by [2]. The authors argue
that application modularity is beneficial for coping with complex-
ity. Even though early work focused on decoupling components of
RISs [23], close coupling and low cohesion was still identified as a
problem for RIS frameworks in more recent publications [15, 22].

The realtime nature of RIS applications requires extensive hard-
ware resources, which nowadays is addressed mainly by large-scale
distribution and concurrent architectures. Similarly, different up-
date rates of sensors and simulation modules inherently require con-
currency [23]. Distribution and concurrency complicate the devel-
opment process [17]. Possible solutions use client/server architec-
tures [23] or adopt the actor model [7, 9, 16].

Four approaches have shown to be highly beneficial for RIS ar-
chitectures:

1. Event-based communication facilities [6, 24, 26] provide a
decoupled control flow mechanism.

2. Entity-centered content models [6, 18, 24] provide an object-
oriented view on and access to the virtual scene.

3. Aspect-based subdivision of entities [3, 28] fosters cohesion
for entities simulated by several different components.

4. Ontology-based semantic layers [3, 28] facilitate integration
of entities within an application and provide inherent links
to symbolic AI models. Conceptual [5] and semantic [4, 13]
modeling approaches also provide potential solutions to the
reported lack of high-level design facilities for VR applica-
tions [8, 19].

The next section will discuss some prominent examples of VR
frameworks. We will specifically focus on the simulation state rep-
resentation and access, the general application model, support for

manuscript

events, creation of simulation components, and coupling between
simulation components. At the same time we will look at advan-
tages and disadvantages of these aspects with respect to comprehen-
sibility and flexibility of an application created with the respective
framework.

2.2 Existing RIS Frameworks

2.2.1 Object Oriented Frameworks

Our first example is VRJuggler [10] an object oriented VR frame-
work. At runtime, VRJuggler-based applications are managed by
the framework’s microkernel. This kernel abstracts from the under-
lying hardware as well as from input/output modules (e.g., track-
ing systems and rendering components). For this purpose, fully
independent managers, which are provided by the framework, are
plugged into the kernel.

VRJuggler applications can access input and output facilities
through the kernel. The configuration of the respective device is
facilitated by so called chunks, which consist of named and typed
fields. Representation of and access to the simulation state is en-
tirely designed by the application developer. VRJuggler does not
provide an event system for simulation events.

The advantages of an object oriented framework implementing a
microkernel-based plugin system lie in the abstraction of the hard-
ware layer and execution schemes. No synchronization mecha-
nisms need to be used by the application developer when accessing
components of the framework. Due to the object oriented paradigm,
devices and other objects can be interpreted as instances of classes,
a very understandable representation. The utilization of a flexible
configuration mechanism based on chunks is another important fea-
ture. Besides software interfaces that have to be implemented, VR-
Juggler does not impose restrictions on the developer, but also does
not give further guidance for structuring an application. Hence,
the management of the simulation state and creation of simulation
components is completely left to the developer. Consequently, the
comprehensibility and flexibility of VRJuggler applications mostly
depend on the design choices made by their developers.

2.2.2 Data Flow Graph-based Frameworks

The next examples are FlowVR [1] and Avango [27] (as well as its
successor AvangoNG [12]). Both frameworks utilize the concept
of a data flow graph to specify contents of an application. Such
a graph is composed of modules, which contain parts of the ap-
plication content and logic. The communication between modules
is achieved by connections of their input and output fields. Both
frameworks allow for instantiation and integration (by connecting
fields) of new modules at runtime.

FlowVR modules run a (potentially endless) concurrent loop,
which occasionally stops and waits for new data arriving at the
module’s input fields. Events are supported in the form of special
fields called event ports.

In Avango a module can either directly handle new incoming
data or access the current values of its input fields in an evaluate
method which is called once per frame. Event handling again is
mapped to specialized input fields.

Data flow graph-based applications have multiple advantages:
The computation code is forced to be modularized, hence modules
can be reused and coupling between simulation components is re-
duced. Furthermore, the concept of composing an application is
easily understandable and the application graph can be graphically
represented. In general this is beneficial for comprehensibility of
created programs. The modularized nature of data flow graph based
applications benefits their reusability and extensibility. However,
the application state is not explicitly represented and large graphs
tend to become incomprehensible. In addition, circular graphs and
concurrent operations often pose a problem, restricting the available
execution schemes.

2.2.3 Message-based Frameworks

A successful message-based framework is DIVE [6, 24], which
mainly focusses on distributed virtual environments. Distribution
is realized using sophisticated peer-to-peer networking techniques
utilizing IP multicasting. It supports streams of video, audio and
internal updates of the virtual environment. Simulated virtual en-
vironments are represented by means of an entity model, which is
stored in a distributed database. Entities are hierarchically grouped
in a scene-graph like structure, allowing for multifaceted data trans-
fer optimizations. Updates of the database are communicated uti-
lizing the integrated message-based event system.

In subsequent work, the initially thorough programming inter-
face was extended to support C, C++, and Java as well as the TCL
scripting language, providing the programmer with rich interfaces.
Furthermore, the event-based architecture of DIVE was extended
by component-based aspects.

The clear advantage of the DIVE framework is its inherent de-
coupling of processes, due to its event-based communication ar-
chitecture. The use of shared entities provides a unified view on
the application state, which is managed by the DIVE framework.
DIVE’s revised and extended programming interface does not im-
pose a specific way of implementing applications. Hence, as with
VRJuggler, comprehensibility and flexibility of developed applica-
tions depend on the design choices taken by their developers.

