
P
R
E
P
R
IN
T

Towards Comparable Evaluation Methods and Measures for Timing Behavior of

Virtual Reality Systems

Jan-Philipp Stauffert∗

University of Würzburg

Florian Niebling†

University of Würzburg

Marc Erich Latoschik‡

University of Würzburg

Figure 1: Histogram visualization illustrating the distribution and categorization of latency measures using a logarithmic y-axis. The example
shows the results gained by a modified z-score test.

Abstract

A low latency is a fundamental timeliness requirement to reduce
the potential risks of cyber sickness and to increase effectiveness,
efficiency, and user experience of Virtual Reality Systems. The ef-
fects of uniform latency degradation based on mean or worst-case
values are well researched. In contrast, the effects of latency jit-
ter, the distribution pattern of latency changes over time has largely
been ignored so far although today’s consumer VR systems are ex-
tremely vulnerable in this respect. We investigate the applicability
of the Walsh, generalized ESD, and the modified z-score test for the
detection of outliers as one central latency distribution aspect. The
tests are applied to well defined test cases mimicking typical timing
behavior expected from concurrent architectures of today. We in-
troduce accompanying graphical visualization methods to inspect,
analyze and communicate the latency behavior of VR systems be-
yond simple mean or worst-case values. As a result, we propose a
stacked modified z-score test for more detailed analysis.

Keywords: virtual reality, latency, outlier, cyber sickness

Concepts: •Software and its engineering → Virtual worlds soft-
ware; •General and reference → Metrics; •Computer systems
organization → Reliability; Multicore architectures; Real-time
system architecture;

∗e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org. c© 2016 ACM.

VRST ’16,, November 02-04, 2016, Garching bei München, Germany

ISBN: 978-1-4503-4491-3/16/11 ...$15.00

DOI: http://dx.doi.org/10.1145/2993369.2993402

1 Introduction

Virtual reality applications are complex systems that consist of mul-
tiple interdependent parts to handle input, simulation and output.
Thereby it has to be ensured that the processing is fast enough to
allow for a fluid experience. In computer science in general and
VR in particular timing behaviour is compared in regards to aver-
age case or to the worst case. We argue that this is not enough when
it comes to latency and latency changes in particular. We need addi-
tional and more detailed information to analyse, detect, communi-
cate and compare timing behaviour of systems which require a high
timeliness in VR and related fields.

Latency spikes are not yet understood enough with respect to cyber
sickness. For an in-depth analysis of their effects on VR users,
latency spikes have to be measured as well as separated from the
expected latency distribution inherent in the system.

In this paper, we look into this second step on how to separate out-
liers from other measurements and find descriptive visualisations.

The contributions of the work presented here are as follow:

1. We assess different outlier tests on their suitability to extract
outlier data from latency measurements.

2. We develop, test, and propose recursive application of outlier
tests based on a repeated computation of outliers on outliers
to get multiple levels of severity for outliers.

3. We present visualization examples suitable to inspect and
communicate latency and latency jitter data and patterns not
easily captured in single measurement values currently avail-
able (see Figure 1 as an example).

This paper is structured into first discussing related research, fol-
lowed by the introduction and description of our test data that will
be used to assess the proposed methods that are explained after-
wards. In the end there is a discussion of the findings with a con-
clusion and ideas for future work extending the research presented
here.

http://dx.doi.org/10.1145/2993369.2993402

P
R
E
P
R
IN
TFigure 2: The measured latencies plotted over time. The point size is chosen small to better show the structure of the data. The orange lines

show the 25%, 50%, 75% and 99% quantiles. The first three quantiles are close enough together to not allow a distinction between their
respective lines. Most of the measurements are below 24µs. Outliers cluster around certain values indicated by the blue lines.

2 Related Work

Simulator sickness is a problem of VR applications where users are
experiencing symptoms such as nausea [Kennedy et al. 1993]. Vi-
sual delay was found as a major contributing factor already in early
simulators [Frank et al. 1988]. Latency also influences the perfor-
mance of test subjects both if time variant latency is added [Ivkovic
et al. 2015] or for latency spikes [Teather et al. 2009]. The assump-
tion is consequently that latency spikes influence simulator sickness
with a similar impact as the better researched time invariant latency.

The performance of VR applications is usually assessed by mea-
suring motion-to-photon latency which tracks the time between an
input on a certain input channel and the time it takes to show its
effect on a display. Approaches to measure this latency are sine
fitting [Steed 2008], light sensing [Di Luca 2010] and automated
frame counting [Friston and Steed 2014]. In this paper, the focus
is on latency that is contributed by the VR application, a subset
of motion-to-photon latency. While there are many optimization
techniques for the rendering stage like frameless rendering [Bishop
et al. 1994], latency at the application stage is yet less researched.

