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ABSTRACT

This article introduces model checking as an alternative method to
estimate the latency and parallelism of asynchronous Realtime In-
teractive Systems (RISs). Five typical concurrency and synchro-
nization schemes often found in concurrent Virtual Reality (VR)
and computer game systems are identified as use-cases. These use-
cases guide the development a) of software primitives necessary
for the use-case implementation based on asynchronous RIS archi-
tectures and b) of a graphical editor for the specification of vari-
ous concurrency and synchronization schemes (including the use-
cases) based on these primitives. Several model-checking tools are
evaluated against typical requirements in the RIS area. As a re-
sult, the formal model checking language Rebeca and its model
checker RMC are applied to the specification of the use-cases to
estimate latency and parallelism for each case. The estimations are
compared to measured results achieved by classical profiling from
a real-world application. The estimated results of the latencies by
model checking approximated the measured results adequately with
a minimal difference of 3.9% in the best case and -26.8% in the
worst case. It also detected a problematic execution path not cov-
ered by the stochastic nature of the measured profiling samples. The
estimated results of the degree of parallelization by model checking
are approximated with an minimal difference of 9.3% and a maxi-
mal difference of -28.8%. Finally, the effort of model checking is
compared to the effort of implementing and profiling a RIS.

Index Terms: D.2.4 [Software/Program Verification]: Model
checking—; D.2.8 [Metrics]: Performance measures—; D.4.8 [Per-
formance]: Modeling and prediction—;

1 INTRODUCTION

Many Virtual, Augmented, and Mixed Reality systems (VR, AR,
MR), as well as several of today’s immersive first-person computer
games exhibit strong real-time requirements. Taking into account
the severe psycho-physical artifacts caused by latency [16], specif-
ically for high immersive setups based on head-tracking, these so-
called Real-Time Interactive Systems should be considered at least
firm, if not hard real-time [24]. If given timing deadlines are
missed, the system’s quality of service not only is degraded, but
the results might be harmful.

To fulfill increased timing requirements of firm and hard real-
time, developers have to control the timeliness of all of the un-
derlying system(s). Modern computer systems use optimization
techniques such as out-of-order-execution, pipelining, caching, and
branch-prediction. The algorithms of these techniques are in gen-
eral deterministic, but in practice, this deterministic behavior is not
transparent any longer to developers due to the shear complexity
of the interplay of all optimizations. Hence, the time a program

*e-mail:rehfeld@beuth-hochschule.de
†e-mail:latoschik@uni-wuerzburg.de
‡e-mail:tramberend@beuth-hochschule.de

needs to be executed can not easily be determined by counting ev-
ery instruction and multiplying each instruction with the processor
clock-ticks necessary for their execution. Additionally, consumer
operating systems are built around multi-tasking and multi-user ca-
pabilities with fair scheduling as well as multiple service features
(including networking), all of the latter were never meant to provide
firm or hard real-time features in the first place.

Finally, RIS-architectures always had to deal with the non-
determinism caused by user as well as by non-deterministic al-
gorithms. Prominent examples include changes of the view frus-
tum due to user-defined camera movements (e.g., caused by head-
tracking), which may dramatically change the number of graphics
primitives to be processed from one simulation step to the next, or
heuristic search algorithms often used in artificial intelligence (AI)
modules. Hence, timeliness is now affected by multiple hard- and
software factors, many of these are out of control for a white-box
analysis by developers, which is a big obstacle for the required la-
tency optimizations and real-time capabilities.

In the past, latency was often reduced by increasing frequency,
achieved by higher clock-speeds of processors. For several years
now, processing speed is no longer achieved by higher clock-
speeds, but by an increased parallelism of computations. Distribut-
ing the various tasks of a RIS on multiple nodes, CPUs, or cores
has been a central aspect of RIS frameworks and tools for years.
Ideally, a concurrent architecture would utilize as many computing
units, e.g., cores, as available without having these units to wait for
each other. The latter requires a thoughtful incorporation of non-
blocking behavior without compromising the overall consistency
of the simulated environment.

Non-blocking behavior makes a system even more stochastic
from a programmer’s point of view. A non-blocking call to a client,
e.g., by internally branching the thread of control, by triggering
an event, or by sending a message now may not cause immediate
processing of the client task. Not only does such a behavior have
an impact on the adherence to real-time constraints, it also has an
impact on the overall consistency of a simulated scene. By relax-
ing almost every sequential ordering, common pitfalls of concurrent
systems such as dead locks and race conditions emerge.

As of today, most RIS applications use coarse-grained concur-
rency schemes that isolate dedicated tasks like input processing,
physics simulation, AI, application logic, or rendering as concur-
rently running tasks. Some advanced approaches also provide a
much finer-grained concurrency, but in any case, all of these ap-
proaches will have to include some synchronization primitives to
explicitly assure consistency across all simulation tasks while still
supporting asynchronous behavior where possible.