The I4D framework [8], like the DIVE, implements message-
based communication but also can be categorized as a component-
based framework. It represents both scene content and simula-
tion components as independent actors, whose state is defined by
their attributes. Actors can perform actions by modifying these at-
tributes. In addition, actions which can run concurrently and mod-
ify the attributes of actors can be defined. Events are supported via
multicast and broadcast messages. All I4D components are man-
aged in a scenegraph-like hierarchy. Inter-component communica-
tion is realized using a string-based message interface or by access-
ing public attributes of actors. New components can be instantiated
at any time using a factory pattern-like mechanism.

The advantages of the I4D framework lie in the combination of a
message passing architecture with a component-based design. This
allows for decoupled, reusable components and a comprehensible
representation of the virtual scene. The restriction to string based
messages slightly reduces the flexibility of the framework and re-
quires a mechanism to structure the message content. Due to low
coupling, I4D applications are highly flexible. Their comprehensi-
bility depends on the way messages and events which are created
by the developers are handled.

2.2.4 Component-based Frameworks

NPSNET-V [11] is a component-based framework that separates
loosely coupled simulation components (called modules) from the
application state, which is represented using an entity model. Fur-
thermore, it features a publish/subscribe event system, especially
used to signal property changes of modules and entities. Both, the
modules and application state are managed in containment hierar-
chies. The hierarchical management of modules allows to easily
enable and disable modules sharing the same functional role. New
modules can be created at runtime by adding them to an container in
the module hierarchy. Data is stored in so-called properties, which
can belong to modules as well as to entities. In addition to a set of
basic properties, a developer can choose to define new ones.

Entities have to be implemented according to the well known
model-view-controller pattern. Controllers (e.g., KeyController)
have write access to an entity’s properties, whereas the views (e.g.,
GLView) are responsible for displaying it. Entities as well as mod-
ules can be accessed by reference to the path under which they are
registered in the respective hierarchical data structure.

manuscript

The clear separation of simulation and data is beneficial for the
flexibility of applications and a hierarchical structure to manage el-
ements of the application is a sensible approach, since it relieves
the developer from creating self-developed management structures.
Given an understandable naming scheme, the comprehensibility of
an application is furthered by this approach.

VHD++ [21] is a highly elaborated, component-based frame-
work using the object oriented programming paradigm. It features
an elaborated event system, in which events are split into system
and simulation events. As in I4D (section 2.2.3) single, multi, or
broadcast events are supported. The application state is reflected
by a hierarchy of properties, managed by property managers. Sim-
ulation modules are represented by decoupled services, which can
access the simulation state via property managers. The creation
and registration of properties and services is handled by designated
loaders that have to be provided by the respective developer.

The benefits of a component-based framework, like VHD++ and
NPSNET-V, are their flexibility and inherent separation of con-
cerns. By defining software interfaces for components and decou-
pling components from the data representation, reusable software
elements can be created. On the downside, interfaces for compo-
nents tend to be complex and developers need to spend much time
on understanding them.

2.2.5 Observations

Besides the diversities of the presented frameworks and approaches,
some equivalences can be observed. For example, the connections
of a data flow graph can be interpreted as message channels and the
field of the modules in a data flow graph can be seen as properties in
VHD++ or attributes in I4D. Similarly, an actor in I4D can be inter-
preted as a FlowVR module or the combination of an NPSNET-V
entity and its controller.

Our examination of existing frameworks reveals beneficial as-
pects for comprehensibility of a framework and the applications de-
veloped with it: The object oriented paradigm facilitates encapsula-
tion and allows to create understandable representations. Data flow
graphs provide the possibility to visualize an application graph and
foster modularity and thus decoupling and cohesion. Component-
based approaches emphasize separation of concerns and, hence,
further decoupling and reusability by providing interfaces for the
simulation components to be developed. This allows to indepen-
dently develop software modules which can then be reused by other
developers. A message-based approach facilitates decoupling by
cutting down software interfaces to support for message types. In
this context, an extensible mechanism to define naming schemes
and data types is a desirable feature.

Our Simulator X framework[16] is hard to classify into the
mentioned categories, since it already combines component-based
development, message-based communication and object-oriented
programming (in terms of its entity model). Although emphasizing
decoupling [28], it fails to provide a unified way to access compo-
nents and application state. Consequently, the mere combination of
the examined approaches does not inherently result in comprehen-
sible applications.

But comprehensibility of a framework, for component develop-
ers as well as for application developers, is one of the most im-
portant aspects regarding a short learning curve and reusability of
created applications. Hence, we aim at a minimal interface that pro-
vides as many of the beneficial features reported above as possible.

In the next section we will develop a model of RIS applications
upon which this minimal interface shall be built. It should be noted
that the next section provides concepts rather than instructions for
an actual implementation, which would include optimizations to
maintain realtime capabilities.

3 UNIFIED ACCESS MODEL

3.1 The Core of RIS Applications

Every (RIS) application simulates some kind of virtual environ-
ment. Although most instances do, such environments do not nec-
essarily have a VR-like character, nor do they incorporate 3D con-
tent. Since being simulated, each of those environments inevitably
contains virtual aspects. But, due to its interactive nature, at least
the user introduces a real aspect. Consequently, each simulated en-
vironment always combines virtual and real aspects.

Examples for virtual objects are simulated entities in the virtual
scene, virtual sensors (like random number generators or applica-
tion time), but also parts of the system architecture (like simulation
engines). On the other hand, input devices (like keyboards or track-
ing targets), hardware devices (like the tracking system or a screen),
as well as the user himself serve as examples of real objects in-
volved in a typical RIS application. Hence, our initial observation
is that a unified access model will have to treat virtual objects in the
same way as it treats real objects.

