
Profiling and benchmarking event- and message-passing-based asynchronous
Realtime Interactive Systems

Stephan Rehfeld ∗

Beuth Hochschule für Technik Berlin
Henrik Tramberend †

Beuth Hochschule für Technik Berlin
Marc Erich Latoschik ‡

Universität Würzburg

Abstract

This article describes a set of metrics for a message-passing-based
asynchronous Realtime Interactive System (RIS). Current trends in
concurrent RISs are analyzed, several profiling tools are outlined,
and common metrics are identified. A set of nine metrics is pre-
sented in a unified and formalized way. The implementation of
a profiler that measures and calculates these metrics is illustrated.
The implementation of an instrumentation and a visualization tool
are described. A case study shows how this approach proved bene-
ficial during the optimization of latency of an actual system.

CR Categories: C.4 [Performance of Systems]: Measurement
techniques D.2.8 [Software Engineering]: Metrics—Performance
measures I.3.2 [Computer Graphics]: Graphics Systems—Stand-
alone systems

Keywords: profiling, benchmarking, concurrency, message pass-
ing

1 Introduction

Performance gains of modern computing environments largely de-
pend on concurrency. Realtime Interactive Systems (RISs) in the
areas of Virtual and Augmented Reality are exceptionally perfor-
mance hungry. They have to provide highly responsive interaction
cycles with low latencies. In addition, they combine multiple input
and output channels, often with an advanced application logic and
hence tend to exhibit complex software architectures.

However, low-level concurrency primitives like threads,
semaphores, mutexes, or locks are considered error-prone,
specifically for complex systems [Lee 2006]. This problem is
addressed by Sutter’s article ”The free lunch is over” [2005], which
started a discussion about the future of software development
in the wake of Chip Multi Processors (CMPs) and concurrent
programming. As a result, scalable RIS architectures which
utilize concurrency while avoiding common pitfalls of parallel
programming are an important research topic.

Profiling and benchmarking concurrent architectures requires ad-
ditional care. Usually, benchmarking is performed by creating a
benchmark scenario, adding measurement code to the system, and
performing the measurement. This simple approach is not easily
applicable to RIS development. First, too often, artificial small
problems are chosen as concurrency benchmarks which can be par-
allelized easily due to their data-parallel aspects and which can not

∗e-mail:rehfeld@beuth-hochschule.de
†e-mail:tramberend@beuth-hochschule.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

be compared to the parallelization of full-blown real world appli-
cations [Best et al. 2009]. Second, the instrumentation for bench-
marking usually has to be coded into the system before execution.
When the benchmark is completed, the instrumentation code is re-
moved from the system. This has two disadvantages:

1. Cost: Design and implementation of the instrumentation has
to be performed by the developers.

2. Replicability: Individual solutions and later removal of the
instrumentation code hinders replicability.

Automated instrumentation using a profiling tool seems necessary.
It frees up developers from designing a specialized instrumentation
and it can make benchmarks more reproducible. Several of such
tools exist but their applicability to modern RIS architectures is
limited. These architectures usually incorporate some sort of event
system as a central execution concept [Steed 2008b]. Event sys-
tems are highly beneficial to design modular systems and they addi-
tionally provide ideal target primitives for concurrent architectures,
specifically if events are realized by–potentially asynchronous–
message passing architectures. Now, standard profiling tools are
agnostic to such middleware concurrency primitives and hence are
largely useless here. To tackle this problem this article introduces

1. a set of metrics to compare the performance of event-based
and message-passing-based asynchronous RISs.

2. an implementation of an instrumentation tool to apply the de-
fined metrics and to run benchmarks.

Profiling and benchmarking RISs is an important increment to-
wards sound and comparable user studies. Using monolithic closed
source systems, developers can only measure end-to-end perfor-
mance, e.g., frame rates or latency, and report the results. They can
not control them. Causal relations between end-to-end measures
and intrinsic system aspects can not be derived and negative im-
pacts on user performance hence can not be reduced or prevented.

In Section 2, we give a short review of concurrency in RISs, perfor-
mance metrics, and profiling tools. In Section 3, a set of metrics for
message-passing-based asynchronous RISs is described. A proto-
typical implementation is outlined in Section 4. A case study using
this implementation is described in Section 5. Section 6 presents
the results and discusses future work.

2 Related Work

Coarse-grained concurrency schemes have been added to existing
systems like Lightning [Bues et al. 2008], OpenMASK [Margery
et al. 2002], ViSTA [Assenmacher and Kuhlen 2008], DLoVe [Deli-
giannidis 2000], Avango [Tramberend 2003] for some time now.
Often, message-passing is used for clustering [Tramberend 1999;
Schröder et al. 2010; Deligiannidis 2000; Allard et al. 2002].

Recent approaches support finer-grained concurrency as a key
feature, e.g., FlowVR [Lesage and Raffin 2008] and Simulator
X [Latoschik and Tramberend 2011]. They often realize concur-
rency by message passing to avoid several of the problems de-
scribed by Lee [2006], e.g., dead locks and access violations. Still,
concurrency concepts may vary drastically, e.g., while Simulator X

uses Hewitt’s actor model [Hewitt et al. 1973], FlowVR is based on
a data flow network. A side effect of message passing often intro-
duces non-blocking behavior, a beneficial feature since it allows for
asynchronous execution exploiting the power of CMPs. Here, re-
quired synchronization primitives, e.g., to render consistent world
states, have to be provided explicitly.