So far, the only viable approach to control timeliness, to reduce
latency, and to fulfill increased timing requirements are runtime
tests and extensive profiling for a later optimization. Profiling de-
pends on either direct source code access for white-box instrumen-
tation or the availability of profiling tools tailored for the specific
RIS platform. A prominent example is the now retired SGI Per-
former platform, which was developed to support concurrency on
multi-CPU platforms [42]. Today, profiling support is commonly
provided for dedicated tasks like graphics rendering, to complete
frameworks like Unity3D or the Unreal Engine.
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Still, profiling and testing a RIS applications is an extremely
time-consuming task for two reasons: First, because the number of
possible execution paths grows about exponentially due to all the
sources of non-determinism. Second, in order to profile a system
one must first develop these systems with all the identified aspects
which may influence the target measurements.

An alternative approach to profiling is model checking. Model
checking uses a formal model of the target system. This model
is then checked by a computer program for various software qual-
ity properties. The model also has to capture all identified aspects
which may influence the target measures but this often is much less
work than building a complete system. Hence it is a good method
to detect potential problems of an architecture beforehand.

Model checking is already common in the development of soft-
ware with zero-fault tolerance, such as the software of the mars
rover Curiosity [22] and the development of large clustered systems
like Amazon Web Service [38]. While it is a promising method to
tackle the problems of timeliness control and concurrency of RIS
applications, to our knowledge, model checking has never been
used in the development of RISs so far. This motivates the fol-
lowing questions:

Q1: Can we apply model checking to predict the behavior of a con-
current RIS with respect to latency and degree of parallelism?

Q2: In the positive case of Q1, how does model checking perform
in absolute quantities in comparison with profiling, the state-
of-the-art in RIS engineering?

Today, many VR- and AR-related research questions refrain
from low-level technical details. The impression may be given,
all low-level technical aspects are solved, considering the wide-
spread availability of sophisticated ready-to-use software packages
like Unity or the Unreal Engine etc., systems with a strong back-
ground in the related area of computer games. But the late promises
of consumer VR have initiated an increased interest in solving the
still persistent technical deficits. Existing RIS software packages
rely on classical profiling, if at all, which is error-prone due to the
stochastic nature of the problem. Hence, alternatives would help
to improve these tools. Maybe not just coincidentally, some game
studios have currently decided to stop using these ready-made pack-
ages and to start own developments to be able to explore alternative
solutions, e.g., Deck13 with the FLEDGE Engine, GameDuell with
its own development based on HAXE or even small companies such
as Black Pants Game Studio (Scape Engine).

The article proceeds with a review of the related work followed
by an analysis and identification of potential model checking tools
for the given task. This section is followed by an identification
of five typical coarse-grained RIS concurrency and synchroniza-
tion schemes as use-cases. These schemes guide the development
of necessary implementation primitives to be applied to the chosen
target RIS platform. A graphical editor is introduced which sup-
ports the specification of various concurrency and synchronization
schemes. This editor is used to specify the required formal models
of the use-cases which are then model-checked. The accompanied
implementations of the use-cases are profiled and both results from
model-checking and profiling are compared and discussed. Finally,
the effort of model checking is compared to the effort of imple-
menting and profiling a RIS.

2 RELATED WORK

2.1 Real-Time Interactive Systems
2.1.1 Concurrency and Parallelism
Many computations inside of a RIS are data-parallel problems,
e.g., rendering and physics simulation. Therefore, they are often
performed on the GPUs, which are usually tailored for data-parallel
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display refresh
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Figure 1: Sources that contribute to the end-to-end latency [44].

concurrency. In contrast, multi-core CPUs target task-parallel con-
currency. Hence, tasks that can run in parallel need to be identified,
scheduled to available cores, and the results need to be merged into
a consistent world state, as is often the case for the tasks taking
place in the application stage.

In the past, the VR community focused on coarse-grained
task-parallel concurrency schemes for the application stage, like
in Lightning [7], OpenMASK [34], ViSTA [3], DLoVe [12],
Avango [45], and many state-of-the-art game engines like Unity3d
or the Unreal Engine. Developers could always introduce a finer-
grained concurrency in these systems, e.g., using the standard meth-
ods of concurrent programming provided by the underlying operat-
ing system, but then they had to cope directly with all the chal-
lenges as described by Lee [32]. Recent RIS platforms explicitly
support fine-grained concurrency to better utilize the computational
power of modern multi-core CPUs. For example, FlowVR [33] in-
troduces a concurrent data-flow network where each node of the
graph runs concurrently and Simulator X [31] exploits Hewitt’s Ac-
tor Model [19] and message passing.

2.1.2 Latency
Latency in general is the delay between cause and effect. In context
of a RIS the most important latency from the user’s point of view
is the end-to-end latency: “the end-to-end latency is the time taken
from an input device changing state to a consequent change on the
screen” [44]. A high end-to-end latency can cause the following
consequences [16, 14]:

• Induce simulator sickness.

• Change the user’s behavior and lower his/her ability to per-
form tasks like reaching, grasping, or object tracking.

• Change the way multisensory information is combined into a
percept.

Upon Mine [36], Steed [44] identified sources for latency de-
picted in Figure 1. Here, prominent approaches tackle the latency
at the very end of the overall processing pipeline. Post-Rendering
3D Warping [35] warps the rendered image w.r.t. the most current
position and orientation of the user’s head at the end of the ren-
dering stage to reduce the effect of latency causing a false (slightly
outdated) perspective. Similarly, frameless rendering [11] also tar-
gets the same problem but uses a per-pixel calculation to include
the most recent changes to the scene and the perspective.