Looking on RIS applications as the simulation of environments,
the representation of the environment’s state constitutes a central
building block. Due to the discrete nature of computer programs, a
program run can be interpreted as a sequence of such states. In this
context, each simulation state conceptually consists of a number of
properties the representation of which we will call state variables,
which entirely define all aspects of each object that is part of the
simulation:

Staten =

⋃

i∈In

StateVariablei

In the presented equations In depicts the index set that contains the
indices of all state variables belonging to a given state n.

The set of state variables changes each time a component of the
simulation computes updated values or a sensor provides new data.
Thus, we will count the application as a set of properties (the current
simulation state) and changes to those properties.

Consequently, a way to represent changes to the simulation
state, which consists of elements that remain stable until the next
state change, has to be found. Each change can—again due to
discretization—be viewed as a singular event. Such events can rep-
resent a simple property change but also depict certain incidents,
for example, the collision of two objects.

In contrast to state variables events do not have a lifetime. Other-
wise they would not identify a specifc point in time (e.g., a collision
event) but a part of the state (e.g., an inCollision state variable).

3.2 Changes to the Application State: Events

As stated above, changes to the application state are caused by ei-
ther the arrival of new sensor data or the computation results of a
simulation component. Aiming at a unified view of RIS applica-
tions, we will treat both as an event. Regarding an application state
n, an event i can be represented as the two sets Addi and Removei

of added and removed state variables (updating is represented as
removing and re-adding, though an actual implementation would
update contents of state variables):

Eventn
i = {Addi 6⊂ In, Removei ⊂ In}

Given a certain state n, the observation of an event will result in the
transition into a subsequent state n+1:

Staten ◦Eventn
i = Staten \ Removei ∪ Addi = Staten+1

Further events, like the before-mentioned collision of two objects,
can be used to trigger reactions in simulation components. Al-
though the occurrence of such an event does not directly affect state
variables, its processing will eventually result in an update of the
application state.

manuscript

<<interface>>
IStateVariable

get(handler : T => Unit)
set(newValue : T)

T
<<interface>>
IObservable

observe(handler : T => Unit)

T

StateVariable

T

emit(data : Any)

EventDescription
Relation

T, U

Figure 1: Software interfaces for state variables (see section 3.1),
relations (see section 3.5), and events (see section 3.2)

Based on the two concepts of state variables and events, all
structures commonly used in RIS applications (e.g., state machines,
scene graphs, or data-flow graphs) can be modeled. Since the state
variable concept only encapsulates the processing of value update
events, its implementation is optional. More precisely, starting with
an empty state, the current state can be seen as the chain of events
since the program started. However, we recommend its implemen-
tation in order to relieve the developer of keeping track of the state
change events and to provide a more common interface.

Consequently, the event system is the only interface between the
application and simulation components as well as between the sim-
ulation components themselves. Because the pure, unstructured
handling of events would result in unmaintainable, incomprehen-
sible applications, a mechanism to allow structured processing has
to be provided. For that purpose, hiding of the event processing
as done by state variables can be applied more generally: Using a
unified software interface, callbacks (which we will call handlers)
can be registered for handling events of any kind. This way, event
handling code can be attached directly to a respective event source
(which may be an updated state variable). This interface is imple-
mented by state variable and event representations (see figure 1).

3.3 Subdivision of the Application State: Entities

Although it would be sufficient to combine the presented two build-
ing blocks—state variables and events—in order to connect simula-
tion components and create RIS applications, the resulting program
code would not be comprehensible. Thus, state variables are log-
ically grouped into entities, thereby creating an intuitive represen-
tation of simulated objects. This complies with the object-oriented
programming paradigm and the requests for entity centered mod-
els, since all properties that belong to one entity are bundled. No
state-variable that does not belong to an entity must exist and state-
variables must not be directly shared by two entities:

Entityn
k =

⋃

j∈Jn
k

StateVariable j where
⋃̇

l

Jn
l = In

However, indirect sharing by incorporation of other entities is fea-
sible, as a state variable may hold the reference to an entity. In con-
sequence, everything that is relevant to the application state is rep-
resented as an entity (a set of state variables), e.g., virtual objects,
the user, input devices, or simulation components. This satisfies our
initial request: Real and virtual objects can be treated equally.

While representing real and virtual objects as entities consisting
of properties is quite an accepted approach, it is less common to
treat the user, input devices, and especially simulation components
the same way. Yet, all of those objects can be defined by means of
associated state variables. For input devices, for example, this could
be the state of buttons or a tracking-target’s position, for simulation
components it could be the respective component’s configuration.

Adopting this representation, a programmer just has to learn
what can be modified, instead of what and how it can be modified.
Besides uniform access to all relevant properties of any aspect of
the simulation, it enables uniform creation, handling and removal
of all architecture elements.

3.4 Setting up the Application State: Entity Creation

Having developed a unified way to access the simulation state via
entities, the creation of entities remains an open question: Obvi-
ously, the initial values for the entity to be created, more precisely
for the state variables it contains, have to be specified. In some cases
more information than the plain state values is required (like config-
uration or model files that have to be parsed). Since this is usually
done by the application developer, a description-based mechanism
is a reasonable approach (see section 4.2).