Often, the available RIS middleware is distributed as a core sys-
tems with some additional applications [ViSTA 2013; Simulator X
2014]. Some also provide content editors, but to our knowledge no
system provides a dedicated tool for performance measurement and
profiling, a central feature of SGI’s Performer [Rohlf and Helman
1994] software, which is not available any more.

2.1 Profiling and Monitoring in General

Profiling tools such as VTune [2013], YourKit [2014], and Vi-
sualVM [2014] typically provide features to measure time spent
inside functions, to monitor memory (de)allocation, to trace call
graphs, and to visualize these. Most profiling tools nowadays
monitor concurrent aspects, i.e., degree of parallelism, congestion
on synchronization primitives, and deadlocks and race conditions.
These tools provide fine-grained and detailed information. They as-
sume that threads and synchronization primitives are used directly
to utilize parallelism. They are agnostic to middleware architecture
concepts like events and messages and only measure the low-level
primitives used for their implementation. Most importantly, latency
effects caused by the asynchronous nature of events and messages
are hardly traceable with a classic profiling tool and event and mes-
sage cascades are only implicitly monitored by the function-based
call graphs.

An example of a dedicated tool to monitor and profile a message-
passing-based application is the Typesafe Console for the Akka
framework [Typesafe Inc. 2014]. Typesafe Console runs as a server
that collects data from a running application. The collected infor-
mation is presented via a web interface. The provided metrics in-
clude information about latency and throughput in addition to Akka
specific aspects. Unfortunately, none of the metrics provide infor-
mation about consistency. Consistency describes the integrity of
data exchanged between concurrent execution paths. A typical ex-
ample in the RIS domain is the data exchange between simulation
components and output render channels, which should only ren-
der consistent world states. It is debatable if consistency is really
something that should be checked by a profiler. Detecting race con-
ditions that cause inconsistency can either be a feature of a profiler
like YourKit or a debugger such as Intel’s Parallel Inspector.

Furthermore, latency measurement is not configured on the fly, but
needs explicit instrumentation, the process of injecting the mon-
itoring and measurement code into the system. Instrumentation
typically increases the execution time of an application. The hard
part is to find an approach that provides all the required measures
and to calculate the metrics correctly while reducing the negative
performance impact of the instrumentation itself. Here, many pro-
filing tools do not collect every event, but instead use a sampling
approach.

To summarize, the focus of classic profiling tools is too low-level
and too fine-grained while ignoring middleware aspects like events
and messages. Specific tools to monitor or profile message-passing-
based applications overcome these problems. They provide an ideal
starting point and first useful metrics to profile systems without
measuring information about implementations-details.

2.2 Common metrics

Software metrics are objective, reproducible, and quantifiable mea-
surements of some property of a piece of software or its specifica-
tion. According to Hollingsworth et. al. [1995], they should help
programmers to reduce execution time and to find errors and bugs.
Typically, a set of metrics is required to describe the performance
of an application comprehensively. According to Hu and Gorton
[1997], a set of metrics should fulfill the following three require-
ments:

MR1 Low variability, which means that the value of the metric
changes slowly according to the described aspect.

MR2 Non-redundancy, which means that metrics in the set of met-
rics do not overlap.

MR3 Completeness, which means that the set of metrics captures
the whole system.

No standard set of metrics exists that describes every program [Hu
and Gorton 1997], and sequential metrics cannot be simply ex-
tended to parallel programs [Hollingsworth et al. 1995]. As a star-
ing point we identified the following five common metrics from the
literature (scientific publications, benchmark suites, profiling tools,
books on computer graphics and game engine development, and
computer game magazines):

M1 Speedup

M2 Efficiency

M3 Degree of parallelism

M4 Frames per second

M5 Latency

M1 & M2: Speedup and efficiency

With respect to parallel systems, speedup compares the total exe-
cution time of a parallel algorithm or program with the total execu-
tion time of a serial implementation that solves the same problem.
Speedup is often used to measure parallelization approaches of sin-
gle aspects within a RIS, as in [Sigitov et al. 2013]. The efficiency
is calculated by dividing the speedup by the number of processors.

M3: Degree of Parallelism

The Degree of Parallelism (DOP) shows how the parallelism has
changed over execution time [Hollingsworth et al. 1995]. First, a
Program Activity Graph (PAG) is created. In this graph, nodes rep-
resent significant events in the program’s execution, while edges
represent execution or wait times. Significant events are calls of
functions, returns from functions, and locking or unlocking of syn-
chronization primitives. Second, for each node the number of cur-
rently running parallel executions is determined and saved. As a
result, the DOP of every moment of execution is available.

M4: Frames per Second

A very common metric for RISs is frames per second (fps), also
called frame rate [Bierbaum 2000; Deligiannidis 2000]. This mea-
sures the overall frequency of an application on the hardware on
which it is executed. The software is benchmarked by changing
the application and running it on the same hardware. The hard-
ware is benchmarked by executing the same application on differ-
ent computers. 3DMARK by FUTUREMARK [2014] is a common
commercial benchmark used by many computer game magazines to

benchmark hardware. It also measures the fps achieved while ren-
dering a test scene.

M5: Latency

Latency describes the delay between the start of an execution and
its result. It is a very important metric of a RIS, especially for VR
applications [Steed 2008a; Bierbaum 2000; Deligiannidis 2000].
While a high latency in computer games may just be annoying, it
can result in simulator sickness in VR, or can have serious conse-
quences in a medical application during surgery. It is necessary to
distinguish between two types of latency. The outer latency mea-
sures a system like a black box, including software and hardware.
It is not measured by the software itself, but by external methods as
in [Steed 2008a] or device-specific hardware, like the Oculus VR
Latency Tester [Oculus VR 2014]. The inner latency is measured
by the–potentially instrumented–software itself. It provides infor-
mation about the internal execution behavior. Inner latencies often
cause outer latencies. Hence it is highly beneficial to measure inner
latencies as a stating point for optimizations.