Both techniques have shown to be effective. However, they cope
as much as possible with resulting latencies as caused either be-
tween sensor read and final rendering or by the application stage
computations (see Figure 1), they don’t target the latency problem
at the potential sources in the application stage.

2.1.3 Concurrency and Latency Control
Usually, the performance of a RIS is determined by benchmarking
or profiling. The platform code of the RIS is instrumented to collect
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data for calculating specific metrics like parallelism and latency.
Applications are then executed for various execution paths using the
instrumented platform code. Furthermore, some micro benchmarks
are common to only measure specific aspects. In most cases, the
platform is instrumented manually by the person that wants to per-
form the benchmark. Most commercial platforms, e.g., the retired
SGI Performer [42], Unity3d, or the Unreal Engine 3, and some
research platforms, e.g., Simulator X [40], have dedicated profiling
tools, that instrument the platform and calculate metrics. Further-
more, GPU manufacturer do offer frame-profiling tools to analyze
the rendering of single frames, such as AMD GPU PerfStudio [2]
and NVIDIA Nsight [39].

Results from benchmarking and profiling are usually used in
short development cycles to optimize an application. The measured
results are used to identify performance bottlenecks. The identi-
fied spots are tuned and the measurement starts again. The problem
of this approach is that concurrent systems usually do have thou-
sands or millions paths of execution and the measurements do only
cover a small fraction of them. The non-deterministic sources dra-
matically increase this problem. Hence, a system may have execu-
tion paths that totally differ from what has been measured, and this
is highly context-dependent. The stochastic approach of perform-
ing benchmarks or profiling for a longer time does not solve this
problem, because there never is a guarantee that problematic paths
really occur. A good example is a system described by Lee [32]
that deadlocked after four years in production use, despite careful
source code reviews and tests.

2.2 Model Checking

Starting in the 1980’s, model checking became the primary method
to reason about correctness [10]. Most programs can be described
as a finite graph M, that consists of states, additional properties
for each state, and transitions between states. The graph M is also
called state space. Model checking uses a formal language to spec-
ify an algorithm or system and to then generate the state space M
out of the formal specification. Afterwards, it is checked if the state
space holds certain constraints.

Two families of formal languages exist, (a) imperative language
and (b) declarative languages. Imperative languages usually are
close to programming languages, such as C or Java, while declar-
ative ones do have a more mathematical style based, e.g., on first
order logic and temporal operators. Both approaches proved their
value in real world scenarios. The imperative language PROMELA
was used during the software development for the mars rover Cu-
riosity [22], while the declarative language TLA+ was used for the
development of E3, DynamoDB, EBS, and the internal distributed
lock manager of Amazon Web Services [38]. Curiosity successfully
landed and Amazon Web Services work stably and reliably for thou-
sands of customers. Other formal languages and model checkers
have ben used in specific target areas, e.g., UPPAAL [28] is of-
ten used in industrial projects [6], especially for embedded sys-
tems [4, 5].

Using model checking to evaluate the architecture and concepts
of a RIS requires additional efforts. First, the developers need to
become familiar with model checking and need to learn a speci-
fication language. Second, specifications need to be written and
checked. Newcombe et. al. [38] report about the efforts at AWS
to learn PlusCal and TLA+. Developers typically learn these lan-
guages within 2 – 3 weeks. Writing a specification is done within
“a couple of weeks” [38]. Lamport [26] explored model checking
using PlusCal on an algorithm [13] that was known to contain a
bug [15]. Lamport’s effort to write a PlusCal specification of the
algorithm was about 10 hours.

2.3 Discussion
A formal method promises to overcome some of the deficits caused
by the stochastic nature of profiling and testing. The requirements
for low latency and high computational power of RISs seem predes-
tinated for model checking. Depending on the quality of the model,
it may also weaken the influence of the many non-determinisms
in RIS applications discussed before. Hence, we will apply model
checking to typical RIS concurrency and synchronization schemes
and will compare the results to a common profiling approach. We
will perform this task using an actor-based platform. We chose Sim-
ulator X [31] since 1) it is freely available on GitHub and 2) it has
been instrumented in prior work for the necessary profiling [40].

In the actor model, every concurrently running thread of con-
trol (called process in the model) can communicate asynchronously
with every other. This asynchronous communication can be seen as
a generalization of subroutine calls, now extended to concurrent ar-
chitectures. This generalization will a) allow to implement various
concurrency and synchronization schemes an it will b) render the
results achieved on top of this model applicable to other systems as
well. In addition, it will maximize parallelism and minimize latency
due to increased performance. On the other hand, it will require ex-
plicit synchronization primitives to gain fine-grained control over
frequencies and triggering order of tasks. All typical RIS architec-
tures can be implemented on-top of the actor model and the un-
derlying asynchronous message passing system. However, certain
programming techniques–while possible in general–are considered
deprecated to unleash the full potential of software quality aspects
the model provides, e.g., direct unguarded shared memory access.

