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Abstract: Localisation, i.e. determining the position of users or devices, constitutes a key
requirement for almost all types of mobile pervasive games. However, current marker-based
localisation systems, e.g. based on QR codes, present drawbacks that limit game deployment,
scalability and maintainability. In this paper, we propose an alternative to solve these issues
and introduce the first steps towards its full realisation. Our approach relies on markerless
picture matching using a natural feature detection algorithm. Players reproduce a camera
shot of a real-world site to confirm their presence and to progress further in the game. One
of the critical requirements is to provide accurate recognition while preserving application
responsiveness with a large range of mobile devices and camera resolutions. We developed
a proof-of-concept system and determined the best picture resolutions and feature numbers
necessary to preserve both accurracy and responsiveness on diverse mobile devices. Our first
results demonstrate the feasibility to achieve precise recognition within realtime constraints.
We believe such localisation system have the potential to considerably facilitate pervasive
game authoring while promoting new types of game mechanics.

Keywords: Pervasive Games, Natural Feature Matching, Performance, Localisation

1 Introduction

Pervasive gaming describes a category of games that incorporate real-world activities and
experiences in a virtual game world [BML05, KGB13]. Due to recent technological ad-
vances, pervasive games became increasingly feasible on affordable mobile hardware devices,
like smartphones or tablets. Pervasive games allow the exploration of novel game concepts
[KLL12] as well as the extension of traditional real or virtual games [GDB+07, GSZW+13,
Inc14, Nia14]. Besides pure entertainment purposes, pervasive gaming also reveals great
potential in application areas such as tourism [LGG13], edutainment [WW11, FGEM+11],
or healthcare [SLB+10]. Localisation, i.e. determining the position of users or devices, con-
stitutes a key requirement for almost all types of pervasive games [BOL+06]. Most pervasive
games rely on players to be physically present in a specific geographical location to progress
in the game. The required accuracy of the player’s localisation may vary from one game
to another. Rough geographic location estimation via GPS, mobile network cell, or WiFi
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hotspot information is widely used for pervasive games [BOL+06, KGB13]. When the player’s
location has to be estimated more precisely, artificial fiducial markers (e.g. QR codes) are
usually employed [WW11, LGG13]. Although very robust, one major drawback of this ap-
proach is that the artificial markers have to be physically placed in the environment by the
game authors. They oftentimes require to be frequently maintained to insure their presences
and integrity. The placement of such markers is also not always possible or desirable as they
may affect the site’s aesthetics or offend against prescriptions. In addition, marker-based
games have a low scalability due to their difficulty to be duplicated in various locations or
to sustain long-term participation [NMW+12].

In this paper, we present an alternative to fiducial markers for player localisation based on
natural feature tracking techniques. Such techniques are commonly used in pure augmented
reality applications and provide a high percentage of recognition in realtime even with mobile
devices [WRM+08, RRKB11]. Our approach relies on a picture-based localisation technique,
where players have to confirm their presence at the right location, by reproducing a given
picture with their mobile device. The content and perspective determined by the given
photography is said to be a Natural Reference Point (NRP) that players should match as
closely as possible. Besides the advantage of not requiring a physical marker to be placed
in the environment, the creation of a NRP is also straightforward. The device’s camera
is simply positioned and oriented to specify the perspective the player has to discover and
reproduce. The player is guided to the proximity of a NRP using global positioning data
visualized via Google Maps. Ideally, other available sensor data, like the orientation obtained
from a magnetometer, would be recorded to improve the matching process.

However, outdoor picture comparison using natural feature tracking brings a new set
of challenges, especially if the support of a wide range of mobile devices is desired. High
resolution pictures with numerous different distinguishable features are commonly required
to be efficient. In addition, the utilized algorithms are typically computationally intensive
and require a camera calibration process, preferably within an indoor environment. The
pervasive game idea renders such ideal conditions impossible to achieve. An ideal solution
has to be able to match pictures taken from different cameras and perspectives as well as
content affected by environmental conditions (weather, season, and brightness). Moreover,
its responsiveness has to support realtime feedback to guide players during their quest of
matching the view point. Consequently, the identification of an algorithm capable of run-
ning on a multitude of devices with realtime constraints is a first step towards a fast and
robust picture-based localisation for pervasive games. In the rest of this paper we will first
briefly present related work, before introducing the overall concept and requirements of our
approach. We then describe a proof-of-concept system and our empirical methodologies used
to identify good candidate picture characteristics that will preserve both responsiveness and
accurate recognition. Finally, we discuss the potential impact on pervasive game authoring
and gameplay by outlining future improvements and a planned adaption of a commercial
game product.
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2 Related Work

The term pervasive game has been used to outline a heterogeneous set of game applications
that “extend the gaming experience out into the real world” [BML05, KGB13] or “integrate
the physical and social aspects of the real world” [MCMN05], ranging from smart toys
through location aware, mobile, video or affective games to augmented reality and augmented
tabletop games. Nieuwdorp [Nie07] carefully reviews existing definitions and emphasizes
the equality of the terms pervasive game and ubiquitous game. In fact, she proposes the
separation of two perspectives when denoting a game to be pervasive: a cultural perspective
that describes the real-world gameplay and a technological perspective that describes the
technologies supporting the game.