2.2.1 Discussion

Care has to be taken when adopting the metrics M1–M5 to
RISs. As a special application field, RISs have their own require-
ments [Waldo 2008] that differ from general concurrency scenar-
ios [Abdelkhalek and Bilas 2004]. With respect to the latter, the
used metrics M1 and M2 (speedup and efficiency) typically assume
that the workload is known at the beginning of the execution. Fur-
thermore, it is assumed that a program starts, calculates a result,
and then terminates. RISs typically run in interactive loops un-
til the user terminates them. There is no final state or final result.
Because of the interactive nature of RISs, workload might change
unpredictably due to the simulation state and the user interaction,
e.g., a changing field of view. Hence, metrics M1 and M2 largely
loose their applicability and will not be incorporated later.

Asynchronous behavior exhibits a second pitfall when it comes to
the omnipresent metric M4 (fps). This metric only measures the
system performance for synchronous RISs, which are not frame-
locked to any output device. In an ideal asynchronous system, the
rendering component always renders the last known world state, re-
gardless of how much time other components need, potentially ren-
dering the same frame multiple times. Hence, the metric M4 only
measures the rendering component but not the whole system. The
metric loses its expressiveness the more asynchronous the system
becomes. It can (and is later on) still be used when complemented
by additional metrics designed to capture the frequency of looping
execution parts in general.

3 Target Metrics

This section describes a set of metrics designed to work for most
message-passing-based systems and many event-based architec-
tures while fulfilling the three requirements MR1–MR3. We be-
gin by introducing a formal language to precisely define the met-
rics followed by a detailed description of adapted and concretized
metrics M3–M5, which are complemented by additional metrics
M6–M11 that target specific aspects of events and messages. Note
that the sequence of the introduction of the different metrics differs
from section 2.2 to account for logical dependencies of certain met-
rics. The formalized language is inspired by Lamport [1978] but
many operators have a slightly different meaning. There already
exist several formalized languages for specific message-passing-
based paradigms like CSP [Roscoe et al. 1997] or Hewitt’s Actor
model [Agha 1985]. However, CSP strongly focusses in modelling

the state transitions of parallel processes, but does not allow to
model the communication in a way it is useful for the presentation
of the metrics in this article. The formalizms presented by Agha
[1985] more focusses in describing the internal behavior of an ac-
tor. Hence, we decided to develope a new lightweight formalizm to
present the metrics. While the formalized language uses the term
messages, it is also applicable to events, specifically if the events
are executed asynchronously.

3.1 Processes, Messages, and sending of messages

Let A and B be processes. We use the term process for code that is
executed at least concurrently to other processes and communicates
via messages with them. The term should not be confused with the
term used in concrete implementations like processes in Windows
or Linux or the term “thread”. Both terms contain implementation
details that are irrelevant for the descriptions of the metrics.

Messages contain information that is communicated from one pro-
cess to another. Furthermore, messages can trigger a process to
perform a calculation. The fact that A sends message m to B is
written as A m→ B. Upon A m→ B we assume that m is eventu-
ally processed by B. Furthermore, we assume that every message
can only be sent once, so a message only has one sender and one
receiver. Sending of multiple messages to another process(es) is
written as A m→ B ⇒ A

n→ B. This means that message m was
sent before message n. We also assume that messages are processed
in the same order they were sent.

For each process, two sets exist that keep a record about sent mes-
sagesAs and received messagesAr . The upper case letter of the set
corresponds to the identifier of the process. Based on A m→ B the
message m is in As and in Br (the set keeps record of all messages
processed by B).

3.2 Operations

Three timestamps exist for every message: when the message was
sent ts(m), when processing began tb(m), and when it ended
te(m). The type α of a message m determined by the function
T (m).

Paths of information (and hence execution) can be written by
A

m→ B
n→ C

o→ D. The total time span the information trav-
els through the system can be written as |A m→ B

n→ C
o→ D| =

te(o)−ts(m), the time span between messagem has been sent and
message o has been processed.

For many metrics, only a subset that contains messages of a spe-
cific type is required. The set Aαr is a subset of Ar that contains
messages of type α.

Aαr = {m ∈ Ar|T (m) = α} (1)

For other metrics, messages that are processed in a specific time
span are required. Let S be a set that contains messages, b be the
beginning of the time span, and e the end of the time span. The
function ∆(S, b, e) returns a set that contains all messages in S that
were processed between b and e.

∆(S, b, e) = {m ∈ S|tb(m) ≥ b ∧ te(m) ≤ e} (2)

M6: Consistency

A metric that measures the consistency is not used to analyze the
performance, but to find the reasons for bugs and unusual behavior
of an application. In this metric, the communication between two
processes A → B is analyzed. We assume that the world state in
B is updated from the data of A by one or more messages called
update messages.The first of the update message is a, while we call
the last one z. The update is written as:

A
a→ B ⇒ A

b→ B ⇒ . . .⇒ A
z→ B (3)

Usually, a process should work on a consistent world state. This is
true if it has processed all update messages from another process
prior to treat the message that triggers the simulation. When the
type of the message that triggers the simulation is α, the target pro-
cess worked on a consistent world state for this update when the
following equation is true:

{m ∈ Bαr |tb(a) < tb(m) < tb(z)} = ∅ (4)

This metric states in percentages, how often this equation is true.