VR systems often consist of multiple software components to han-
dle various input and output modalities that run in parallel or on
distributed machines [Latoschik and Tramberend 2012; Allard et al.
2004]). This facilitates latency jitter, especially in the communica-
tion of the different modules [Stauffert et al. 2016].

Outliers are defined as “observations that deviate so much from
other observations as to arouse suspicion that it was generated by
a different mechanism.” [Hawkins 1980]. In our case, we assume
that outliers are also caused by factors outside of the application
such as interrupts or other software running on the same computer.
They are equally dependent on the application that is examined and
its surroundings which is why it is not possible to find one fixed
threshold that works for all applications.

Here, we examine the results using the Walsh [Walsh and others
1950], the generalized ESD [Rosner 1983] and the modified z-
score [Iglewicz and Hoaglin 1993] outlier test on their suitability
to extract outliers from latency measurement data. See [Hodge and
Austin 2004] for a discussion of different approaches and applica-
tion fields.

3 Method

We adapted the method of [Stauffert et al. 2016] to obtain latency
measurements. The test measures the time of message passing be-
tween two pairs of actors, a common task for VR systems that need
to employ parallelism to maximise performance. While the addi-
tional actor scheduling will produce its very unique latency jitter
and distribution patterns, this would be equally true for any alterna-
tive concurrency scheme.

As a testing platform, we use a Raspberry Pi 2 running Raspbian
on a Linux kernel (version 4.4.9) with the kernel timer resolution
set to 1000Hz for lower response times. The tests are based on the
C++ actor library CAF [Charousset et al. 2014].

Figure 2 shows the measured latencies for each communication
over time. Most measures fall in a small range indicated by the
orange lines for the 25%, 50% and 75% quantiles that are too close
together to be distinguishable on the plot. It is evident, that they are
not sufficient to describe the distribution. Blue lines indicate clus-
ters of outliers as can be found by peaks in the histogram depicted
in Figure 1.

We will analyse the data in non overlapping windows. The time
window size here is chosen arbitrarily as 1s. This was done to al-
low to compare the results of our tests for multiple time frames. The
size of the time window needs to be chosen dependent on the prop-
erty that is measured. It has to be wide enough to contain enough
samples to conduct the tests but needs to be small enough to pre-
serve temporal descriptiveness. Applications will try to keep the
window as small as possible to be able to attribute certain events to
outliers and react timely.

In the following, we are looking for a suitable test to classify out-
liers. We conduct the three examined tests over non overlapping
time windows of one second with the total gathered data spanning
one minute. This is to show the performance over multiple time
slices that follow the same underlying mechanics but can change
due to outside factors.

3.1 Distribution of Measurements

The samples describe the interference patterns of the algorithmic
base that the tests are build upon. We expect the frequencies de-

P
R
E
P
R
IN
T

scribing the sending and receiving algorithms to be interfered by
operating system frequencies, other software frequencies as well
as hardware influences. While the interference pattern does not fol-
low a normal distribution, we expect the message passing algorithm
on its own to approach a normal distribution for a sufficiently long
measurement interval. Extraneous influences then lead to a skewing
of the distribution. Consequently, our measures do not follow a nor-
mal distribution as tested with the Anderson Darling test provided
in the R library “nortest” [Gross and Ligges 2015] with a p-value
of < 2.2e− 16.

3.2 Walsh Outlier Test

The Walsh outlier test [Walsh and others 1950] is a nonparametric
test to detect multiple outliers. In contrast to many other statistical
tests that require a normal distribution, this test works on data that
is not normally distributed.

The test shows whether a suspected amount of outliers is present in
the data with a level of significance that is dependent on the sample
size (α = 0.1 if 60 < n ≤ 220 and α = 0.05 if n > 220). The
test is run with an increasing number of suspected outliers where
the highest amount of suspected outliers k that still test positive is
taken.

The k largest latencies are then classified as outliers. The test is
computed by determining the values

c = ⌈
√

(2n)⌉;r = k + c; b
2 =

1

α

a =
1 + b

√

c−b2

c−1

c− b2 − 1

(1)

If Xn+1−k−(1+a)Xn−k+aXn+1−r > 0 then the k largest points
are outliers, where Xi are the sorted values of the time window such
that X1 < X2 < · · · < Xn.

The criteria tests differences of samples therefore being sensitive to
samples that are distant from others. However, if there are more
outliers in close neighborhood these are not detected.

The Walsh test therefore helps to capture the extreme outliers in
time windows. There are some windows where no outlier is found
because they are grouped too densely even though the same latency
was flagged to be an outlier in a different time window.