3 IDENTIFYING A SUITABLE MODEL CHECKER

We have compared 9 formal languages and model checkers to iden-
tify suitable candidates to reason about the parallelism and latency
of a concurrent RIS. Two type of criteria are used: Specific criteria
are important for our purpose to use model checking to estimate the
latency and parallelism of a concurrent RIS on the target platform.
General criteria cover aspects that make the formal language and
the model checker easier to use. Both criteria were combined but
weighted 2 ∶ 1 in the final result to increase the RIS-specific utility.
A detailed discussion about every candidate and every criteria is
beyond the scope of this article. Instead the results are presented in
Table 1. The criteria are explained in more detail in the following
sections 3.1 and 3.2.

Rebeca won this comparison and is the best candidate for the
goal of the work presented here. Rebeca [43] is an imperative spec-
ification language for message-passing-based systems, designed
to close the gap between formal methods an software engineer-
ing [41]. The syntax is similar to Java. Rebeca is documented by
a handbook [20] and several publications. Its syntax is similar to
Java, hence it is easy to learn for many developers. An extension to
Rebeca, called Timed Rebeca, exists to model check specification
of real-time systems. The Rebeca Model Checker [1] (RMC) is an
open-source tool written in Java. RMC exports the state space in an
XML file, hence it is easy to integrate to other tools.

3.1 General Criteria
GC1: Documentation A good documentation makes it easier

to write specifications in a formal language and to use its model
checker. A language will receive the grade ++ if an up to date book
exists about it. It receives + if several scientific publications written
by different people exist. The grade 0 is given if only publications
of one original author of the language exists.

GC2: Widely used Wide usage of a language does have two
advantages. First, it points that the language and the model checker
reached a mature state usable for real life scenarios. Second, tem-
plates for standard problems can be found, that shortens the time
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Table 1: Comparison of nine formal languages and its model checkers.

TLA+[25
]

Plus
Cal[

27
]

cT
LA[18

]

ReA
cto

r[8
, 9

]

Allo
y[2

3]

Reb
ec

a[4
3]

PROM
ELA[21

]

UPPA
AL[28

]

M
cE

rla
ng

[17
]

Familiy dec. dec. dec. dec. dec. imp. imp. imp. dec.
GC1: Documentation ++ ++ + 0 ++ + ++ ++ +
GC2: Widely used ++ ++ −− −− ++ + ++ ++ +
GC3: Implementation ++ ++ −− −− ++ ++ ++ + ++
SC1: Real-time + + ++ −− 0 ++ −− ++ ++
SC2: Message passing −− −− + ++ 0 ++ ++ 0 ++
SC3: Integration ++ ++ −− −− ++ ++ 0 ++ 0

Points 8 8 -1 -4 10 16 6 3 12

required to write a specification. The grade ++ is given if a lan-
guage was used for real life applications. The grade + is given if
the language is used by several research groups at different insti-
tutes. A −− is given if the tool was only used by the original author.

GC3: Implementation This criterion describes if an imple-
mentation of a model checker is available to the public. A language
is rated ++ if a model checker and its source code is available. It
receives a + if a closed source implementation is available and a −−
if no implementation is available to the public.

3.2 Specific Criteria

SC1: Real-time RIS are real-time systems. Hence, it is useful
if the language itself or the standard library contains elements for
the specifications of real-time systems. A language is rated ++ if
the language itself contains elements for real-time behavior. The
grade + is given if not the language but a standard library contains
elements for real-time systems. A 0 is given if real-time behavior
needs to be specified from scratch.

SC2: Message passing The chosen target platform uses
message passing. Hence, it is advantageous if the formal language
already contains elements for message passing or if a reusable spec-
ification exists. A language receives a ++ if it contains elements for
message passing and a + if message passing is not supported di-
rectly but can easily be specified. The grade 0 is given if message
passing can be specified. The grade −− is given if there exists any
known shortcoming for creating a reusable message passing speci-
fication.

SC3: Integration to other tools Our goal is to integrate model
checking into the development process of a RIS application. Hence,
it is important that the model checker can be integrated into the cur-
rent tool chain. Simulator X is implemented in Scala [30], which
produces byte-code for the Java Virtual Machine. Thus, if the
model checker is implemented in Java, it receives a ++, and a 0
if it is written in another language.

4 CONCURRENCY AND SYNCHRONIZATION SCHEMES

This section identifies different prominent concurrency and syn-
chronization schemes (CSSs) that deal with triggering order and
frequency. Recent RIS architectures support various concurrency
schemes, from coarse-grained architectures which encapsulate clas-
sical sub-systems for, e.g., input, graphics, physics, or AI, to fine-
grained concurrency which provides inter-sub-system paralleliza-
tion of various degrees. While the chosen RIS platform Simula-
tor X belongs to the latter group, the examples use a coarse-grained
concurrency to increase interpretation and utility of the results for
the wide range and de-facto standard of existing systems. The iden-
tified CSSs are explained based on a typical VR scenario consisting
of the following sub-systems:

1. A tracker connection that communicates with a tracking sys-
tem and provides the transformation of the user’s head.

2. An application logic that manipulates the scene upon user’s
interaction, such as spawning new objects after the user
pushed a button.

