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ABSTRACT

The Entity-Component-System (ECS) pattern has become a major
design pattern used in modern architectures for Real-Time Inter-
active System (RIS) frameworks. The pattern decouples different
aspects of a simulation like graphics, physics, or AI vertically. Its
main purpose is to separate algorithms, provided by high-level tai-
lored modules or engines, from the object structure of the low-level
entities simulated by those engines. In this context, it retains ad-
vantages of object-oriented programming (OOP) like encapsulation
and access control. Still, the OOP paradigm introduces coupling
when it comes to the low-level implementation details, thus nega-
tively affecting reusability of such systems.

To address these issues we propose a semantics-based approach
which facilitates to escape the rigid structures imposed by OOP. Our
approach introduces the concept of semantic traits, which enable
retrospective classification of entities. The utilization of seman-
tic traits facilitates reuse in the context of ECS-based systems by
further decoupling objects from their class definition. The applica-
bility of the approach is validated by examples from a prototypical
integration into a recently developed RIS.

Index Terms: D.1.m [Software]: Programming Techniques—
Miscellaneous; D.2.11 [Software]: Software Engineering—
Software Architectures; D.2.13 [Software]: Software
Engineering—Reusable Software

1 INTRODUCTION

Software ages [27]. Development teams change, hardware in use
is replaced, necessary base software parts are updated (e.g., the un-
derlying operating systems or system libraries), and new projects
are paid more attention than previous ones.

This observation is particularly true for highly interactive sys-
tems, e.g., in the context of Virtual or Augmented Reality or game
development, where maintenance and reusability often is affected
by insufficient decoupling. These Real-Time Interactive Systems
(RISs) are typically composed by numerous special purpose soft-
ware modules for necessary aspects of a simulation, like hardware
abstraction, input/Output (I/O), simulation logic, graphics, physics,
or AI. Often, these modules incorporate individual data structures
and control flows which have to work in concert to produce coher-
ent simulations. As a result, RISs often become particularly prone
to changes, caused by software aging.

Eventually, this leads to the replacement or rewriting of complete
software components, even though only little change might be re-
quired to solve arising problems. Some major causes for this lack of
maintainability are the incomprehensibility of the internal structure
of existing software libraries, missing documentation, high cou-
pling, and possibly ill-defined software interfaces. We argue that
this is partly accounted for by restrictions that are imposed by the
object-oriented programming (OOP) paradigm.

⇤e-mail: dennis.wiebusch@uni-wuerzburg.de
†e-mail: marc.latoschik@uni-wuerzburg.de

To address decoupling and hence modularization requirements,
recent RIS architectures often are based on the Entity-Component-
System (ECS) pattern. This pattern is strongly related to the com-
ponent [26] as well as to the strategy pattern. Furthermore, in terms
of its goals of code and data separation, it has many similarities to
the visitor and observer pattern [11]. As one result of these relations
to typical OOP patterns, ECS implementations tend to be strongly
oriented towards the OOP paradigm and are often implemented us-
ing an OOP language.

Following the ECS pattern, an entity is partitioned into multiple
components, each relating the entity to a certain required aspect of
the simulation. Components hold the required data for these as-
pects, whereas the algorithms working on this data and implement-
ing the associated aspects are located in systems, which are separate
simulation modules (also called sub-systems or engines in RIS and
game engineering).

Depending on the specific implementation, components can be
fine-grained down to individual properties, like the position of an
entity. In this pattern, entities merely become more or less loosely
associated collections of data or properties. This allows for high
modularity, since simulation modules, each addressing a particular
aspect and hence using the respective component of entities, can be
implemented independently from each other.

However, the dependency on the component data types leads to
close coupling between sub-systems, wherefore independently de-
veloped sub-systems are likely to be incompatible to one another.
In addition, implementing entities as dynamic collections of com-
ponents enforces the utilization of runtime type checking and/or
custom-made naming schemes, the latter of which again potentially
leads to sub-system incompatibility. These issues will be discussed
in more detail in the course of the paper.

We present the concept of semantic traits, which extends the
object-oriented paradigm by a semantically augmented view of ob-
ject instances. This alternative approach allows for the dynamic
extension of entities at runtime. In addition, it provides the feature
of semantic type checking at compile time, thus enabling the early
detection of misused values. By means of relations between entities
more expressive power is added.