M3: Degree of Parallelism

The Degree of Parallelism provides detailed information about how
parallelism changes while the application is running. As stated pre-
viously, the DOP is computed by analyzing a PAG. To compute the
DOP of a message-passing-based environment, the processed mes-
sages of all processes are collected in one set.

Σr = Ar ∪Br ∪ · · · ∪Nr (5)

The DOP is the number of messages processed concurrently at a
given point in time. The DOP changes when the processing of a
message starts or ends. For the calculation of the DOP, two tuples
are generated for each message, one that contains the time stamp of
the beginning (↗) and the end (↘) of the processing.

Π = {(t,↗)|t = tb(m) ∧m ∈ Σr}∪{(t,↘)|t = te(m) ∧m ∈ Σr}
(6)

Let us assume that Π(i) provides access to each tuple in Π by the
index i. Furthermore, assume that Π1(i) is the time stamp while
Π2(i) is the symbol that determines if this tuple is the beginning
or the end of a message processing. The tuples are accessed in an
ordered way, sorted by the time stamp, so that Π1(i) ≤ Π1(i+ 1).
Upon this information, the DOP can be calculated for any point in
time t.

d(t) =

{
0, if Π1(1) < t

e(t, 2, 1), if Π1(1) ≥ t
(7)

e(t, i, d) =

d, if Π1(i) < t

e(t, i+ 1, d+ 1), if Π2(i) =↗
e(t, i+ 1, d− 1), if Π2(i) =↘

(8)

3.3 Counting metrics

Counting metrics count the number of messages and may set it into
relation to other values.

M7: Number of messages per type

To analyze the communication, the types and number of sent and
processed messages are analyzed. With this metric a developer can
determine if the communication occurs in the way he/she expected.
To count the number of messages, the type of the messages α and
a time span defined by the beginning b and the end e are required.
With these three parameters the metric for process A is defined as:

mA(α, b, e) = |∆(Aαr , b, e)| (9)

M8: Messages per second

The messages per second show the overall throughput of the sys-
tem. This metric is computed by counting all processed messages
within the time span between b and e and dividing the number of
messages by the time span. The messages per second of the whole
application is calculated by the following equation:

s(b, e) =
|∆(Σr, b, e)|

e− b (10)

M4: Frequency of a process (former: fps)

While the fps lose their expressiveness in a message-passing-based
and asynchronous RIS as an overall metric for the whole system,
the frequency of a process that represents a component is useful
information to estimate the overall performance. Usually, a RIS
is built out of several components such as rendering, physics, and
AI. In a message-passing-based and asynchronous RIS, every com-
ponent runs within at least one process. Typically, each type of
component has its own frequency, such as 60 Hz for rendering, 120
Hz for physics simulation, and 1kHz for haptics devices. Measur-
ing frequency provides a quick overview if the desired frequency
is achieved. Even when a component uses multiple processes to
parallelize the computation, they usually get synchronized on one
process that represents the component to achieve a consistent result
of the component’s task. However, not all components work in a
loop. Some are reactive only, answering on request. In this case
no frequency can be calculated, but latency is the right metric to
measure the performance.

The frequency of the process A for the message type α in the time
span between b and e is calculated by:

fαA(b, e) =
mA(α, b, e)

e− b (11)

3.4 Timing metrics

Timing metrics use some measured time related to a message and
may set it into relation to other values.

M9: Processing time per message type

The processing time per message is an important metric to identify
critical parts of an application. This metric is comparable to the
computation time per function, usually measured by classic profil-
ing tools. The processing time is the time span te(m)− tb(m). To
calculate the average time in the time span between b and e, let’s
assume that the function P (Ar) calculates the summed up process-
ing time of all messages within the set. The average time that the
processing of a message of the type α takes is defined as:

pA(α, b, e) =
P (∆(Aαr , b, e))

mA(α, b, e)
(12)

M10: Ratio between simulation and overhead

Message-passing-based asynchronous RISs do have a larger over-
head than synchronous RISs by design. To calculate this metric,
one type α needs to be defined as the type of the message that trig-
gers the simulation. Next, a set that contains all messages processed
by A without the trigger messages needs to be generated. This set
is defined as Arr = Ar \ Aαr . Then, the ratio rαA can be calculated
by the following equation:

rαA(b, e) =
P (∆(Aαr , b, e))

P (∆(Arr, b, e))
(13)

M5: Latency

The latency metric is defined as:

|A m→ B
n→ C

o→ D| = te(o)− t(m) (14)

However, |A m→ B
n→ C

o→ D| is not equal to |A m→ B| +

|B n→ C|+ |C o→ D|. How the overall latency is distributed along
the execution path highly depends on the implementation of the
system. The communication structure of the actual system needs to
be analyzed carefully. A possible implementation of this metric is
explained in Section 4.4.

M11: Time a message waits before it is processed

This metric helps to identify overloaded processes. The waiting
time is calculated by subtracting the time stamp when the mes-
sage has been sent and the time stamp when the processing has
started. When a message is sent A m→ B, the time a message waits
is tb(m) − ts(m). Let’s assume that W (Ar) calculates and sums
up the time span tb(m)− ts(m) for all messages in Ar . Then, the
average time a message waits before it is processed for a time span
between b and e is calculated by:

wA(b, e) =
W (∆(Ar, b, e))

|∆(Ar, b, e)|
(15)

3.5 Analyzing Minimum, Maximum, Average, and Vari-
ance

Several of the metrics M3–M11 calculate values based on an inter-
val between b and e. This aggregated information provides a basis
for further analysis approaches. The whole execution time of the
application can be split into small time slices, and the metrics are
calculated for each of the time slices. Afterward, the minimum,
maximum, and variance can be calculated. Minimum and maxi-
mum usually represent best cases and worst cases. Whether the
minimum is the best case or the worst case depends on the metric.
For all metrics, the variance should be low.