3. A physics simulation that simulates the physical behavior of
objects in the scene.

4. A renderer that renders the scene using a graphics port.

Tracking systems can support many frequencies, e.g., ranging to-
day from 50Hz to 250Hz for optical systems and up to 1kHz for ori-
entation sensors of head mounted displays. The actual frequency is
of lesser importance for the following scenarios, but its application-
independent frequency is. Hence, let us assume that the frequency
of the tracking system is bound to 50Hz by the hardware and can
not be manipulated by the application itself. Furthermore, let the
frequency of the graphics display be 60Hz.

CSS1: Sub-systems run in sequence

This is one of our two base-line schemes. All sub-systems run in
sequence. First, the application logic performs its calculations. Af-
terwards, it triggers the physics simulation. Finally, the physics
simulation triggers the renderer, that renders the new scene and the
loop starts again. The frequency of the tracker is controlled by the
tracking system and hence is not part of the loop. The scheme is
illustrated in Figure 2a.

CSS2: All unbound

The second base-line scheme is that all sub-systems run with the
maximum possible frequency, as illustrated in Figure 2b. After per-
forming a simulation step, the sub-system updates its internal world
state upon the data it received and triggers itself. In this configu-
ration, each subsystem runs with its maximum frequency. Usually,
an unbound frequency is neither necessary nor desirable. An ex-
tremely high frequency consumes a lot of processing power and
has no advantages for the simulation quality. We still provide this
extreme test case to later check the limitations of our approach.

CSS3: Each at fixed frequency

Limiting the frequency within the system is reasonable. For nu-
meric stability, the physics simulation may run with a higher fre-
quency, e.g. 120Hz. The renderer should have the same frequency
as the output channel it is connected to. Because a user can not
recognize changes faster than the frequency of the renderer, the ap-
plication logic may have the same frequency. The scheme that is
illustrated in Figure 2c, was suggested by Mönkkönen [37].
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(b) CSS2: All unbound
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(c) CSS3: Each at fixed frequency

t

Rendering

Tracker

+0ms +20ms

Tracker

Physics Physics

Logic Logic

Rendering

+16ms+8ms

(d) CSS4: Start all at the same time
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Figure 2: Five different concurrency and synchronization schemes as described in Section 4. Only the communication between the tracking
and the rendering is visualized explicitly by a dashed-doted line, because it is of extraordinary importance for latency. Triggering and
communication between other sub-systems are left out to increase clarity.

CSS4: Start all at the same time

To increase parallelism, renderer, physics, and application logic can
start in parallel like shown in Figure 2d. This scheme usually adds
latency between the simulation subsystems and the renderer.

CSS5: Bind renderer to tracker

In VR it is always desirable to have a low latency between input and
output. Hence, its often more reasonable to couple the renderer to
the tracking connection and not to the simulation subsystems (Fig-
ure 2e). A latency between the physics simulation and the renderer
is hardly recognizable, while a latency between moving the head
and seeing and updated scene, rendered with the new view frustum,
is usually easily recognizable by the user. The other sub-systems
run with their own frequencies, such as in CSS3.

5 PRIMITIVES

Five different synchronization and concurrency primitives are iden-
tified which are necessary for the specification of the schemes
CSS1–5 in the formal Rebeca language, and for the implementa-
tion in the asynchronous target RIS platform.

5.1 P1: Unmoved mover

The unmoved mover exists only one time and sends one message to
a set of other processes. It is the starting point for an application
and is required for all CSSs.

5.2 P2: Sub-system
A sub-system is a process that performs the calculation, commu-
nicates the results to other processes, or communicates with I/O
channels. This could be a renderer, physics simulation, artificial
intelligence, or any other part from coarse to fine granularity. A
sub-system can perform the following three tasks:

1. Update its internal world state upon incoming messages.

2. Modify its internal world state, or using input or output chan-
nels.

3. Communicate its internal world state to other sub-systems.

Hence, sub-systems need two types of messages:

MT: Triggers local (sub-system-specific) simulation step(s).

MS: Communicates (parts of) the new world state.

We assume that a new world state can be communicated by mul-
tiple messages of type MS. Besides receiving and communicating
new world states, a sub-system may trigger other processes, es-
pecially other sub-systems. Here, the condition and point in time
when a trigger message is sent is crucial. We call the mechanism
of sending these messages synchronization point. A synchroniza-
tion point is a condition that may eventually becomes true and upon
which a sub-system sends a trigger. Two synchronization points are
obvious for coarse grained sub-systems:
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1. OnStepBegin, when the calculation of a new simulation step
begins

2. OnStepEnd, when the calculation of a new simulation step
finished

5.3 P3: Frequency Limiter
Because an extremely high frequency is neither desirable nor use-
ful, a process is required to limit the frequency. In general, a loop is
realized in a message passing based system by a process that sends
a message to itself. A frequency limiter is added to such a loop
and delays a message it has received. For example, if the frequency
limiter does have an upper limit of 60Hz, and it receives two mes-
sage within a time span less than 16666µs, the second message is
forwarded with delay. The limiter is used in all schemes, but CSS2.
If the other process in the loop needs too much time, the frequency
simply drops.

5.4 P4: Frequency Trigger
External devices, such as the tracker, do have a fixed frequency, that
can not be controlled by the application. Hence, an element is re-
quired that always sends a message in a fixed frequency. While the
frequency limiter relies on the circumstance that the process trig-
gers itself, the frequency trigger sends a message to another pro-
cess in a fixed frequency. If the triggered process needs too much
time, the trigger still sends messages and the triggered process will
saturate.