In this way, semantic traits allow to overcome some of the prob-
lems arising in the context of OOP and the ECS pattern. As illus-
trated in the course of this work, the approach allows for subsequent
classification of object instances and, hence, furthers reusability and
maintainability of RISs.

The rest of this paper is structured as follows: Section 2 dis-
cusses related work in the context of RIS and software engineering
research. Section 3 illustrates the restrictions imposed by the OOP
approach, which then are addressed by the introduction of semantic
traits in section 4. The practicability of this alternative approach
is validated by an exemplary integration into an existing research
framework, which is presented in section 5. The paper is concluded
and an outlook of future work is given in section 6.

2 RELATED WORK

Many frameworks that are developed in the research context in-
corporate an entity model [3, 10, 14, 19]. Others build upon the
concept of application graphs [2, 15] while a third group favors
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message-passing and event-based models [10, 12, 19]. Often no
clear distinction between these approaches can be made since they
are commonly mixed to create a flexible RIS framework.

The presented approach is conceptually based on an entity
model, as suggested by [22, 31]. Nevertheless, it can be integrated
with the above-mentioned application models, since it rather is ex-
tending the applied programming paradigm than providing a new
model.

In the context of RIS frameworks object-oriented programming
is the prevailing paradigm. Its inherent support for the creation of
type hierarchies facilitates the modeling of virtual entities and en-
vironments. In this context, different programming patterns that
facilitate the implementation of reoccurring tasks have been identi-
fied [11].

In the area of software engineering, object-oriented program-
ming is considered an enabling technology for creating inter-
changeable and reusable software components [24, 30]. In this
context, the application of OOP techniques often is misconceived
as a sufficient means to create reusable software assets, which was
found to be one of the reasons for software reuse programs to fail
[25, 28, 30].

The approach proposed in this work involves the integration of
a Knowledge Representation Layer (KRL). This concept is com-
monly found in the context of Intelligent Virtual Environments
(IVEs [16, 20]). Such a KRL often is added on top of an existing ap-
plication [13, 17], wherefore the access to and synchronization with
the current state can be complicated. KRLs are commonly utilized,
e.g., in the context of natural language processing [4], multimodal
interaction [17], semantic modeling [5, 6], virtual storytelling [21],
and game-like simulations [33].

Similar to [18], the approach presented in this work provides
a methodology to integrate the content of the virtual environment
with a KRL. Since the presented technique is meant to foster reuse
of existing libraries and simulation modules, it adopts a wrapper-
like nature.

3 OOP AND ECS IN THE RIS CONTEXT

The OOP paradigm is a prominent approach to implement RIS ar-
chitectures regardless of the underlying application model. At a
first glance, OOP provides convenient features due to the close
resemblance between OOP-based objects and inheritance as well
as many commonly established RIS concepts, e.g., scene-graphs,
event systems, or entity models etc. But, as illustrated in the fol-
lowing sections, a straight-forward modeling of conceptual objects,
e.g., scene-graph nodes, events, or entities, as OOP objects and their
specialization using inheritance also has its drawbacks with respect
to decoupling.

3.1 Type Hierarchies and Naming Schemes
Strong type systems and encapsulation are central software engi-
neering features, which are adopted by most OOP languages. Both
are highly beneficial for an enhanced comprehensibility and flexi-
bility of program code. Type systems also enhance run-time relia-
bility for compiled languages since they provide favorable compile-
time checks of type compatibility.

OOP languages encourage developers to represent the required
categorization of the simulated conceptual objects in a type hierar-
chy. But in the RIS context, there often are different and sometimes
even incompatible categorizations of these objects with respect to
different requirements of a specific application. In addition, the
tree-like hierarchical structures of type systems often are insuffi-
cient for more elaborated categorization schemes. These are, for
example, necessary for entity systems, which often resemble graphs
instead of trees. Thus, the type hierarchy implemented for a certain
application may be inappropriate for another one. This commonly

results in re-design and possibly complete re-implementation of
parts of the software in question.

An object’s properties as well as its functions are addressed using
references in the form of variable and function names. Not knowing
a reference or the associated name thus is equivalent to not being
able to access the respective element. Hence, the reusability of a
program depends on the developer’s knowledge on the applied sym-
bols. Since these symbols are arbitrarily chosen by the developer
who is implementing the program, the enforcement of a uniform
naming scheme is virtually impossible. Existing approaches, like
JavaBeans (see [9, pp. 322]), do dictate certain schemes for naming
accessor functions. However, since these depend on the name of the
accessed property, the issue remains. The only way to realize such
schemes would require an agreed on vocabulary which is strictly
adhered to.