4 Implementation

None of the tools presented in Section 2.1 provide the metrics M3–
M11 defined in Section 3. Therefore, an implementation of a spe-
cific profiling tool is necessary.

In this section, a prototypical implementation of our approach is
described. First, we define requirements for the implementation.
Next, we describe the Simulator X framework and the underlying
actor model implementation Akka. Afterward, we outline the in-
strumentation. Next, the implementation of the metric M5 (latency)
is explained. Finally, we give an overview about the implementa-
tion of the data viewer.

4.1 Requirements

For the overall implementation, we define the following two re-
quirements:

IR1 Completeness: The implementation has to collect data to cal-
culate the metrics M3–M11 and has to visualize them appropi-
ately.

IR2 Reusability: As many aspects of the implementation as possi-
ble should be reusable to implement profiling tools for other
RISs.

The requirement IR2 implies to split the implementation into the
instrumentation and a data viewer. While the instrumentation has
to be tailored for a specific RIS, a tool that calculates the metrics
and visualizes the results can be independent of the concrete RIS.
For the instrumentation we define the following two requirements:

IR3 Generality: Instrument generally instead of specifically. In-
strument the message-passing implementation rather than the
RIS implementation, and instrument the RIS implementation
rather than the application implementation.

IR4 Minimal invasiveness: Target the instrumentation to produces
a low overhead.

To ensure the reusability of the data viewer, we define the following
three requirements:

IR5 Portability: Implement the data viewer independent from a
specific operating system and hardware architecture.

IR6 Extensibility: Support software hooks and stubs for further
extensions, e.g., new metrics.

IR7 Modularity: Choose a modular design that provides reusabil-
ity.

4.2 The Simulator X Framework

The metrics M3–M11 described in this paper have been im-
plemented into a profiling tool for the Simulator X Frame-
work [Latoschik and Tramberend 2011], an experimental RIS mid-
dleware based on the Scala programming language. Scala is a
modern multi-paradigm language that contains object-oriented and
functional language features [Odersky 2011]. Scala uses the actor
model as the fundamental concurrency model and it uses the Akka
actor implementation since version 2.10. The central program-
ming concepts of Simulator X—components, entities, and state-
variables—and their integration with the actor model are briefly
described here. Furthermore, the underlying actor model imple-
mentation Akka is described.

Components provide essential services for RIS applications within
Simulator X, e.g., rendering, physics simulation, or artificial intel-
ligence, etc. Components are high-level functional building blocks
providing different aspects of a simulation. Components are imple-
mented as actors providing coarse-grained concurrency.

Entities encapsulate visible as well as invisible simulation objects.
They aggregate associated state variables. An entity can have state

variables for specific attributes, e.g. for transformation, mass, sur-
face friction, and shininess. Each represents an attribute of the sim-
ulated object that can be managed by different actors in the system.
State variables like mass or surface friction are managed by an ac-
tor that performs the physics simulation. Rendering attributes like
shininess are managed by an actor that renders the scene. For exam-
ple, a physics engine and a graphics engine typically communicate
via a transformation state variable. The physics engine writes a
new transformation to the variable and the graphics engine updates
its scene representation.

State variables provide the dynamic state of a simulation. The value
change operation of state variables is built on top of the underlying
message-passing system of the actor model. Since state variables
are managed by actors, they provide the fine-grained concurrency
model.

Actors are always created within an actor system. According to
Typesafe Inc. [2014] an actor system allocates one or more threads
for actors and manages the scheduling of actors and dispatching
of messages. Each actor encapsulates its own state and defines its
behavior in form of a handler function that processes messages ac-
cording to the type of the message. To protect the internal state of
the actor, the actual instance of an actor is not accessible. Instead,
an actor reference (ActorRef) is used to send messages by using the
!-operator.

When a message is sent to an actor, the message is enqueued to
the mailbox of the actor. The dispatcher of the actor system knows
the mailbox of each actor. When computation time is available, the
dispatcher calls a function of the mailbox. Within this function,
a message is taken from the mailbox and passed to the behavior
function of the actor.

4.3 Instrumentation

To collect data about sent messages the !-operator of the Actor-
Ref is instrumented. To collect information about the processing of
messages the mailbox of an actor is instrumented. To measure the
processing time, the time stamp before a message is dispatched to
the behavior function is taken. Another time stamp is taken when
the behavior function has finished. The instrumentation takes time
stamps in nanosecond resolutions, because a lower resolution is too
coarse-grained to get reasonable information about latency and con-
sistency. The collected time stamps are written to a csv-file when
the application is closed. Because the implementation only instru-
ments the message-passing implementation, it fulfills the require-
ment IR3. Furthermore, it fulfills the requirement IR2, because is
can be used for any RIS implemented on top of Akka.

We benchmarked the overhead caused by the instrumentation by
sending 1,000,000 messages between two actors and measuring the
overall time it takes to send, receive, and process the messages. The
uninstrumented version takes about 1s while the instrumented one
takes about 4.5s. This overhead is of course noticeable, a quali-
tative comparison to standard profiling tools reveals this overhead
to be fairly justifiable. Still, further benchmarks should compare
the instrumentation to the implementations of other profilers on a
quantitative basis to check for requirement IR4.