The instantiation of the entity then is triggered by a designated
event, containing the above-mentioned initial values. Depending
on this information the responsible authority has to be detected:
For the creation of new components this is a central element of
the respective RIS framework, e.g., a central component registry.
For any other entity the involved simulation components have to be
requested to instantiate their local representation of the entity.

Here, the essential observation is that the only information re-
quired to instantiate a new entity—be it a component, an input de-
vice or any other object—is the set of initial values information on
the involved components. Consequently, all entities can be created
using the same mechanism.

3.5 Linking the Application State: Relations

Given the subdivision of the application state into state variables
and entities, a means of relating all parts to each other is required.
For this reason we introduce the concept of relations between en-
tities: A relation associates two entities which satisfy the relation.
For example, the has-part relation identifies all entities that are a
part of another entity. Depending on its implementation, a relation
may be of transitive nature: A has-part relation could identify either
only direct parts or all parts and sub-parts of an entity.

A relation has two characteristics: First, it can be regarded as
a state variable, since it represents a part of the application state.
Hence, the interface implemented by a relation is the same as the
interface of state variables (get, set, and observe). In addition, it
provides a means to query relations between entities. For this pur-
pose it can be partially specified, leaving the queried aspects open.
In the above example the subject of the has-part relation could be
undefined to query all entities which the given object is a part of.

Due to the similarity to state variables, the unified access model
is not restricted by the existence of relations. The second character-
istic provides developers with a tool to define and query relations
of entities in an application.

3.6 Modifying the Application State: Components

Every RIS application comes to life by means of simulation com-
ponents, like physics engines, artificial intelligence (AI) compo-
nents, or input/output modules. Often data flow graphs are imple-
mented to control the course of events in an application (cf. section
2.2.2). This approach integrates well with scenegraph-based ren-
dering, but often forces developers to apply a serialized execution
scheme. Although this is sufficient for most applications, integrat-
ing modules that perform lengthy, possibly concurrent calculations
(e.g., AI components) can become difficult. In addition, it compli-
cates the development of components that have to access the whole
simulation state.

Frameworks that adopt component-based design are less often
subject to such limitations, since they inherently aim at separation
of computation tasks. However, specifying the execution scheme
mostly is a complex task when using a component-based approach.

manuscript

Position

Torso

Position

Hand @ right

Position

Hand @ left

Position

Arm @ right

Position

Arm @ left

ha
sP
ar
t

hasP
art

hasPart

hasPart

Position

Head
hasPart

Figure 2: Simplified representation of the user’s upper body.

We suggest to keep a graph-based approach to specify the ex-
ecution scheme, but to combine it with component-based design
and incorporate it into the entity model: Each component (like any
other object) is represented by an entity. The component is config-
ured by the entity’s set of state variables, which in this case con-
tains a successors state variable. The set of all successors defines
the application graph. If desired, a complete data-flow network can
be emulated: After finishing its (asynchronous) simulation step, all
components in the successors variable are notified (via an desig-
nated event) to start their simulation step.

Using component entities, the application developer can focus
on one interface (the entity) to configure the whole application: The
configuration of simulation components as well as the state of the
virtual (and real) environment can be read and modified via state
variables, which are accessible via the encapsulating entity. Appli-
cation logic can be defined by observing state variables of any entity
as well as publishing and subscribing to events/state changes.

3.7 Understanding the Application State: Semantics

The subdivision of the application state into entities results in a
more comprehensible view, but the identification of state variables
and their meaning remains ambiguous. Without annotating the vari-
ables they contain featureless values, the meaning of which is only
identifiable based on their names within program code. Even if the
developers choose meaningful names, their uniformity cannot be
ensured. As a result automated comparison of properties, integra-
tion of artificial intelligence methods, and understanding the appli-
cation’s structure would become a needlessly complicated task.

Since ontologies are a common means to represent concepts and
their relationships using a defined vocabulary, specifying names
(symbols) in an ontology to annotate state variables seems natu-
ral. In this way, human-readable information on the state variables’
semantics, data type, and relations to other state variables can be
stored. The names used in such an ontology can easily be con-
verted into program code by creating a data structure containing
variables having the same name as their counterpart in the ontol-
ogy. This accounts for the observation that an extensible mecha-
nism to define naming schemes and data types is a desirable feature
for message-based approaches (see section 2.2.5). In addition, the
transformation of ontology contents into program code facilitates
the verification of semantic correctness at compile time by creating
new data types combined with semantics. For example, requiring a
parameter to be of the type Position[Vec] prevents accidental
misuse of a method by passing a Vec representing a direction.

There are further advantages in using ontologies to represent
meta-data about an application: A reasoner can check the ontol-
ogy for consistency and identify misconfiguration of entities. An
ontology can easily be extended by reusing existing concepts and it
also allows to query existing concepts. Being independent from the
programming language used, one ontology could be used by mul-
tiple frameworks. As ideally the entire application state is defined
by the union of all entities/state variables, a snapshot of the current
state can be saved in the ontology and be restored later.

1 val hasPart = Relations.get(HasPart)

2 val userDescription = EntityDescription(Torso, "user1")(

3 GraphicalModelAspect(file = "assets/body.dae"),

4 hasPart(EntityDescription(Head, "head1")(

5 VRPNTargetAspect(id = 1)

6)),

7 hasPart(EntityDescription(Arm :@ left, "arm1")(

8 hasPart(EntityDescription(Hand :@ left, "hand1")(

9 GraphicalModelAspect(file = "assets/hand-l.dae"),

10 VRPNTargetAspect(id = 2)

11))

12)),

13 hasPart(EntityDescription(Arm :@ right, "arm2")(

14 hasPart(EntityDescription(Hand :@ right, "hand2")(

15 GraphicalModelAspect(file = "assets/hand-r.dae"),

16 VRPNTargetAspect(id = 3)

17))

18))

19)

Listing 1: Representation of the user’s body introduced in figure 2
written in Scala code by means of EntityDescriptions.