Both, a fixed type hierarchy and the arbitrarily named functions,
are sources of multiple problems. On the one hand, a complex class
hierarchy impedes adaption to later extensions and often results in
close coupling. On the other hand, unknown or misinterpreted vari-
able and function names can result in incorrect use of the underlying
elements. Both aspects often result in partial reimplementation, ei-
ther because the desired feature was not found, or because it could
not be used without major adjustments.

3.2 Entity-Component-Systems
To overcome some of these issues, recent RIS frameworks, espe-
cially in the area of computer games, adopt the Entity-Component-
System (ECS) pattern. In such systems, simulated objects are rep-
resented by entities, which consist of multiple components. These
components represent the different properties of the entity, e.g.,
physical or graphical properties with respect to certain simulation
aspects. (Sub-)Systems are simulation modules or engines that are
responsible for a certain aspect of the simulation, for example, a
physics engine or a rendering module. If an entity contains the set
of components that is required for a certain system to perform sim-
ulations, it is integrated into the given sub-systems simulation loop.

Benefits of frameworks adopting the ECS pattern include high
separation of concerns and the possibility to add and remove com-
ponents at runtime. This is facilitated by fact that entities are com-
posed of components instead of inheriting their properties. There-
fore, frameworks implementing the ECS pattern are highly flexible
and extensible.

Still, adopting the ECS pattern does not automatically solve all
coupling problems. For example, typed OOP languages motivate
to model the entities, i.e. the collections of the components, as ob-
jects and attributes from the given OOP language to benefit from
type checking, preferably at compile-time (if available). However,
inheritance and the rigid class hierarchies that are imposed by OOP
development lead to a high coupling with the particular implemen-
tation of the system in use. Hence, the components have to ex-
actly match the expected structure and adhere to the defined soft-
ware interface. Modifications to such an interface, e.g., to change
functionality (and thus components) requires modification of class
hierarchies and can become complex. This is due to the fact that de-
pendencies between sub-systems and components are resolved by
investigating the type hierarchy at compile-time (as opposed to in-
vestigating the properties a component is composed of at runtime).

On the other hand, alternative implementations do model the en-
tities and the required collections of properties as dynamic associa-
tions to also provide changes during run-time. Now, these systems
have to incorporate run-time type checking to benefit from the type
system available or—again—they have to restrict the dynamic as-
pect to setting-up all collections before compile time, e.g., using a
template systems similar to the one found in C++.

In addition, allowing for a completely unguided modification of
collections by adding or removing components leads to an addi-
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Figure 1: Example for problematic aggregation of components: Due
to naming and hierarchy issues the Position attribute of MeshComp
is not compatible with the Pos attribute of BehaviorComp.

tional problem: If the types of components and properties are not
available any more, a way to associate components with the mod-
ules and engines is required. Naturally, in static collections this is
achieved by either the type system (if available) and/or the naming
schemes of the expressions (variables, access methods), in dynamic
collections it requires an additional dynamic naming, usually pro-
vided by an additional registry to set-up the association between
components and engines. Now, there is no compile-time check for
correct naming which, in turn, can easily result in a plethora of in-
dividual naming, redundant work or even inconsistencies.

The arising issues become evident in situations in which two sys-
tems, that have been developed independently, shall be used in a
single application. For example, assume that a behavior simulation
system, which modifies the position of an entity, was developed
together with a certain rendering system. If that behavior simula-
tion system shall be combined with a different rendering system,
both have to use compatible component types for an entity’s posi-
tion property (cf. figure 1). In cases where the component types
are different this will require the creation of an adapter, which is
used to make the component used by one system available for the
other. Depending on the particular implementation, this can cause
huge efforts, since the usage of the component in question may be
distributed across the program.

As long as the set of used simulation systems is rarely modified,
e.g., as often is true for a game engine, these issues are of lesser im-
portance. Here, changes to functionality and hence new or modified
engines and components often require a lot of development work
anyways, which often results in a completely new version of the
core framework and all supporting elements of the content chain.
Of course, in this context it is also favorable to support reusability
for commercial reasons. Compared to a research environment one
can still observe that for complete game engines the developed API
is (and has to be) fixed in advance, the change intervals are longer,
and the development teams tend to be bigger.