5.5 P5: Barrier
In CSS4 all subsystems are started at the same time. Hence, there
needs to be an element that sends a trigger after is received a speci-
fied set of messages. For example, in CSS4, the condition is that it
received the trigger from the renderer, physics, and logic.

6 IMPLEMENTATION

In this section, a prototypical implementation of a model checker
for concurrency and synchronization schemes is described. The
overall tool chain of the model checker is illustrated in Figure 3a.
The remainder of this section is structured along the tool chain.

6.1 Graphical Editor
Rebeca does not have any abstraction mechanisms, such as inheri-
tance or a template mechanism like in C++. Defined processes can
only be parametrized by constructor parameters. Furthermore, the
set of other processes to which a process is able to communicate
with, must be known at definition time of the process. To overcome
these limitations, we created a graphical editor to specify concur-
rency and synchronization schemes such as described in Section 4
by using the primitives described in Section 5.

The graphical editor is shown in Figure 4. It was implemented
using NetBeans RCP. In Figure 4, primitive P1 is part of every
specification by default and hence cannot be removed. Primitives
P2 – P5 can be added using a palette of primitives and are shown
as nodes. Edges between the nodes represent communication be-
tween the primitives. Together they define the modeled processes
and the communication topology. Additionally, durations of simu-
lation steps and the processing of messages can be configured. Fi-
nally, a code generator generates a Rebeca specification out of the
graphically defined models.

6.2 Rebeca Spec
The automatically generated Rebeca specification file consists of
all required primitives, the communication topology, and timing in-
formation. It currently doesn’t cover the full Rebeca specification
language but only the relevant parts required here. Hence, we also
developed a text editor for Rebeca specifications to further alleviate

customization of the specification. This editor was developed by
extending NetBeans’s standard text editor.

6.3 RMC

The generated specification is checked using RMC. RMC itself can
already check if the specification deadlocks or if processes do satu-
rate. Furthermore, RMC exports the state space into an XML file.

6.4 State Space

This XML file contains states and transitions. Besides other in-
formation, a state contains the clock of each process at this state.
Furthermore, the transitions contain the information which process
processed which message. Care needs to be taken, because this
XML file can become very large, depending on the granularity of
the model. The state space is parsed by the graphical editor again
to perform further analysis of the state space.

6.5 Analysis Algorithms

Before the average parallelism and latency can be calculated, every
possible scenario needs to be generated out of the state space. A
scenario is one path through the state space that represents a loop.
Hence, there must be a transition between the first and the last state
in the scenario. Because the state space tends to be large for non-
trivial problems, generating the scenarios out of the state space is
time consuming. Furthermore, care needs to be taken about mem-
ory. Hence, scenarios need to be created in a depth-first approach.
Nevertheless, creating the scenarios can easily require about 3 GiB
of RAM.

For each scenario, the average parallelism and the latency be-
tween two previously configured processes are calculated. We im-
plemented the two metrics as defined in [40].

6.5.1 Latency

Latencies can occur everywhere between the sub-systems. Our
evaluation here analyzes the latency between the tracking system
and the renderer. First, all transitions where the tracker sends a
message to the renderer are searched. Afterwards, the next transi-
tion in the scenario where the tracker performs a simulation step is
searched. Then the time span between both transitions is calculated.
Usually, a scenario contains more of one transition that represents
sending a message from the tracker to the renderer. Hence, the la-
tency for each message can be calculated in parallel. Nevertheless,
it remains very time-consuming.

6.5.2 Average Parallelism

The average parallelism reflects how many processes in average
perform work at the same time. The average parallelism is mea-
sured as the Degree of Parallelism (DOP). The DOP states how
many processes are performing work in parallel for any point in
time t. This can easily be determined from the transitions between
the states in a scenario. The clock of the process in the source state
represents the begin and the clock of the process in the destination
state represents the end of the processing. Thus, two tuples are gen-
erated for each transition, where the clock of the process is used as
a time stamp. All tuples can then be sorted by their time stamp. Us-
ing this list, the average parallelism can be calculated as described
in [40].

Using the profiling tool of the target platform on some demo
applications, we observed that many applications idle most of the
time. Hence, the average parallelism would be less than 1.0 in this
case. Therefore, we decided to ignore idle times, where no process
performs work. This is also provided by the profiling tool.
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Figure 3: The tool chain of the model checking environment and the workflow how to use it efficiently.

Figure 4: A screenshot of the graphical editor for synchronization and concurrency schemes.

7 RESULTS

We model-checked the use-cases CSS1-5 based on the implemen-
tation described in this article and compared the results to measure-
ments achieved by profling of the same use-cases.

7.1 Example Application and Preparation

Figure 3b illustrates the workflow of our toolchain described in Fig-
ure 3a. The model checker is fed with the formal specification of the
system including timing information. Absolute values for the lat-
ter is dependent of the application and the hardware it is executed
on and hence is ideally measured first, e.g., using basic prototype
implementations. For our measurement, Simulator X’s barrel stack
benchmark application was used (Figure 6). In this application, a
large barrel is created at start-up. Ten seconds later, a stack of bar-
rels is spawned in front of the large barrel. Another 35 seconds later,
the large barrel is pushed into the stack. A user inspects the whole
scene in an immersive setup with a head-tracked camera. The appli-
cation is terminated after 60 seconds overall run-time. The profiling
tool of Simulator X was used to determine parallelism and latency.