4.4 Implementation of the Latency Metric (M5)

As described in Section 3.4, the concrete system needs to be ana-
lyzed carefully to provide a useful implementation of M5. When
some new information is generated within the system, it is commu-
nicated to other actors and processed there. For example, a transfor-
mation of a simulated object is generated by the physics component
and sent to the graphics component to render the correct position

and orientation of the object in the rendered frame. Each compo-
nent is implemented in its own actor. This is the base scenario for
the following analysis.

Two different message types are essential for the example base sce-
nario. The processing of simulation loop messages performs the
simulation of the component, like physics calculation or rendering.
Update messages communicate the information from one compo-
nent to another. The physics component generates new transfor-
mations for simulated objects while it processes a simulation loop
message. The calculated transformations are written to state vari-
ables. This results in sent messages that contain the transformations
to the rendering component. The rendering component processes
the messages and updates its scene representation. Eventually, the
rendering process receives a simulation loop message and renders
the new frame while processing it.

Given:

X: A process that triggers other processes by sending simulation
loop messages.

A: The physics component.

B: The rendering component.

a: The first update message.

z: The last update message.

sx: Simulation loop messages.

The aforementioned scenario can then be written as:

X
s1→ A⇒ A

a→ B ⇒ A
b→ B ⇒ . . .⇒ A

z→ B ⇒ X
s2→ B

(16)

In context of inner latency, the earliest point in time when the new
transformation could be known is tb(s1), while the latest point in
time the new transformation is available at the output channel for
the user is te(s2). The overall inner latency te(s2) − tb(s1) helps
to identify that there is a high latency, but not to identify where it
comes from. Therefore, the overall inner latency needs to be split
into several intervals.

We recognized, that in Simulator X update messages are usally sent
while simulation loop messages are processed. Therefore, not the
time span te(s1)−tb(s1) is interesting, but the time until the update
message is sent, that is ts(a) − tb(s1). Next, the update message
waits in the mailbox of the receiver, what is tb(a) − ts(a). Af-
terwards, the rendering component updates its scene graph, hence
the information waits until the next simulation loop message is pro-
cessed by the rendering component, that is tb(s2)− tb(a). Finally,
the rendering component processes the simulation loop message
and finishes rendering te(s2) − tb(s2). The sum of all of these
time spans equals the overall inner latency, but the time spans help
to identify the reason of the latency.

Beside the time spans of the example, we identified some more time
spans for the case an actor does not have a simulation loop message.
All identified time spans are in Table 1.

Using the IDs of the time spans of Table 1, the example can be
visualized as in Figure 1.

4.5 Data viewer

The data viewer has been implemented using the NetBeans RCP
Platform as a solid foundation for multi-window applications. Net-
Beans RCP applications run on all major desktop operating sys-

Table 1: Identified time spans for metric M5 in the context of Sim-
ulator X. s represents simulation loop messages, while u represents
update messages.

ID Description Formalized Possible Successor
1 Begin of the processing of the

simulation loop message until
the update message is in mail-
box

ts(u)− tb(s) 2

2 Update message waits in mail-
box

tb(u)− ts(u) 3, 4, or 5

3 Begin of processing of the up-
date message until the next up-
date message is in mailbox

ts(u2)− tb(u1) 2

4 End of last time span until fi-
nal update message processed
completely

te(u)− tb(u) —

5 Begin of processing of the up-
date message to begin of pro-
cessing of the simulation loop
message

tb(s)− tb(u) 1 or 6

6 End of last time span until fi-
nal simulation loop messaage
processed completely

te(s)− tb(s) —

Physics Renderer

1 5 62

Figure 1: An example how the flow of information can be modeled
by the states illustrated of Table 1.

tems, hence IR5 is fulfilled. Furthermore, the NetBeans RCP plug-
in structure provides future extension capabilities, hence IR6 is ful-
filled. To use the data viewer for other RISs some plug-ins that are
specific for Simulator X need to be replaced by tailored implemen-
tations. For example, the implementation of the latency metric is
implemented by a Simulator X-specific plug-in. This plug-in just
needs to be replaced by another latency metric implementation for
the specific RIS, hence IR7 is fulfilled. The data viewer visualizes
the data captured by the instrumentation. It implements all the met-
rics M3–M11 and completes IR1.

Figure 2a illustrates a screenshot of a latency report for the latency
between the physics component and the renderer in a demo appli-
cation of Simulator X. The “General” group shows the minimum,
maximum, average, and median latency. In the “Graphical” group
the latency is plotted over time. In the “Path” group the time spans
of the path is shown in a table.

5 Case Study: Profile an example application
of Simulator X

We used the profiler to track down a high latency in an example ap-
plication shipped with Simulator X. The example application repre-
sents a typical RIS configuration. It consists of three components:
A physics component, a rendering component, and a sound compo-
nent. The application simulates a basic scene where a ball jumps on
a table. When the ball collides with the table, a sound is played. The
jumping ball and the table is simulated by the physics component
and rendered by the rendering component.

We used the latency metric (M5) to analyze how the latency is dis-
tributed along the path of execution and flow of information in the
application (fig. 2a). We identified a noticeable latency between the
processing of the update message by the the rendering actor and the
start of the next simulation loop (time span 5 of Table 1).

The data viewer revealed this behavior. It visualized the com-
munication between actors and processing of messages in Figure
3. Specifically, Figure 3a illustrates the faulty synchronization be-
tween the physics and the rendering component. The purple rectan-
gle with the solid outline is the processing of a trigger message sent
by Akka. The blue rectangle with the dashed outline shows when
the simulation loop message was processed. The green rectangle
with the dotted outline shows the processing of the update mes-
sage. Colored lines show when the message was sent. According to
Mönkkönen [2006], the components run independently from each
other. Because Akka triggers both components at the same time,
the update message is processed after the renderer renders the next
frame. As a result, the update is rendered at the next frame, what
increases latency.