3.3 Observations
In summary, the OOP paradigm introduces beneficial aspects, e.g.,
encapsulation. However, the strict type hierarchies that it im-
poses hinder reusability, since—once implemented—they cannot
be adapted to the specific requirements of an application. The ECS
pattern improves this situation by shifting the type hierarchy issue
from entities into components. In fact, the achieved finer-grained
partitioning of entities does ease the problem. Nevertheless, in or-
der to integrate existing and newly implemented simulation mod-

ules, data types and applied naming schemes have to be known.
Acquiring the necessary knowledge can be a tedious task and pos-
sibly has to be repeated for every system that is developed.

In addition, such systems do not support the programmer in re-
trieving certain functionality: In order to detect a method that mod-
ifies the application state in the desired way, the providing system,
the method’s name, and its signature have to be known.

Hence, in order to overcome above-mentioned issues and facili-
tate reusability, it is desirable to

• provide a central repository of applicable symbols,

• perform compile time checks based on these symbols,

• wrap existing elements in order to reuse them,

• keep beneficial aspects of OOP,

• allow to break out of fixed type hierarchies, and to

• specify the desired state instead of manually invoking the re-
spective software function.

4 SEMANTIC TRAITS

In order to address the issues that were discussed in the previous
sections, we suggest the integration of a knowledge representation
layer (KRL) on a core level. The proposed approach is based on
the object oriented paradigm, thus allowing to utilize its beneficial
aspects. Building thereon, the idea of composing entities of differ-
ent components instead of inheriting their features is seized. In the
next sections the elements of the KRL are introduced.

4.1 Ontological Grounding
The most basic addition on top of the object-oriented approach is
the integration of a central repository of symbols to be used. While
a simple dictionary would be sufficient for this intent, some fea-
tures of the integrated KRL require to specify relations between the
stored concepts (see below).

The compilation of such a dictionary is a complex and labori-
ous task. Especially the agreement on the symbols used for specific
concepts is difficult, since different programmers tend to use differ-
ent terminology for the same object. At best, an ontology for all
concepts and their relations can be established, which is used by
every programmer who is working with the developed framework.
Due to their ontological grounding, the symbols that identify those
concepts will be called grounded symbols.

While some concepts share a terminology among different
groups of developers, others do not. Similarly, some concepts may
be irrelevant to certain developers, whereas others are shared among
most of them. A practicable way to approach this issue is to parti-
tion the ontology into common and domain specific parts. The for-
mer will then be applied by every user of an eventual framework,
whereas the latter can be selected to satisfy specific needs. The
web ontology language (OWL [35]) is adequate for the creation of
such an ontology, since it supports the intent of partitioning it into
multiple files.

Using OWL to create an ontology of symbols, the issue of am-
biguity between symbols can be partially solved. The language al-
lows to declare equivalent concepts, individuals, and roles, which
can be performed at the time multiple ontologies are combined to
create the KRL for a particular application. However, this remains
a tedious task and possible ways to automate the process are still to
be investigated.

Although being well suited, an OWL ontology cannot be directly
used for programming tasks. Hence, its content has to be trans-
formed into a format that can be accessed in program code. The
creation of program code from ontologies is not an uncommon ap-
proach (cf. [32, 34]) and is, for example, supported by the protégé
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Figure 2: Conceptual overview of the semantics-based approach. The top row shows the common way of data representation in an object-
oriented design. The bottom row shows the elements added by the approach presented in section 4.1 – 4.4.

OWL editor [1]. Multiple aspects are addressed by such a trans-
formation: For one, the approach becomes independent of the uti-
lized programming language. In addition, features of code editors
like autocompletion or suggestions can be used by accumulating
the generated symbols inside a dedicated namespace. Furthermore,
errors due to misspelling of symbols are reduced to a minimum,
since the compiler can take over the spell-checking task.

Since a grounded symbol does represent a certain concept, it is
more than a simple variable identifier: Due to being taken from
an ontology, in which it is put in context with other symbols, a
grounded symbol does carry meaning. Thus, it can be used to assign
meaning to a value by creating a semantically enriched description,
which will be referred to as a value description.

Figure 2 provides an overview of the concepts and relations that
are introduced in this and the following sections.

4.2 Semantic Values

Value descriptions are used to describe the properties of an entity,
which will be referred to as state values below. The term state value
is referring to the simulation state which can be seen as the set of
all properties (implemented as components) of all simulated enti-
ties. By combining a value description with a data type, a semantic
type is created. Moreover, the combination of a state value with an
appropriate semantic type produces a semantic value.