The first check of the model is done with a temporal precision
of 10−3 (milliseconds). Afterward, the precision is increased to
10−4 and the model check is performed again. If the results of
two consecutive checks are equal, the process is terminated and
the final results are determined. Otherwise, the temporal precision
is increased again for the next iteration. This iterative approach
prevents an early state space explosion.

In our test case, the results stabilized at a temporal granularity
of 10−5. Hence, increasing the granularity to 10−6 (microseconds)
did not change the results for latency and parallelism, but produced
a very large state space. As was expected, the time consumed to
generate the state space depends heavily on the temporal granularity
and grows about exponentially with the state space. While the state
space at 10−3 is generated in less than a second, generating it at
10−6 can take more than an hour.

7.2 Discussion
The measured and estimated results are presented in Table 2 and vi-
sualized in figures 5a and 5b. For the latency the median is used for
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Table 2: Estimated and measured results for latency and parallelism for the five concurrency and synchronization schemes. The difference is
calculated to the respective measured values. A positive value means that the model checker overestimated the value, while a negative one
means that the value was underestimated.

Latency Parallelism
estimated measured difference estimated measured difference

CSS1 28.1ms 32.7ms -14.1% 1.04 1.28 -18.8%
CSS2 – 30.4ms – – 1.87 –
CSS3 24.1ms 32.6ms -26.1% 1.41 1.29 9.3%
CSS4 24.6ms 33.6ms -26.8% 1.64 1.37 19.7%
CSS5 7.9ms 7.6ms 3.9% 1.08 1.52 -28.9%
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Figure 5: Visualized results from Table 2.

Figure 6: The barrel stack benchmark application of Simulator X.

measured and estimated values. Using the median in the measured
data is necessary, because the measured data also contains the initial
bootstrapping of the application where assets were loaded which re-
sulted in a few frames with extremely long rendering times. This
initialization phase was excluded from model checking since it is
in general not a critical phase for the usage of the application and
it is prone to many non-determinisms, e.g., file access times, from
the underlying system. Figure 5a reports the estimated latency to
underestimate the measured latency with only one exception: the
smallest difference of 3.9% occurred for CSS5, which results only
to 0.3ms in absolute quantity. The largest difference of -26.8% oc-
curred for CSS4. The goal to successfully report a reduced latency
for CSS5 was predicted well by the estimation of the model check-
ing and was confirmed by the measurement of the profiling.

While model checking CSS2, a scenario with an overflowing
queue at the renderer was found. Therefore, latency and parallelism
was not calculated out of the state space. The renderer did not sat-
urate while measuring. This problematic execution path did not

occur during the measured profiling samples but was successfully
detected using model checking. However, the problem can sim-
ply be reproduced, by using an overly complex scene, that drops
the frequency of the renderer in all cases below the frequency of
the tracker. In this case, the number of messages from the tracker
in the in-queue of the renderer will increase. This will first result
in an increased latency, and later into an out-of-memory process
termination. However, the detected problem is a special case and
concurrency problems usually are much harder to reproduce inten-
tionally.

The estimated and measured parallelism is visualized in Figure
5b. The smallest difference is in CSS3 with an overestimation of
9.3%, while the largest difference is found for CSS5 with an un-
derestimation of -28.9%. Unlike the results for the latency estima-
tion, the model checker underestimated the parallelism in CSS1 and
CSS5, while overestimating it in CSS3 and CSS4. Hence, there is
not such a clean tendency of the direction of the difference as for
the latency estimation.

8 MODEL CHECKING VS. IMPLEMENTING AND PROFILING

To estimate the costs of model checking in terms of effort, we re-
constructed relevant data from sources such as commits to a git
repository, calendar, and e-mail. Hence, this is a very rough esti-
mate but it can give a first idea of the relative costs. The total days
of all participants are summarized in Table 3. The synchronization
layer to implement CSS1–CSS5 in the target framework Simula-
tor X took roughly 2 weeks. To learn the concepts of model check-
ing took 3 weeks and to learn Rebeca took 2 more weeks (here per
person). Implementing the graphical editor including the code gen-
erator for Rebeca required 3 weeks. Creating the specification out
of the designed system required 1 week. Checking and refining the
model required 2 weeks as did implementation of the algorithms to
analyze the state space.

Hence, specific implementation, specification, and check took
30 days. The check alone only took 15 days. In contrast to the ef-
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Table 3: Costs in terms of efforts to learn about model checking, to develop tools, and to apply the method initially.

Phase Task Effort (days) Σ (days)
Learning Model Checking In General 15 pp

Rebeca 10 pp 25 pp
Specific Implementation Sync Layer 15 15

Tool Development Graphical Editor and Code Generator 15
Analysis Algorithms 10 25

Application of Model Checking Creating Specification 5
Checking and Refining 10 15

fort of building a complete framework or to change core aspects of
an existing system these costs can be considered highly acceptable.
For example, the initial development of the overall base framework
used took at least 20 times as long as a very conservative approxi-
mation. Development times of many years, including ongoing ser-
vice, bug-fixes, and maintenance, are not unusual in this domain.