Technologically pervasive games depend on localisation, communication, context detec-
tion, augmentation, authoring and game engines, as well as orchestration and surveillance
[BOL+06]. Although not all of these requirements are present or equally important amongst
pervasive games, detecting the position of the user in the real world is essential in most cases.
Besides the widely used global or local positioning systems, computer vision approaches
provide another common solution for localisation or even tracking. Existent approaches
are separated based on the requirement of an artificial fiducial marker. Marker-based ap-
proaches commonly utilize QR codes on mobile devices for localisation [WW11, LGG13], if
the code’s position is known prior, or for tracking in augmented reality applications [KTC09].
Markerless approaches build upon the detection of natural features in images, which are
used to identify scenes or motifs from different perspectives. Compared to marker-based
approaches, markerless approaches typically require more processing power [WS09]. Nev-
ertheless augmented reality applications became increasingly suitable on mobile plattforms
(e.g. [QCE14]), due to both recent advances in affordable mobile computing hardware and
the development of highly efficient algorithms especially tailored for devices with limited
hardware [WRM+08, RRKB11, PR11, PSR13]. These algorithms should also be suitable for
picture-based localisation using natural features on mobile devices. Therefore, this paper
presents first steps towards the full validation of the feasibility of this concept. We especially
focus on the minimum picture resolution and number of matching features required to ensure
an efficient comparison while preserving an enjoyable gaming experience.

3 Concept

Our main conceptual goal is to provide an alternative to QR codes, that can be utilized for
identifying NRPs without the need to deploy an artificial fiducial marker in the environment.
We propose to achieve this goal by applying natural feature matching to identify previously
recorded reference points and thus confirm the user’s proximity and attention. NRPs can
be used in similar fashion to QR codes in pervasive games. For instance, to trigger the
output of context information if the player successfully confirmed to be at a specific sight
in a touristic game or to trigger the next step in the ongoing story line if the player has

man
us

cri
pt



successfully confirmed to be at a designated remote location in a role-playing game. Besides
the raw confirmation from the natural feature matching, other available sensor data can be
used to support a player’s task of finding and confirming a NRP (see figure 1).

a b c d

Figure 1: Finding and confirming a NRP: (a) Global or local positioning systems are used
to pilot the player into intermediate proximity. (b) Subsequently, a picture in combination
with an optional description helps the player to identify the approached NRP. (c) Realtime
feedback based on the device orientation obtained from a magnetometer and the quality
of the natural feature matching guide the player to the NRP (concept). (d) If a certain
threshold of the matching quality is exceeded, the NRP is considered to be confirmed.1

To implement the described interaction, the respective sensor data has to be recorded
when defining new NRPs and has to be stored on a server. Since the required sensors
already have to be present on the players’ mobile devices, authoring is straightforward:
in order to place or define a NRP, authors position their device like they want players to
discover the NRP and confirm, similar to taking a photo. All necessary data can be recorded
automatically without requiring authors to print a marker, deploy it in the environment and
store its position on a server manually. Thus the usability of the authoring process is highly
improved, promoting the integration of user generated content into pervasive game concepts
by making the authoring a game itself. Altogether, the presented concept poses great benefits
for pervasive games that rely on the players to discover specific locations or perspectives.

4 Proof-of-Concept

As a first step to prove this concept, a natural-featured-based picture comparison for the
mobile operating system Android (Version 4.4) has been implemented. This prototype has
subsequently been used to empirically determine picture characteristics that result in a good
trade-off between accuracy and computing time.

1Stencils from https://www.graffletopia.com/stencils/578
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4.1 Implementation

The picture comparison is built upon the open source C/C++ library OpenCV [Tea14] for
image processing. The access to OpenCV from within the Android application is handled
by the Android NDK. The comparison of two images is subdivided into three steps: (1)
the detection of natural features in each picture, (2) the matching of the detected features
between the pictures, and (3) the decision if two pictures are considered to contain the same
scene or motif. The detection of natural features is accomplished by the application of the
Oriented FAST and Rotated BRIEF (ORB) algorithm [RRKB11]. ORB is optimized for low-
power devices, like smartphones, and already included in the OpenCV library. The feature
matching strategy uses a RANdom SAmple Consensus (RANSAC) to assess matches [Lag11,
Page 233ff.]. The final step is a binary decision that compares the number of matching
features with a threshold.

4.2 Evaluation

The described picture comparison process depends upon several parameters, like image sizes
or thresholds, that influence the overall performance and robustness. In order to determine
optimal values for these parameters the utilized algorithms have been applied for two vali-
dation sets: V1 containing 10 pictures of the same scene and V2 containing 100 pictures of
diverse motifs and scenes. To support the independence of the determined parameter values
from a specific device, these pictures have been taken with different smartphones in different
resolutions and formats. Figure 2 illustrates a sample comparison between two pictures of
V1.

Figure 2: Sample comparison between two pictures taken by different devices. Red circles
denote detected natural features. Blue lines connect pairs of matched features.