To get an idea of the application of these concepts, assume the
following example: A floating point value, which represents the ra-
dius of an object (e.g., a sphere), can now be assigned the value
description RADIUS. This does not add valuable information for a
program or the compiler, yet, but a programmer will be able to dis-
tinguish between the meanings of RADIUS and, e.g., DIAMETER.

Of course, this can also be achieved by choosing appropriate
variable identifiers. However, those identifiers will only be valid in
a limited scope. For example, it cannot be ensured that the identifier
will stay the same when the value is passed to a method. Further-
more, a compiler does not check for semantic correctness of values
behind some variable names, hence it can not detect the mismatch
between the float value representing a radius and a float value rep-
resenting a diameter in the example above. Using semantic values,
the identifiers of the used variables become less important, since
their value itself carries a meaningful symbol.

To some extent, the compiler can now be utilized to perform
semantic checks by utilizing the programming language’s type
system: A method parameter, for example, could have the type
SemanticType[Radius] (Radius being the type parameter
of SemanticType), thus allowing only semantic values with this
exact value description to be passed.

4.3 Semantic Traits
Whereas semantic values help to integrate semantics into a pro-
gramming language, the concept itself is quite limited. The logical
next step is to allow the creation of more complex descriptions from
existing ones; an idea being very similar to the inheritance concept
found in object-oriented languages.

A central concept, that is exploited in combining OOP tech-
niques with the proposed approach, is related to the idea of traits
[7]. Developed as a means to increase reusability by facilitating
multiple inheritance, traits allow for a more finely granulated mod-
ularization of a class’s functionality.

We introduce the concept of semantic traits, which allow to com-
bine multiple value descriptions, in turn creating a new kind of
value description. However, the values described by semantic traits
are different to those described by value descriptions: Whereas a
value description is meant to entirely describe the value it is asso-
ciated with, a semantic trait does rather constitute a set of require-
ments to be fulfilled by the described value.

For simplicity, we assume that no conversion between represen-
tations is required (e.g., all simulation modules apply a left-handed
coordinate system, etc.). However, an automatic type conversion
mechanism as presented in [36] could be integrated into the con-
cept by specifying a common ground for types, too.

The idea of semantic traits aims at decomposing objects into
their (semantic) properties. It conceptually inherits from ECS com-
ponents and extends them with a trait-like nature, mixing-in value
descriptions. For example, a virtual object could be decomposed
into a color trait and a shape trait. This does not include part-of (or
other) relations directly; a wheel object is not a semantic trait of a
car object. However, the car trait could specify the requirement of
a part-of relation between a car object and a wheel object.

4.4 Relations
In order to represent such and other associations, the concept of a
relation is introduced. Relations are used to link a semantic trait or
semantic value to an entity or another semantic value. In the car and
wheel example from the previous section the two semantic values
wheel and car would be connected by a PARTOF relation.

As shown in figure 3, a relation is a semantic value itself. This is
a reasonable representation, since all interface elements are meant
to be represented by semantic values, and a relation might belong
to the described entity’s interface to the application. Accordingly,
the associated grounded symbol is the name of the relation inside
the ontology (assigned via the associated relation description).

In addition to relations, figure 3 shows two further predefined
classes: SemanticEntity and ValueDescription. The re-
quirement to represent entities inside an application is met by the in-
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valueDescription : VD
SemanticValue

T, VD

relationDescription : VD
Relation

SV[T], SV[U], VD

valueDescription : VD
SemanticType

T, VD
<<bind>>

s : GroundedSymbol
ValueDescription

GroundedSymbol

relationDescription : VD
RelationDescription

T, U, VD

<<bind>>

"Entity"
SemanticEntity

ST

Figure 3: Overview of the defined concepts: Relations, semantic types and semantic entities are instances of semantic values. Each value
description is associated a semantic value. Both relations and semantic type instances are created by means of associated descriptions. The
used abbreviations for type parameters are VD = ValueDescription, ST = SemanticType, SV = SemanticValue. T and U represent arbitrary data
types.

troduction of the SemanticEntity class. Each semantic entity
is an instance of the SemanticValue class that is described by an
EntityDescription (being a specific SemanticType). As
opposed to common OOP-based approaches, entities of different
types do not create a class hierarchy in program code. Their inter-
connections and assertions of attributes are achieved by the use of
relations and semantic values.