9 CONCLUSION AND FUTURE WORK

This article explored the usefulness and applicability of model
checking for estimating latency and degree of parallelism in asyn-
chronous RIS applications. Nine model checking languages and
tools were analyzed to find appropriate candidates for their appli-
cation in the target area. Out of these nine candidates, Rebeca was
chosen based on a set of target-specific criteria. Simulator X, a RIS
framework based on message passing was identified as the target
platform because it supports various concurrency schemes due to
its asynchronous nature and its actor model.

Five concurrency and synchronization schemes were then iden-
tified as use-cases typically found in the native or slightly modi-
fied version in many asynchronous RISs with similar sub-system
requirements. These use-cases guided the implementation of con-
currency and synchronization primitives for the target platform, and
a graphical editor to specify the formal Rebeca model of the use-
cases based on the developed primitives.

We then compared the model-checking-based estimations of la-
tency and degree of parallelism of all five use-cases against mea-
sured results achieved by profiling of a real-world application.
In one scenario, the latency was predicated nearly correct, with
the small difference of 0.3ms. In the other cases, the model
checker always underestimated the latency with differences be-
tween -14.1% to -26.8%. The estimated values for the average par-
allelism spanned a larger interval between the maximum difference
of -28.9% and the minimum difference of 9.3%.

Both results are very encouraging and could be further optimized
in future work. General tendencies like the underestimation of the
latency prediction could be adjusted by a scaling factor. In general,
the better the model captures the final system, the better the results
will become. For example, our assumption about the slightly worse
prediction of the degree of parallelism might be due to the increased
non-determinisms affecting concurrency, from the scheduling of the
underlying message-passing implementation and operating system,
to cache-misses in combination with the enabled hyper-threading
we used. To summarize these results given the initial research ques-
tions, we conclude:

Q1: Answer: Yes, model checking can be applied to predict the
behavior of a concurrent RIS with respect to the target prop-
erties of latency and degree of parallelism.

Q2.1: Answer: Results by model checking vary in absolute quantity
for the two target properties, still, this variance is sufficiently
close to the measured results to be useful for post- as well as
pre-optimizations of RIS architectures.

Q2.2: Answer: Model Checking also identified a problematic
scheme, that did not show-up during profiling. Due to the
stochastic nature of a RIS and the underlying hardware plat-
form, disadvantageous execution paths did not occur during
measuring but here were found by the model checker.

As a result, we propose that model checking provides a promis-
ing alternative to the state-of-the-art profiling of RIS architectures,
especially with respect to the important RIS properties of latency
and degree of parallelism. While the process of model check-
ing is not free and will take time for itself, it has the potential
to shorten the later development work and fine-tuning, which of-
ten is highly unpredictable and much more time-consuming than
the model checking, and to reduce the non-determinisms of todays
complex interplay of optimizations from all the different system
layers.

To decrease the deviation between measured and estimated re-
sults, we plan to extend the model with more details. We also
consider to apply model checking to additionally relevant software
quality aspects of RISs. We think this will be especially complex
but also fruitful for effects such as non-deterministic memory reads
and branch prediction. One promising technology to integrate these
effects into the model is probabilistic model checking like it is sup-
ported by Probabilistic Timed Rebeca.

Another future work is to extend model checking on cases where
existing game engines such as Unity or Unreal are used. One idea is
to simply abstract these systems as a sub-system in our approach to
be checked as part of a larger system. Alternatively, we would like
to model internal processes of these engine. Of course, the latter
potentially would require information provided by the developers
of such engines.

ACKNOWLEDGEMENTS

The authors wish to thank Ehsan Khamespanah and Pedram Mer-
rikhi.

REFERENCES

[1] https://github.com/ekhamespanah.
[2] AMD. Gpu perfstudio http://developer.amd.

com/tools-and-sdks/graphics-development/
gpu-perfstudio/. Internet, 2015.

[3] I. Assenmacher and T. Kuhlen. The vista virtual reality toolkit. In
Latoschik et al. [29], pages 23–26.

[4] T. Bourke and A. Sowmya. Automatically transforming and relat-
ing uppaal models of embedded systems. In Proceedings of the 8th
ACM International Conference on Embedded Software, EMSOFT ’08,
pages 59–68, New York, NY, USA, 2008. ACM.

[5] T. Bourke and A. Sowmya. Analyzing an embedded sensor with timed
automata in uppaal. ACM Trans. Embed. Comput. Syst., 13(3):44:1–
44:26, Dec. 2013.

[6] N. C. W. M. Braspenning, E. M. Bortnik, J. M. van de Mortel-
Fronczak, and J. E. Rooda. Model-based system analysis using chi

pre
-pr

int



and uppaal: An industrial case study. Comput. Ind., 59(1):41–54, Jan.
2008.

[7] M. Bues, T. Gleue, and R. Blach. Lightning: Dataflow in motion. In
Latoschik et al. [29], pages 7–11.

[8] R. Burmeister. Reactor: A notation for the specifications of actor
systems and its semantics. In G. für Informatik, editor, Software En-
gineering 2013 - Fachtagung des GI-Fachbereichs Softwaretechnik,
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