Integrating semantics into the representation of state variables
and events allows to access properties on a semantic level. Hence,
application logic can be defined via rules in an external format by
implementing a thin wrapping layer. This would also be beneficial
for eventual AI components.

In addition to the main semantics, which identify the type of the
denoted state variable, annotations can be added. These allow to
specify the semantics of the state variable in greater detail using
symbols from the ontology. Figure 2 exemplifies this concept on
the basis of the representation of the user’s upper body, being sub-
divided into multiple entities.

The next section will detail our implementation with code exam-
ples taken from an application in which the collision of the user’s
left hand and a virtual object (a car) is detected. The lines of code
can be executed in an arbitrary order (obviously with the exception
that variables have to be defined before they are used). Although
our implementation adopts a message-based design, there is no pre-
ferred style of implementation of the presented model.

4 IMPLEMENTATION

4.1 Entity Descriptions

As mentioned above, we propose a description-based interface. Our
implementation features aspect-based descriptions for entities, en-
abling the flexible specification of entities. Listing 1 exemplifies the
description of the torso in figure 2: An EntityDescription

consists of a type with optional annotations (both defined in the on-
tology) and a name, as well as an arbitrary number of Aspects
(see [28] for details on aspects). Relations like hasPart are used
to create a hierarchical description, representing the structure of the
torso. In the example many default values are used (e.g., scale for a
graphical model).

There are multiple advantages to a descriptive approach using as-
pects: First, the resulting code used to describe entities is easily un-
derstandable. Second, the use of aspects abstracts component spe-
cific implementations. This makes aspects reusable for other com-
ponents of the same type (e.g., a different renderer) and facilitates
replacing of components. In addition, entities can be flexibly cre-
ated: The combination of different aspects and relations enables the
specification of a multitude of entity characteristics. Adding a phys-
ical aspect to the screen entity description in listing 2, e.g., could
enable detection of collisions of virtual objects and the screen.

The required initial values for different aspects of the simulation
can now be specified by the application developer. In the next sec-
tion we will detail how entities are created from such descriptions.

manuscript

1 val vrpnClientDescription =

2 new EntityDescription(Component, "vrpn-tracker0")(

3 VRPNComponentAspect(url = "tracker0@localhost"))

5 val graphicsDescription =

6 new EntityDescription(Component, "renderer")(

7 RendererAspect(stereo = true))

9 val screenDescription =

10 new EntityDescription(Screen, "screen-0")(

11 ScreenAspect(width = 2400, height = 1500))

13 val carDescription =

14 new EntityDescription(Hand, "myCar")(

15 GraphicalModelAspect(file = "assets/car.dae"))

17 execute vrpnClientDescription.realize andThen

18 graphicsDescription.realize andThen

19 screenDescription.realize andThen

20 userDescription.realize andThen

21 carDescription.realize{

22 _ => println("created components and entities")

23 }

Listing 2: Examples for entity descriptions: Two components (VRPN
client and renderer), the screen, the user entity, and a virtual car are
created. The created components update the positions of the entities
and visualize them after they were instantiated.

4.2 Unified Creation Mechanism

Listing 2 shows an extract of a simple application featuring a VRPN
client and a renderer. Besides those two components, the screen
on which the virtual scene will be displayed as well as a virtual
car is created. All four entities are instantiated by defining entity
descriptions containing initial values. The call to the realize

methods starts the instantiation process. An (optional) handler is
executed after the respective entity is created. The implementation-
specific keyword andThen (used for brevity) queues calls to the
realize methods, causing the serialized instantiation of entities.

Lines 1-7 exemplify that components are created exactly the
same way as other entities (see lines 9-15). This reduces the num-
ber of concepts to be learned by a developer who is new to the
framework.

As mentioned in section 3.4 the creation process depends on the
contained aspects: Events containing the respective aspect are emit-
ted to the associated components, which create their internal repre-
sentation and the associated state variables. Finally, the entity is
registered with the framework (cf. section 4.5).

4.3 Simulation Component Definition

Each simulation component has to implement a simple interface
which is used by internal event handlers: It contains a method that
provides initial values for an entity to be created. Most of these val-
ues will be contained in the aspect assigned to the component, but,
for example, special loaders that are part of the component could
read more information from files. In addition, a callback has to be
implemented by the component, which is executed each time a new
entity is created. Finally, a method to handle external triggering of
a new simulation step has to be provided.

Since the component itself (as every other object) is represented
by an entity, that entity’s state variables are the interface to its con-
figuration. In this way, the configuration of a component is handled
using the exact same interface as the configuration of any other ele-
ment of the simulation. The next sections will introduce our imple-
mentation of that unified interface.

Note that there is no assumption about a component’s execution
scheme, however, it can be triggered externally by adding a corre-
sponding event handler, if required (compare section 3.6).

1 var (carPos, handPos) = (Vec(0,0,0), Vec(0,1,0))

2 val theCar : Entity //= for entity access see listing 4

4 Events.observe(Collision){ event : CollisionEvent =>

5 println("observed collision: " + event)

6 }

7 theCar.observe(Position){ pos : Vec => carPos = pos }

9 theCar.set(Position(Vec(0, 0, 0)))

11 def checkCollision(){

12 if (length(handPos - carPos) < 0.1)

13 Events.emit(Collision(hand, theCar))

14 }

Listing 3: Uniform access to a collision event (via the Events object)
and a state variable (via an entity): The same software interface is
used and handlers are installed at the respective object, allowing
for understandable, localized code. Identical access to elements for
write access results in an easily understandable interface.