At first it might seem counterintuitive to derive the class
SemanticType from the SemanticValue class, since the first
is conceptually used to describe the latter. However, creating a hi-
erarchy like this does enable very flexible definitions, as shown in
the following examples.

Assume that the concepts ENTITY and COLOR as well as the
relations HAS and HASVALUE are defined in the ontology. The
automatic process of transforming the ontology contents into pro-
gram code will then generate the relation descriptions has and
hasValue as well as the value descriptions Entity and Color.
A new semantic value representing the entity can then be created
by combining the generated value description with an entity ob-
ject. The same holds true for the color description and its possible
combination with three floating point numbers. In this way, the el-
ements of the underlying framework are wrapped by instances of
the SemanticValue class and can be linked by means of the
hasValue relation.

But the approach allows also to express the fact that the entity
has a color, without specifying its value. To do so, an entity and the
semantic type color are linked by the has relation. The fact that
each relation in turn is a semantic value allows to specify values for
relations: The entity-has-color relation can, e.g., be linked with a
semantic value containing color.

4.5 Methods
So far, the semantics-based approach only allows for the descrip-
tion of entities, their attributes, and relations between them. How-
ever, every program also consists of methods that (especially in the
object-oriented case) are often tailored for specific objects.

The description of such functions is especially relevant in the
planning domain. Different approaches have been proposed [8, 23,
29], most of which focus on the description of preconditions and
(side-)effects of the respective method. In order to be able to benefit
from previous achievements in this field, the presented approach
adopts this representation.

With regard to entities, semantic traits can be used to specify
both preconditions and effects of a method. Since a semantic trait
captures a (possibly partial) view on an entity but also allows to
describe single values, all parameters of a method can be specified
in the form of such traits. This way of describing parameters also
captures the need to specify preconditions which have to be met
before executing the respective method.

Similarly, effects of a function can be described using semantic
traits. While the description of preconditions is for the most part
achieved by means of the method’s parameters, effects have to be
stored externally. In the end, two sets are created for each method,
one containing the semantic traits representing its preconditions and
one representing its effects (on the entities in the parameter list).

In contrast to an object-oriented approach, a method would not
be part of an entity, but an object itself. This approach is also found
in program languages adopting the functional paradigm, wherefore
opting for a programming language that supports the functional
paradigm is favorable for a possible realization.

The implementation of a particular method, which normally
would be part of a class, can be integrated into a semantic trait. In
that case, the semantic trait represents the view on the entity which
supports the specific method. E.g., a Vehicle semantic trait could
be accompanied by a method moveTo(location). It has to be
ensured that every entity that matches this trait is compatible to the
method in the same way that systems are matched against a set of
components in ECS-based frameworks. Then the Vehicle trait
allows to reuse the moveTo method with every compatible entity.

Finally, the semantic traits describing (parts of) a method’s pre-
conditions and effects can be used to allow for the automated re-
trieval and invocation of methods. On a small scale, this even could
enable the automatic combination of methods to create a more spe-
cific one, assuming an elaborated description of entities and meth-
ods.

4.6 Annotations
The above-mentioned building blocks are sufficient to overcome
some of the issues that were found with OOP-based designs. How-
ever, a programmer might feel restricted being forced to use a lim-
ited set of symbols. Since this set should not be extended as rashly
as new variables are defined but requires the extension of the un-
derlying ontology, its application will possibly be perceived as hin-
dering.

To allow more specific descriptions of objects without creating
specific symbols for every possible case, the hasAnnotation re-
lation is introduced. Annotations basically are semantic values that
are related to another semantic value using this relation. This fea-
ture can be used to specify more details about the annotated value
than the amount that is given by the associated grounded symbol.
For example, a value could be added a timestamp by annotating it
with an appropriate semantic value.