We changed the application, so that the rendering actor is not trig-
gered by Akka with a fixed frequency, but is triggered by the
physics component, as shown in Figure 3b. Coupling the renderer
to the physics component reduced the overall latency as shown in
Figure 2b, but also decreased the parallelism.

Renderer

Physics

(a) According to Mönkkönen [2006] the components run independently from each
other, each on a fixed frequency. This increases parallelism, but introduces latency.

Renderer

Physics

(b) The physics component triggers the renderer. This reduces latency, but also reduces
the parallelism.

Figure 3: Visualized message sending and processing of two com-
ponents.

6 Conclusion and Future Work

This paper introduced a set of metrics (M3–M11) to profile and
benchmark decentralized and asynchronous RISs based on events
or message passing. The set of metrics fulfills MR1 by having a
low variability, MR2 by being non-redundant, and partly fulfills
MR3 by being nearly complete. The set of metrics is fairly com-
plete because the consistency metric (M6) relies on components as
independent actors. Future extensions of M6 have to cope with de-
rived patterns where a component is implemented by multiple ac-
tors. We also want to extend the latency metric (M5). Currently,
only a single path can be described and analyzed. Analyzing exist-
ing applications yields the result that patterns exist where execution
is performed by multiple paths through the application.

All the metrics can be calculated upon data collected by an instru-
mentation that only instruments the underlying message-passing
implementation, but not the RIS itself or the application. As a re-
sult, the instrumentation can be reused for any message-passing-
based RIS implemented on top of Akka. Furthermore, we imple-
mented a data viewer for the measured data. The overhead of the

(a) A screenshot of a latency report. Because the application run for a short period, the
average latency is highly influenced by the maximium latency from the start up phase of
the application.

(b) A screenshot of the same application as in Figure 2a, but with changed trigger order.
The latency has been reduced drastically by using the triggering order visualized in Figure
3b.

Figure 2: Screenshots of the latency report of the data viewer. The latency report visualizes the results of the latency metric.

instrumentation has been measured, but further analysis is neces-
sary to qualify the overhead.

A case study already proved the usefulness of the metrics, i.e., the
latency metric and the implementation of the profiling tool. The
identified latency was not caused by a complex computation or a
saturated actor, but by the scheduling of the actors and the commu-
nication sequence. These kind of problems are hard to be identi-
fied using classic profiling tools, which emphasizes the importance
of specialized metrics and tools for analyzing RISs. The latency
was reduced by changing the trigger sequence of the components.
The case study implies that a correlation between latency and par-
allelism exists. A configuration layer to configure the trigger se-
quence and define synchronization seems favorable and is a future
goal.

To integrate our approach into other systems, the major part is to
develop an instrumentation to collect the required data. It should
always be preferred to instrument the underlying message-passing
implementation instead of instrumenting the RIS itself. Functions
need to be identified where the required information is available and
can be saved without a large overhead. The data viewer implemen-
tation can be reused. It only needs minor changes if the measured
data is saved in the same or a similar file format.

The implementation does not replace classic profiling tools such as
VTune, YourKit, and VisualVM. Instead, the Simulator X Profiler
complements the profiling capabilities with high-level features. As
a rule of thumb, for every low-level analysis a classic profiling is
used. For every high-level task, the Simulator X Profiler is used. In
Table 2, we list some typical tasks during application development
and state which tool should be used for it.

Overall, profiling and benchmarking is an important factor of RIS
development. Monolithic closed-source systems currently do not
provide the necessary features nor do they allow source code ac-
cess for the instrumentation. Hence, if profiling and optimization is

Table 2: Tasks and Tools.

Classic Profiler Simulator X Profiler

Identify functions that consume a
lot of calculation power

X ×

Identify actors that consume a lot of
calculation power

× X

Profile memory behavior X ×
Analyze overall communication
structure

× X

Analyze concurrency on low-level X ×
Analyze concurrency on high-level × X

Check low-level consistency (find
race conditions)

X ×

Check high-level consistency × X

Measure latency × X

Identify congestion of actors × X

required, e.g., to reduce unwanted or harmful perception artifacts in
the user interface caused by deficient technical realizations, VR/AR
developers need reliable metrics, profiling tools, and software sys-
tems which provide the necessary optimization access. The metrics
and approach described here is a step towards this goal.

Acknowledgements

The authors wish to thank Pedram Merrikhi.

References

ABDELKHALEK, A., AND BILAS, A. 2004. Parallelization and
performance of interactive multiplayer game servers. In Parallel

and Distributed Processing Symposium, 2004. Proceedings. 18th
International, 72–.

AGHA, G. 1985. Actors: A Model Of Concurrent Computation
In Distributed Systems. PhD thesis, MIT Artificial Intelligence
Laboratory.

ALLARD, J., GOURANTON, V., LECOINTRE, L., MELIN, E.,
AND RAFFIN, B. 2002. Net juggler and softgenlock: Running vr
juggler with active stereo and multiple displays on a commodity
component cluster. In Proceedings of IEEE Virtaul Reality Con-
ference 2002, 273–274.

ASSENMACHER, I., AND KUHLEN, T. 2008. The vista virtual
reality toolkit. In Latoschik et al. [Latoschik et al. 2008], 23–26.