4.4 Unified Access

The realization of the presented methods requires the implementa-
tion of the interfaces shown in figure 1. State variables, relations,
and events implement the method observe (see listing 3), which
encapsulates event handling code into a more common callback-
style interface. In our example, the interface of state variables, re-
lations, and events is also implemented by entities and the Events
object. Addressing a state variable (or an event, respectively) by
using an additional first parameter, a handler can be installed to the
element (event or state variable) selected this way. This allows to
hide the underlying implementation from component and applica-
tion developers. Hence, a typical object-oriented approach, a mes-
sage passing library (e.g., an implementation of the actor model
with FIFO delivery semantics), or any other approach can be used.
Our implementation builds on the underlying Simulator X frame-
work (for details see [16] and [28]).

Regarding locality, the code benefits from the use of anonymous
functions (lambda functions) since handler code can be defined at
the same location as respective entity or event is accessed (com-
pare listings 2, 3 and 4). Consequently, our model benefits from the
use of functional languages, but can also be implemented using the
more common approaches like callback functions. Such localized
way of implementing event handlers constitutes an intuitive inter-
face which follows the object-oriented paradigm.

Lines 4-5 of listing 3 exemplify the access to the description of
an event: The Events object contains proxy objects for events,
which enable the developer to install handlers for the underlying
events and emit events of that type (see line 13). In this example,
the object Collision is one of the concepts generated from the
ontology mentioned in section 3.7 (for details see [28]). Besides its
name, which serves as an identifier, it contains information on the
data type of the event’s payload (also specified in the ontology).

Lines 4-13 of listing 3 reveal the similarity of handling events
and state variable updates: While events are accessed via the
Events object, the same applies for entities and state variables.
The value Position used in line 7, like the Collision variable
from line 4, originates from the ontology and contains type infor-
mation. Thus, the compiler can infer the datatype and semantics of
the state variable and ensure the use of a correctly typed handler.

Listing 3 furthermore shows the interface for updating state vari-
ables (line 9) and publishing events (line 13): The accessed proxy
for the collision event allows to emit events. Each event can carry
payload, in the example this are the two colliding entities. Due to
the type information attached to the Collision variable, the type
of the data carried by the event can be checked by the compiler. This
way, an event proxy object hides the creation and dispatching of the

manuscript

1 lookupEntities(Torso :: Nil, "user1"){ body : Entity =>

2 body.get(hasPart -> ?){ bodyParts : AnnotatedMap =>

3 leftHand = bodyParts.getFirst(Hand :@ left)

4 leftHand.observe(Position){ position : Vec =>

5 handPos = position

6 checkCollision()

7 } }

8 // set stereo property of the renderer

9 lookupEntities(Component :: Nil, "renderer"){

10 renderer => renderer.set(StereoMode(false))

11 }

Listing 4: Example showing access to the torso entity from figure 2
by means of the world interface. The names ”user1” and ”renderer”
of the entities were chosen by the application developer in their
descriptions (see listings 1 and 2).

actual event, reducing error prone code and fostering comprehen-
sibility. Similar publish/subscribe mechanisms for event handling
can be hidden by the framework (see section 4.5) letting develop-
ers focus on implementation tasks. The same is true for creation
and dispatching of state variable change events: Calling the set
method (line 9 of listing 3) results in the creation of a respective
update event. That event is automatically dispatched and the cor-
rect handlers are called.

A major advantage regarding comprehensibility is the fact that
no difference (except for the method names set and emit) is
made between the handling of events, state variables, and relations.

The next section details the registration of entities as well as later
access to them and exemplifies the uniform access to virtual objects,
input devices and components.

4.5 World Interface

Using the presented techniques a developer would have to keep
track of all created entities. To address this, a central registry that
provides access to entities, similar to the hierarchical structure used
in the NPSNET-V framework, takes over this task. In addition, the
publish/subscribe mechanism for events needs to be provided by the
framework. A third centralized task is the instantiation of new sim-
ulation components. The central component which provides these
services in our implementation is the world interface.

It internally handles the instantiation of components: After re-
ceiving a component aspect, it instantiates the component and cre-
ates the associated entity. The creation of this (as well as of any
other entity) ends with its registration with the world interface.

Listing 4 shows an example for accessing registered entities: The
lookupEntitesmethod in line 1 receives a path which specifies
to retrieve all entities that are torsos. Note that the types that make
up the path are the same that are used in the entity descriptions from
above. The returned entity is checked for its parts (which were also
defined in the entity description) using the hasPart relation. As
shown in line 9, accessing components works the same way.

The publish/subscribe mechanism for events is also hidden from
the developer: A call to the observe method of an event descrip-
tion will notify the world interface about the request of this type of
event. The world interface will then register the event handler and
look for matching event providers. If such providers are found or as
soon as the emitmethod of that event is called, a handshaking pro-
cess between the provider and the handler will be initiated by the
world interface. Afterwards the event provider will automatically
send its events to the event handler.

4.6 Adopting the Actor Model

Due to the message-based nature of the presented approach, we sug-
gest to apply the actor model [9]. Since the presented approach is
entirely based on events, which can be represented as messages, it
is a sensible choice. Each component and application can consist

of multiple actors which can run concurrently and exploit available
hardware resources. In this context, the model obviates synchro-
nization mechanisms. Furthermore, some implementations provide
a transparent network layer which immensely reduces the amount
of work for the creation of a distributed system.