4.7 Discussion
As with ECS-based frameworks, entities in the presented approach
are not required to be structured in a class hierarchy. The reason for
this is the fact that the associated semantic value, and not the entity
itself, does contain its description. Hence, the class affiliation of an
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1 // semantic types
2 case object Location extends

SemanticType(classOf[String],
ValueDescription(symbols.shape))

3 case object Position extends
SemanticType(classOf[ConstVec3],
ValueDescription(symbols.position))

4 case object Shape extends SemanticType(classOf[String],
ValueDescription(symbols.shape))

5 case object SteeringBehavior extends
SemanticType(classOf[Boolean],
ValueDescription(symbols.steering))

7 // relations
8 case object has extends

RelationDescription(classOf[Entity.DataType],
classOf[Any], symbols.has)

10 // semantic traits
11 object Wheel extends SemanticTrait
12 [Position.Type with Scale.Type]
13 (has(Shape("round")))

15 object Vehicle extends
SpecificSemanticTrait[Position.Type](
has(SteeringBehavior), has( _ >= 4, Wheel) )

16 {
17 final type SpecificEntityType = SemanticEntity[Type]{
18 def moveTo(s : Location.SemanticType)
19 }

21 protected def createEntity(e: Entity.SemanticType) =
22 new SemanticEntity[Type](e) {
23 def moveTo(s : Location.SemanticType) =
24 println(entity + " is now in/at " +
25 (entity attain has(s)))
26 }
27 }

Listing 1: Implementation of elements used in the examples shown
in listings 2 and 3.

entity can be detected by matching that semantic value against a se-
mantic trait. This implies that an object that was not designed to be
an instance of a specific class in the first place can become such by
being added the missing semantic values and relations at runtime.
On the other hand, a new semantic trait can match preexisting en-
tities when the required semantic values and relations are matched.
This way, the approach extends the ECS pattern, since the naming
and hierarchy issues with components can be resolved.

5 PROTOTYPICAL INTEGRATION

The approach described above was implemented into a currently
developed research framework [19]. A beneficial aspect at this
point is the fact, that the used framework builds on an entity model.
Therefore, adjustments are limited to the implementation of the
above mentioned concepts, which are wrapped around existing ar-
chitecture elements.

5.1 Relations, Semantic Values, and Semantic Traits
Listing 1 exemplifies the implementation of semantic types, rela-
tions, and semantic traits which will be used for the subsequent
examples in listings 2 and 3. The given code corresponds to the
example mentioned above: A semantic trait named Vehicle is
specified to have a position, a SteeringBehavior, and at least
four wheels. A wheel in turn is specified to have an arbitrary value
for the semantic values position and scale and to have the value
“round” for its shape value.

1 object SetLocationAction extends Action(
2 parameters = List[Action.Param](Vehicle, Location),
3 returnType = Location,
4 preconditions = Set(),
5 effects = Set(0 -> has -> 1)
6 ) {
7 def apply(parameters: Array[Value[_]]) = {
8 println("Setting location of " +
9 parameters(0) + " to " + parameters(1))

10 parameters(0) set has(parameters(1))
11 Location(parameters(1))
12 }
13 }

Listing 2: Exemplary implementation of an Action. The integer
values in the effect definition represent indices in the parameter list.

The has relation that is used in the example connects semantic
values containing entities with arbitrary other semantic values. In
this context, the semantic types Location, Position, Shape,
and SteeringBehavior are used.

The presented implementation makes heavy use of type param-
eters to allow for type checking at compile time. For example,
the semantic trait Wheel is specified to involve a position value in
this way. Therefore, eventual functions can be defined to only ac-
cept values of type SemanticTrait[Position.Type with
Scale.Type] or Wheel.Type. This feature is facilitated by the
programming language in use (Scala). Depending of the respec-
tive language used for an implementation this might be harder to
achieve. Nevertheless, the advantages of the use of semantic traits
remains, even if compile time support can not be fully realized.

While the Wheel trait is a simple semantic trait, the Vehicle
trait creates a wrapper class that provides a moveTo method. The
latter is implemented to print out a string, containing the entity
and the result of an invocation of its attain method. The attain
method is implemented by each semantic value. Its single param-
eter is a list of semantic values, which specify the desired effects.
In this case, the entity shall be involved in the relation has(s), s
being the location that was passed to the moveTo method.

Note that the type of the moveTo method’s parameter is speci-
fied as Location.SemanticType (which is the type of the se-
mantic values that is instantiated by the semantic type Location).
Hence, even though the data type of a location was defined to be an
instance of the String class in listing 1, only semantic values that
were created using the semantic type Location can be passed to
the moveTo method.

5.2 Methods
The above-mentioned attain function automatically searches for a
method that can fulfill the specified requirements. For this purpose,
a repository containing registered Actions is utilized.

In listing 2 an exemplary implementation of such an action is
shown. As mentioned in section 4.5, these are defined by means of
their parameters, preconditions and effects. In this case, the param-
eters include the Vehicle trait and a Location. Each action is
automatically registered on creation, wherefore it can be retrieved
by specifying the current as well as the desired state (i.e. specifying
preconditions and effects).