3.3 Generalized ESD Outlier Test

As described, we expect the observed algorithm to approach a nor-
mal distribution that gets influenced by outside factors. There-
fore, we try a different outlier test that assumes normal distribution,
which promises to separate the samples of the expected normal dis-
tribution from samples that were influenced.

We recursively repeat the generalized ESD test [Rosner 1983] on
the outliers to distinguish between outliers and outliers of outliers.
This leads to a separation of the majority of the measurements from
their outliers but then additionally identifies severe outliers. As-
suming the influencing factors themselves approach a normal dis-
tribution, we separate different influences and their accumulated in-
terference patterns from each other. This coincides with the visual
impression from Figure 2 where most outliers are clustered above
the mean values with few extreme values.

To determine whether a measured latency xi of the observed time

window is an outlier, the values Ri and λi are calculated

Ri =
max|xi − x̄|

σ

λi =
(n− i)tp,n−i−1

√

(n− i− 1 + t2p,n−i−1)(n− i+ 1)

p = 1−
α

2(n− i+ 1)

(2)

where tp,ν is the 100p quantile of the t distribution with ν degrees
of freedom, x̄ the sample mean, σ the sample standard deviation
and α the significance level here set as 0.05. The largest i that
satisfies Ri > λi is the number of outliers in the sample.

We tried to substitute the mean and standard deviation over the val-
ues of the time window with the respective functions over the com-
plete test run. This would allow to run the application once to gather
a representative mean and standard deviation of the values and then
use those for subsequent test runs. This, however, increases the
lower threshold and therefore performs worse in detecting outliers.

3.4 Modified z-score outlier Test

The last test conducted is a modified z-score outlier test [Iglewicz
and Hoaglin 1993], which assumes normal distribution as well. The
modified z-score Zi is computed for each value xi in the time win-
dow to be

Zi =
0.6745(xi − x̃)

MAD

MAD = median(|xi − x̃|)
(3)

Where x̃ is the median over all samples and MAD the median ab-
solute deviation.

We changed this test to not take the median absolute deviation and
median of the samples in the window to be tested but of all the mea-
sured samples. This allows to run an application using the measure-
ments to determine the absolute median deviation and the median
of this sample and use those values for subsequent application runs
to assess the performance. This changes equation 3 to calculate the
median and MAD for the values of the first run wi with

w̃ = median(wi)

MADw = median(|wi − w̃|)
(4)

and then calculate the z-scores for all subsequent runs with

Zi =
0.6745(xi − w̃)

MADw

(5)

The threshold was chosen to be 3.5 as suggested by the authors.
Recursive use of this test yields more gradations of outliers than the
generalized ESD test. Here, we distinguish between the main part
of the outliers, an area above with only few outliers and the rare
extremes.

4 Discussion

The Walsh outlier test only captures few extreme outliers. These
extremes are supposed to have the most impact and are therefore
the most interesting for further examination.

P
R
E
P
R
IN
T

The generalized ESD and modified z-score tests are similar to each
other. Both support the classification of outliers into multiple levels
by stacking them so they can be used to determine how severe an
outlier is. The modified z-score allows for finer separation. Addi-
tionally, it allows to determine base values like the MAD and me-
dian for one test run to establish a base line that can then be used for
subsequent runs. When trying the same with the generalized ESD
test, the lowest threshold to classify outliers moves up to then yield
a value more distant than the threshold we would have chosen by
inspecting the histogram.

5 Conclusion

VR applications get optimised for mean and worst case behaviour,
which we argue is not enough to capture latency behaviour as it
does not account for different patterns of latency outliers.

We have discussed three tests to find outliers in latency measure-
ments. The measurements here were taken as the time needed for
the communication of two actors, a common process in VR sys-
tems that consist of multiple parts. The measurements were then
analyzed in time windows to assess how good they detected out-
liers over time.

The Walsh test allows to catch the extreme outliers. Those are sup-
posed to have the most impact on an application’s performance.
Finer analysis is offered by using a stacked modified z-score test
that groups outliers into categories of different severity.

We propose to first establish a base line by running an application
once to calculate the median and MAD over the latency samples.
Subsequent runs can then be analyzed to determine what category
of outlier a latency sample belongs to.

The proposed recursive application of outlier tests by repeating a
test on the detected outliers multiple times yields several categories
of outliers. These different levels of severity can then be used to
evaluate an application on multiple scales.