On the downside the actor model introduces a programming
model which most of the developers are not accustomed to. How-
ever, this characteristic can be hidden from new developers by ap-
plying the proposed approach.

A second drawback is the fact that event-based models com-
monly miss the feature of transactional state updates. This can be
implemented on top of the presented model by implementing events
that simultaneously update multiple values before associated han-
dlers are executed, or by serializing the execution of some compo-
nents’ simulation threads, when necessary (cf. section 3.6).

5 CONCLUSION

We presented our work towards a unified semantic-based access
model, which allows to treat any entity of the system in the same
way—be it software, a virtual object, or a real object. It was devel-
oped with respect to requests and experiences reported by the com-
munity in the last years. In this context, seven other frameworks
were reviewed with regard to their realization of state representa-
tions, means of decoupling, and event models.

Our model is based on two fundamental requirements: Storing
the simulation state and representing changes to it. The basis for
our model is established by storing the entire state in state variables
and applying changes to the state by the execution of event han-
dlers. In this context, the application state is conceptually divided
into entities, which are used to represent any object that is involved
in the simulation. Following the well understood object-oriented
paradigm, entities provide a uniform, intuitive way to access the
entire simulation and its state.

Based on these essential elements, a framework implementing
the proposed model can integrate existing simulation engines by
connecting their internal representations to state variables. Adopt-
ing component-based development, our model facilitates separa-
tion of concerns and modularization of computation tasks. Due to
its event-based nature, the application state can be distributed over
multiple nodes by serializing the events and distributing them over
network. In this context, a message-based implementation (e.g.,
applying the actor model) furthers decoupling by cutting interfaces
down to message-based communication.

A common ground for naming entities is established by using
semantic symbols. These are defined in an ontology which is incor-
porated into the framework and meant to be extended by applica-
tion and component developers. The ontology is furthermore used
to store relations between entities and thus supports the integration
of AI components.

Due to type information defined in and generated from the on-
tology, our model allows to overcome the often observed problem
of lacking type safety and hierarchies. The centralized, human-
readable description of available types and events in the ontology
eases the process of getting an overview of the systems capabilities
without requiring in-depth knowledge of utilized components. By
building a synchronization layer on top of the model, even the prob-
lem of transactional updates could be tackled. The concept of at-
taching value change handlers in the form of anonymous functions
directly to entities of the simulation fosters locality and, hence,
comprehensibility.

In contrast to other middleware, a component developer can hide
the complexity of instantiating and controlling a created compo-
nent from other developers. In combination with the model’s very
lightweight software interface this facilitates maintainability of ap-
plications and seamless replacement of components, usually being
a very demanding task.

manuscript

Altogether, the application of our model relieves a developer
from figuring out how to access a specific aspect of the simula-
tion and allows to focus on the implementation of application logic.
We thus believe that our unified access model shortens the learning
curve for fathoming a RIS framework and developed applications.

6 FUTURE WORK

The presented work creates the basis for decoupled RIS applica-
tions, written in easily understandable program code. However, at-
taching callbacks that observe changes of state variables and occur-
rences of events only poses the lowest layer for a framework adopt-
ing the presented model. Future work will include adding further
layers to ease developers’ efforts, combine handlers, and strengthen
cohesion to further improve comprehensibility of the code.

Usability studies that consider the developer’s learning curve
and comprehensibility of application code should be developed and
conducted to make out the best combination of such layers. Build-
ing on the results of such studies, the next step in developing a
unified access model can be taken.

Furthermore, the usability of our approach for artificial intelli-
gence methods has to be evaluated. The deeply integrated ontology
poses an ideal basis for paradigms like semantic reflection [14].
Semantic [4] and conceptual modeling [5] approaches will benefit
from this integration, as well.

Finally, the approach could be used to connect existing frame-
works and engines, for example, Unity, the Unreal Engine, the
Havoc physics engine, and many more. This way, a growing set
of attachable simulation components could be created and, at the
same time, this would prove the flexibility and applicability of our
model.

REFERENCES

[1] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin,

and S. Robert. FlowVR: A Middleware for Large Scale Virtual Reality

Applications. In Euro-par 2004 Parallel Processing, pages 497–505,

2004.

[2] J. Allard, J. Lesage, and B. Raffin. Modularity for Large Virtual Real-

ity Applications. Presence: Teleoperators and Virtual Environments,

19(2):142–161, 2010.

[3] G. Anastassakis and T. Panayiotopoulos. A Unified Model for Repre-

senting Objects with Physical Properties, Semantics and Functionality

in Virtual Environments. Intelligent Decision Technologies, 6(2):123–

137, 2012.

[4] P. Chevaillier, T. Trinh, M. Barange, P. De Loor, F. Devillers, J. Soler,

and R. Querrec. Semantic Modeling of Virtual Environments using

MASCARET. In Workshop on Software Engineering and Architec-

tures for Realtime Interactive Systems, pages 1–8. IEEE, 2012.

[5] O. De Troyer, F. Kleinermann, B. Pellens, and W. Bille. Conceptual

Modeling for Virtual Reality. In Tutorials, Posters, Panels and Indus-

trial Contributions at the 26th International Conference on Concep-

tual Modeling - Volume 83, pages 3–18, 2007.

[6] E. Frécon. DIVE on the Internet. PhD thesis, University of Göteborg,

2004.