The first evaluated parameter in this study is the size of the images that should be
passed to the picture comparison process to preserve both accuracy and responsiveness. The
image resolution is positively correlated with the number of detected features and negatively
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correlated with the processing time. Therefore, the most critical aspect is to identify the
lowest image resolution that will preserve a high fraction of detected features, necessary for
accurate comparison. Figure 3 and 4 show the measured processing time and the number of
detected features for the images of V2. All images have been resized to several resolutions,
by scaling the longer aspect to the desired length.
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Figure 3: Average number of detected natural features for V2. All 100 images have been
scaled to all depicted resolutions.
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Figure 4: Average processing time for the detection of natural features. The measurements
have been taken on a Samsung Galaxy S2 using V2. All 100 images have been scaled to all
depicted resolutions.

Up to an image size of 500 pixels a high increase of the number of detected features can
be noted. The increase between 500 and 600 pixels is only 2.3%, whereas the corresponding
increase in processing time is 24.1%. An image size of 500 pixels is thus considered to be the
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best choice for further processing (see table 1). The required processing time of on average
114.37ms is only slightly above the limit of 100ms, for system reactions that are perceived
to be instantaneously [Nie94].

Device Name Camera Resolution Recommended Resolution
Samsung Galaxy S2 3264x2448 pixels 500x375 pixels

HTC One mini 2688x1520 pixels 500x283 pixels
HTC Wildfire S 2592x1728 pixels 500x333 pixels

Table 1: Recommended image resolutions for natural feature detection.

The second evaluated parameter is the threshold for the final binary decision. To get
a lower bound for this threshold, every image from V2 has been compared with all other
images from this validation set, resulting in a total of 9900 direct comparisons (see figure
5). Because every image in V2 has different content, the obtained quantities of matching
features are assumed to be insufficient to denote a matching of two pictures. The highest
obtained number of matching features is 44, excluding two outliers at 134 and 144.

Figure 5: Number of matching features for all comparisons between pictures of V2, showing
diverse motifs and scenes (negative examples). Two outliers at 134 and 144 are not visualized.

To get an upper bound for the threshold, every image of V1 has been compared in the same
way, resulting in a total of 90 comparisons (see figure 6). Since every image in V1 shows the
same scene, the obtained quantities denote sufficient amounts of accepted matching features.
The number of accepted matching features range from 12 to 191.

Because the determined bounds overlap, the positive and negative examples are not
completely separable. While optimizing the binary decision by maximizing the corresponding
F1 score [MKS+99] would lead to a high accuracy, it does not meet the requirements of
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Figure 6: Number of matching features for all comparisons between pictures of V1, showing
the same scene (positive examples).

pervasive games. It is crucial not to mistake two pictures that do not show the same content
to be equal (false positives). Therefore a threshold of 45, just above the highest occurrence
of matches between two distinct pictures, is considered to be the best choice.

Even though this choice causes a higher amount of equal images to be denied (false
negatives), the application context has the potential to neglect this flaw. Typically users
will position their mobile device in the approximate location and orientation of the NRP,
while slightly moving it. This allows the application to record several images that all can be
checked against the corresponding image stored on the server. Resulting in a higher chance
of confirming a NRP despite the presence of false negatives.

5 Conclusion

In this paper we proposed an alternative to improve the traditional deployement, scalabil-
ity, and maintainability limitations of marker-based pervasive games. Our approach relies on
markerless picture matching and uses the natural feature detection algorithm ORB, designed
for mobile platforms. With our concept, players can localise themselves by reproducing a
camera shot of a real-world sight in order to progress further into the game. One of the
critical requirements was thus to provide accurate recognition, while preserving application
responsiveness with a wide range of mobile devices and camera resolutions. We developed
a proof-of-concept system and evaluated the best picture resolutions and number of fea-
tures necessary to preserve both requirements on diverse mobile devices. Our first results
demonstrate the feasibility to achieve precise recognition within realtime constraints.

We believe that many existing QR code-based pervasive games, e.g. [WW11, LGG13],
could easily benefit from such an approach. It also has the potential to promote the devel-
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opment of novel gameplay concepts, especially for geocaching or role-playing games, where
players are meant to discover specific perspectives of a historical or touristic site and the
mounting of artificial markers is impossible. Finally, the simplicity of creating new NRPs im-
proves the efficiency of the authoring process and thus could greatly facilitate the integration
of user generated content into pervasive gaming concepts.

However, future work will evaluate to what extent the identified minimum resolution and
number of features are supporting an enjoyable gaming experience, especially with a large
diversity of images. The required degree of accuracy should promote a challenging gameplay
without frustrating the player by making the game too difficult or easy. Consequently, the
visualization of the degree of similarity as well as the orientation offset will be used to
provide realtime feedback during the matching process. Before running a complete usability
study with a full game implementation in partnership with a game company, we also wish
to evaluate the system robustness to weather, season and brightness variations. The range
of mobile devices under test will also be increased to a more representative sample, in order
to continue the evaluation of our system’s portability and performance.
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