6 Future Work

The impact of latency spikes on cyber sickness is not yet tested,
which is necessary to evaluate the impact of the measured latency
spikes on the user. We have laid a base to measure latency spikes
and gather outliers. This data can then be used to correlate it with
symptoms of cyber sickness shown in tests where such spikes are
artificially added, enhanced or altered in their pattern. Real-time
systems where far less latency spikes are observed as discussed in
[Stauffert et al. 2016] can be used to test against.

Using the gathered outlier data, it will be possible to derive an out-
lier fingerprint of an application on a specific hardware. Compar-
ing this to a different application’s outlier fingerprint running on
the same hardware might open up the possibility to compare ap-
plications by their latency behavior, benchmark them and propose
improvements.

We have used different visualisation methods to allow for an in-
tuitive interpretation of outliers. Future research has to use user
studies to show how intuitive these graphs are and how convenient
they are to spot unwanted application behaviour.

References

ALLARD, J., GOURANTON, V., LECOINTRE, L., LIMET, S.,
MELIN, E., RAFFIN, B., AND ROBERT, S. 2004. FlowVR: a
middleware for large scale virtual reality applications. In Euro-
par 2004 Parallel Processing, Springer, 497–505.

BISHOP, G., FUCHS, H., MCMILLAN, L., AND ZAGIER, E. J. S.
1994. Frameless rendering: Double buffering considered harm-
ful. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, ACM, 175–176.

CHAROUSSET, D., HIESGEN, R., AND SCHMIDT, T. C. 2014.
CAF - the C++ Actor Framework for Scalable and Resource-
Efficient Applications. ACM Press, 15–28.

DI LUCA, M. 2010. New method to measure end-to-end delay of
virtual reality. Presence 19, 6, 569–584.

FRANK, L. H., CASALI, J. G., AND WIERWILLE, W. W. 1988.
Effects of visual display and motion system delays on operator
performance and uneasiness in a driving simulator. Human Fac-
tors: The Journal of the Human Factors and Ergonomics Society
30, 2, 201–217.

FRISTON, S., AND STEED, A. 2014. Measuring latency in vir-
tual environments. Visualization and Computer Graphics, IEEE
Transactions on 20, 4, 616–625.

GROSS, J., AND LIGGES, U. 2015. nortest: Tests for Normality.
R package version 1.0-4.

HAWKINS, D. M. 1980. Identification of outliers, vol. 11. Springer.

HODGE, V. J., AND AUSTIN, J. 2004. A survey of outlier detection
methodologies. Artificial Intelligence Review 22, 2, 85–126.

IGLEWICZ, B., AND HOAGLIN, D. 1993. Volume 16: how to
detect and handle outliers, The ASQC basic references in quality
control: statistical techniques, Edward F. Mykytka. PhD thesis,
Ph. D., Editor.

IVKOVIC, Z., STAVNESS, I., GUTWIN, C., AND SUTCLIFFE, S.
2015. Quantifying and Mitigating the Negative Effects of Local
Latencies on Aiming in 3d Shooter Games. ACM Press, 135–
144.

KENNEDY, R. S., LANE, N. E., BERBAUM, K. S., AND LILIEN-
THAL, M. G. 1993. Simulator sickness questionnaire: An en-
hanced method for quantifying simulator sickness. The interna-
tional journal of aviation psychology 3, 3, 203–220.

LATOSCHIK, M. E., AND TRAMBEREND, H. 2012. A scala-based
actor-entity architecture for intelligent interactive simulations. In
Software Engineering and Architectures for Realtime Interactive
Systems (SEARIS), 2012 5th Workshop on, IEEE, 9–17.

ROSNER, B. 1983. Percentage Points for a Generalized ESD
Many-Outlier Procedure. Technometrics 25, 2 (May), 165.

STAUFFERT, J.-P., NIEBLING, F., AND LATOSCHIK, M. E. 2016.
Reducing Application-Stage Latencies For Real-Time Interac-
tive Systems. In 9th Workshop on Software Engineering and
Architectures for Realtime Interactive Systems (SEARIS), IEEE
Computer Society.

STEED, A. 2008. A Simple Method for Estimating the Latency
of Interactive, Real-time Graphics Simulations. In Proceedings
of the 2008 ACM Symposium on Virtual Reality Software and
Technology, ACM, New York, NY, USA, VRST ’08, 123–129.

TEATHER, R. J., PAVLOVYCH, A., STUERZLINGER, W., AND

MACKENZIE, S. I. 2009. Effects of tracking technology, la-
tency, and spatial jitter on object movement. In 3D User Inter-
faces, 2009. 3DUI 2009. IEEE Symposium on, IEEE, 43–50.

WALSH, J. E., AND OTHERS. 1950. Some nonparametric tests
of whether the largest observations of a set are too large or too
small. The Annals of Mathematical Statistics 21, 4, 583–592.