BEST, M. J., FEDOROVA, A., DICKIE, R., TAGLIASACCHI,
A., COUTURE-BEIL, A., MUSTARD, C., MOTTISHAW, S.,
BROWN, A., HUANG, Z. F., XU, X., GHAZALI, N., AND
BROWNSWORD, A. 2009. Searching for concurrent design pat-
terns in video games. In Proceedings of the 15th International
Euro-Par Conference on Parallel Processing, Springer-Verlag,
Berlin, Heidelberg, Euro-Par ’09, 912–923.

BIERBAUM, A. D. 2000. VR Juggler: A Virtual Platform for Vir-
tual Reality Application Developement. PhD thesis, Iowa State
University.

BUES, M., GLEUE, T., AND BLACH, R. 2008. Lightning:
Dataflow in motion. In Latoschik et al. [Latoschik et al. 2008],
7–11.

DELIGIANNIDIS, L. 2000. Dlove: a specification paradigm for
designing distributed vr applications for single or multiple users.
PhD thesis, Tufts University, Medford, MA, USA. AAI9955979.

FUTUREMARK, 2014. http://www.futuremark.com/
benchmarks/3dmark.

HEWITT, C., BISHOP, P., AND STEIGER, R. 1973. A univer-
sal modular ACTOR formalism for artificial intelligence. In IJ-
CAI’73: Proceedings of the 3rd international joint conference
on Artificial intelligence, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 235–245.

HOLLINGSWORTH, J. K., LUMPP, J., AND MILLER, B. P. 1995.
Techniques for performance measurement of parallel programs.
Parallel Computers: Theory and Practice.

HU, L., AND GORTON, I. 1997. Performance evaluation for par-
allel systems: A survey. Citeseer.

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM 21, 7 (July), 558–565.

LATOSCHIK, M. E., AND TRAMBEREND, H. 2011. Simulator
X: A Scalable and Concurrent Software Platform for Intelligent
Realtime Interactive Systems. In Proceedings of the IEEE VR
2011.

LATOSCHIK, M. E., REINERS, D., BLACH, R., FIGUEROA, P.,
AND DACHSELT, R., Eds. 2008. Software Engineering and
Architectures for Realtime Interactive Systems (SEARIS), pro-
ceedings of the IEEE Virtual Reality 2008 workshop, Shaker
Verlag.

LEE, E. A. 2006. The problem with threads. Computer 39 (May),
33–42.

LESAGE, J.-D., AND RAFFIN, B. 2008. High performance interac-
tive computing with flowvr. In Latoschik et al. [Latoschik et al.
2008], 13–16.

MARGERY, D., ARNALDI, B., CHAUFFAUT, A., DONIKIAN, S.,
AND DUVAL, T. 2002. Openmask: Multi-Threaded — Modular
animation and simulation Kernel — Kit : a general introduction.
In VRIC 2002 Proceedings, S. Richir, P. Richard, and B. Taravel,
Eds., 101–110.

MÖNKKÖNEN, V., 2006. Multithreaded game engine architectures.
WWW, Sep.

OCULUS VR, 2014. https://www.oculusvr.com/
order/latency-tester/.

ODERSKY, M., 2011. The scala language specification version 2.9,
may.

ROHLF, J., AND HELMAN, J. 1994. Iris performer: a high per-
formance multiprocessing toolkit for real-time 3d graphics. In
Proceedings of the 21st annual conference on Computer graph-
ics and interactive techniques, ACM, New York, NY, USA, SIG-
GRAPH ’94, 381–394.

ROSCOE, A. W., HOARE, C. A. R., AND BIRD, R. 1997. The
Theory and Practice of Concurrency. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

SCHRÖDER, D., WEFERS, F., PELZER, S., RAUSCH, D.,
VORLÄNDER, M., AND KUHLEN, T. 2010. Virtual reality sys-
tem at rwth aachen university. In Proceedings of the Interna-
tional Symposium on Room Acoustics (ISRA), Melbourne, Aus-
tralia.

SIGITOV, A., ROTH, T., MANNUSS, F., AND HINKENJANN, A.
2013. Drive: An example of distributed rendering in virtual
environments. In Software Engineering and Architectures for
Realtime Interactive Systems (SEARIS), 2013 6th Workshop on,
33–40.

SIMULATOR X, 2014. https://github.com/
simulator-x.

STEED, A. 2008. A simple method for estimating the latency
of interactive, real-time graphics simulations. In Proceedings
of the 2008 ACM Symposium on Virtual Reality Software and
Technology, ACM, New York, NY, USA, VRST ’08, 123–129.

STEED, A. 2008. Some useful abstractions for re-usable virtual en-
vironment platforms. In Latoschik et al. [Latoschik et al. 2008],
33–36.

SUTTER, H. 2005. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal.

TRAMBEREND, H. 1999. Avocado: a distributed virtual reality
framework. In Virtual Reality, 1999. Proceedings., IEEE, 14 –
21.

TRAMBEREND, H. 2003. Avocado : a Distributed Virtual Envi-
ronment framework. PhD thesis, Bielefeld University.

TYPESAFE INC., 2014. http://doc.akka.io/docs/
akka/2.3.2/general/actor-systems.html.

VISTA, 2013. http://sourceforge.net/projects/
vistavrtoolkit/.

VISUALVM, 2014. http://visualvm.java.net/.

VTUNE, 2013. https://software.intel.com/en-us/
intel-vtune-amplifier-xe.

WALDO, J. 2008. Scaling in games & virtual worlds. Queue 6
(November), 10–16.

YOURKIT, 2014. http://www.yourkit.com/features/.