This lookup functionality can either be manually implemented
or be performed by a planning component (e.g., a PDDL [23] plan-
ner). In the latter case, plans consisting of multiple, sequentially
executed actions can be automatically retrieved and executed. The
connection to such planner is straight forward, since the proposed
approach already uses symbols for most elements. A layer that
abstracts from concrete values by assigning each distinct value a
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1 val carEntity = createEntity()
2 val wheels = for (i <- 1 to 4) yield createEntity()

4 wheels.foreach{ wheel =>
5 wheel set has(Shape("round"))
6 wheel set Position(Vec3f.Zero)
7 wheel set Scale(0.5f)
8 carEntity set has(wheel)
9 }

11 carEntity set has(SteeringBehavior)
12 carEntity set Position(Vec3f.Zero)

14 carEntity as Vehicle moveTo Location("London")
15 carEntity attain has(Location("Paris"))

17 println("car is at " + (carEntity get has(Location)))

Listing 3: Example usage of the implemented elements.

unique symbol can be used to address the issue of a planner’s lim-
ited support for the actual values.

The action that is implemented in the example from listing 2
prints a string to the console and returns the location it was provided
in the parameter list.

5.3 Usage
The usage of the elements from listings 1 and 2 is exemplified in
listing 3: Five (empty) entities are created in lines 1 and 2. Four of
these are assigned the relation has(Shape("round")), a posi-
tion, and a scale. Each of them is added to the remaining fifth entity,
which gets assigned the relation has(SteeringBehavior)
and also is added a position.

For the sake of brevity the assigned values are all the same, in
a real application at least the position would be different for all
entities. In the same way, only the has relations is utilized, whereas
hasPart and isAt relations could be used to create more specific
content.

Lines 14 and 15 of listing 3 show two ways in which the defined
semantic traits can be used: The entity either can be wrapped by the
Vehicle trait, whereby the moveTo method becomes available.
Alternatively, the entity’s attain method can be invoked, passing
the desired state.

In the first case, the entity is checked for the required features at
the time the wrapping occurs. If the requirements are not met an
exception is thrown, wherefore appropriate exception handling is
necessary. Using the attain method the verification is implicitly
performed when matching methods are retrieved. If no matching
method is found the value None is returned.

The first method allows for more control over the methods that
are eventually invoked. In this example, the moveTo method from
listing 1 invokes the attain method, but a more concrete imple-
mentation would remove the thus introduced uncertainty. The sec-
ond is more flexible and possibly allows to reuse methods without
knowing their exact signature or implementation. Finally, the value
of the entity’s Location value is accessed in line 17 of listing 3.

6 CONCLUSION & FUTURE WORK

By applying the presented techniques, it is possible to break out of
the strict class hierarchy imposed in an OOP context. Similar to
ECS-based applications, this is achieved by composing entities of
multiple components. In contrast to the ECS pattern, the proposed
approach allows to detect an entity’s class affiliation at runtime.
Using the concept of semantic traits, an entity can be augmented
with further functionality, according to the detected components.
Thus, an object that did not comply with a certain semantic trait

in the first place can be modified at runtime and then be assigned
additional functionality.

Furthermore, the utilization of semantic values allows for seman-
tically enhanced type checking at compile time. This prohibits the
misuse of values with the same data type but different meaning, a
source of programming errors that are hard to detect.

Depending on the programming language in use even more se-
mantic checks can be performed at compile time: The opportunity
to specify type parameters to be covariant and dynamically specify
the type parameters of return types allows to reduce the required
runtime checks to the verification of required values and relations.

The utilization of a coherent vocabulary, grounded in an OWL
ontology, fosters reusability of developed programs. Not only does
the understandability of program code increase but also does the
support for retrieving classes and functions. In addition, this allows
for the integration of symbol-based artificial intelligence methods,
e.g., reasoning and planning modules.

The opportunity to register functions by specifying their precon-
ditions and effects in terms of semantic traits allows for their auto-
matic invocation. In this way, the amount of required knowledge
about the method’s signature is rendered unnecessary.

Future work will include benchmarking the overhead introduced
by the required runtime type checks. In addition, the integration of
a reasoning component to allow for more complex requests to the
application state remains an open topic. Finally, the implementa-
tion of a more complex scenario has to be accomplished to test and
extend the integration of a planning component.
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