[7] C. Fröhlich and M. E. Latoschik. Incorporating the Actor Model into

SCIVE on an Abstract Semantic Level. In IEEE VR Workshop on Soft-

ware Engineering and Architectures for Realtime Interactive Systems

(SEARIS), pages 61–64, 2008.

[8] C. Geiger, V. Paelke, C. Reimann, and W. Rosenbach. A framework

for the structured design of VR/AR content. In Proceedings of the

ACM symposium on Virtual reality software and technology, pages

75–82, 2000.

[9] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR

Formalism for Artificial Intelligence. In Proceedings of the 3rd Inter-

national Joint Conference on Artificial Intelligence, pages 235–245,

1973.

[10] C. Just, A. Bierbaum, A. Baker, and C. Cruz-Neira. VR Juggler: A

Framework for Virtual Reality Development. In 2nd Immersive Pro-

jection Technology Workshop (IPT98), pages 89–96, 1998.

[11] A. Kapolka, D. McGregor, and M. Capps. A Unified Component

Framework for Dynamically Extensible Virtual Environments. In Pro-

ceedings of the 4th International Conference on Collaborative Virtual

Environments, pages 64–71, 2002.

[12] R. Kuck, J. Wind, K. Riege, and M. Bogen. Improving the Avango

VR/AR Framework: Lessons Learned. In Workshop Virtuelle und

Erweiterte Realität, pages 209–220, 2008.

[13] M. E. Latoschik and R. Blach. Semantic modelling for virtual worlds

a novel paradigm for realtime interactive systems? In Proceedings

of the ACM Symposium on Virtual Reality Software and Technology,

pages 17–20, 2008.

[14] M. E. Latoschik and C. Fröhlich. Towards Intelligent VR: Multi-

Layered Semantic Reflection for Intelligent Virtual Environments. In

Proceedings of the International Conference on Computer Graphics

Theory and Applications, pages 249–259, 2007.

[15] M. E. Latoschik and H. Tramberend. Engineering Realtime Interactive

Systems: Coupling & Cohesion of Architecture Mechanisms. In Pro-

ceedings of the Joint Virtual Reality Conference of EuroVR–EGVE–

VEC, pages 25–28, 2010.

[16] M. E. Latoschik and H. Tramberend. Simulator X: A Scalable and

Concurrent Architecture for Intelligent Realtime Interactive Systems.

In IEEE Virtual Reality Conference, pages 171–174, 2011.

[17] E. Lee. The Problem with Threads. Computer, 39(5):33–42, 2006.

[18] F. Mannuß, A. Hinkenjann, and J. Maiero. From Scene Graph Cen-

tered to Entity Centered Virtual Environments. In IEEE VR Workshop

on Software Engineering and Architectures for Realtime Interactive

Systems (SEARIS), pages 37–40, 2008.

[19] B. Pellens, F. Kleinermann, and O. De Troyer. An Approach Facilitat-

ing 3D/VR System Development Using Behavior Design Patterns. In

In IEEE VR Workshop on Software Engineering and Architectures for

Realtime Interactive Systems (SEARIS), pages 17–24, 2010.

[20] M. Ponder. Component-Based Methodology and Development Frame-

work for Virtual and Augmented Reality Systems. PhD thesis, EPFL,

Lausanne, 2004.

[21] M. Ponder, G. Papagiannakis, T. Molet, N. Magnenat-Thalmann, and

D. Thalmann. VHD++ Development Framework: Towards extendible,

component based VR/AR simulation engine featuring advanced vir-

tual character technologies. In Computer Graphics International,

pages 96–104, 2003.

[22] F. Rodrigues, R. Ferraz, M. Cabral, F. Teubl, O. Belloc, M. Kondo,

M. Zuffo, and R. Lopes. Coupling virtual reality open source soft-

ware using message oriented middleware. In IEEE VR Workshop on

Software Engineering and Architectures for Realtime Interactive Sys-

tems (SEARIS), 2009.

[23] C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled simulation in

virtual reality with the MR toolkit. ACM Transactions on Information

Systems (TOIS), 11(3):287–317, 1993.

[24] A. Steed. Some Useful Abstractions for Re-Usable Virtual Environ-

ment Platforms. In IEEE VR Workshop on Software Engineering and

Architectures for Realtime Interactive Systems (SEARIS), pages 33–

36, 2008.

[25] A. Steed, D. Reiners, and M. Latoschik. Reflections on the design and

implementation of virtual environment systems. Presence: Teleoper-

ators and Virtual Environments, 19(2), 2010.

[26] R. M. Taylor, J. Jerald, C. VanderKnyff, J. Wendt, D. Borland,

D. Marshburn, W. R. Sherman, and M. C. Whitton. Lessons about

Virtual Environment Software Systems from 20 Years of VE Build-

ing. Presence: Teleoperators and Virtual Environments, 19(2):162–

178, 2010.

[27] H. Tramberend. Avocado: A Distributed Virtual Reality Framework.

In IEEE Virtual Reality Conference, pages 14–21, 1999.

[28] D. Wiebusch and M. E. Latoschik. Enhanced Decoupling of Com-

ponents in Intelligent Realtime Interactive Systems using Ontologies.

In IEEE VR Workshop on Software Engineering and Architectures for

Realtime Interactive Systems (SEARIS), pages 43–51, 2012.

[29] C. A. Wingrave and J. J. LaViola. Reflecting on the Design and Im-

plementation Issues of Virtual Environments. Presence: Teleoperators

and Virtual Environments, 19(2):179–195, 2010.

manuscript

