
P
R
E
P
R
IN
T

Reducing Application-Stage Latencies of Interprocess Communication

Techniques for Real-Time Interactive Systems

Jan-Philipp Stauffert∗

University of Würzburg

Florian Niebling†

University of Würzburg

Marc Erich Latoschik‡

University of Würzburg

ABSTRACT

Latency jitter is a pressing problem in Virtual Reality (VR) applica-
tions. This paper analyzes latency jitter caused by typical interpro-
cess communication (IPC) techniques commonly found in today’s
computer systems used for VR. Test programs measure the scal-
ability and latencies for various IPC techniques, where increasing
number of threads are performing the same task concurrently. We
use four different implementations on a vanilla Linux kernel as well
as on a real-time (RT) Linux kernel to further assess if a RT variant
of a multiuser multiprocess operating system can prevent latency
spikes and how this behavior would apply to different programming
languages and IPC techniques. We found that Linux RT can limit
the latency jitter at the cost of throughput for certain implementa-
tions. Further, coarse grained concurrency should be employed to
avoid adding up of scheduler latencies, especially for native system
space IPC, while actor systems are found to support a higher degree
of concurrency granularity and a higher level of abstraction.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; D.4.8 [Operating Systems]:
Performance—Measurements; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

Virtual Reality applications often consist of multiple aspects to han-
dle input processing, simulations, artificial intelligence, or render-
ing etc. To fully take advantage of the available processing power
of today’s multicore and/or multi-CPU architectures and to avoid
unnecessary blocking, the underlying software routines often will
utilize concurrency and asynchronous behavior. At a certain point
though, all parts have to cooperate and communicate to generate a
consistent world state which usually uses some form of IPC tech-
nique. But IPC is heavily affected by scheduler latencies. Sched-
uler latency is almost unpredictable and might show spikes at un-
controlled points in time, resulting, e.g., in micro stutters. These
outliers are presumably not perceived well and may cause increased
simulator sickness.

Even without an explicit application concurrency, scheduling
impacts the system as the available resources are shared in mul-
tiuser multitasking operating system (MMOS) commonly used to-
day. Here, real-time operating systems (RTOS) give promises about
an upper bound of scheduler latency. While they are common
in, e.g., the embedded world or cyber-physical systems, today’s
VR applications usually run on an MMOS (e.g., simply, because
there is enhanced graphics acceleration or many existing software
solutions). We investigate how different programming languages
and IPC techniques behave w.r.t latency jitter when applied on an
MMOS compared to an RTOS.

∗e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

t

t

t

n

s1 r1

s2

sn

r2

rn

.

.

.

Figure 1: Schema illustrating the test programs: Each of the n
senders is instructed at the same time to get the current timestamp,
to send it to a receiver who additionally gets a timestamp and propa-
gates back the elapsed time for logging.

2 PREVIOUS WORK

Frank et al. [3] found visual delay to be a major factor for simulator
sickness. Ivkovic et al. [4] additionally found latency to influence
the performance and experience of test subjects. While they con-
ducted tests with a time invariant latency added, Teather et al. [8]
found a reduced performance due to latency spikes. We assume
therefore that latency spikes have a similar effect on the experience
as degraded latency has. Motion-to-photon latency of VR environ-
ments has been measured using different methods, e.g. sine fit-
ting [7]. Several current approaches optimize the rendering stage,
e.g., using dynamic time warping or frameless rendering. Our re-
search focuses on a different aspect of the latency problem, namely
the latency that occurs prior to rendering, i.e., at the application
stage of a VR system.

RT systems guarantee each process to be invoked within a cer-
tain time, therefore eliminating spikes in latency for IPC when the
receiver has to wait an unbounded timespan until invokation. Most
RTOSs are for embedded systems [6] with applications in robotics
or industrial controllers. The Linux RT patch is a modification of
the Linux Kernel that enables hard realtime capabilities [2]. Im-
provements in latency often inversely affects throughput. Real-time
(getting started as quickly as possible) and real fast (getting done
quickly once started) can be considered a design choice [5].

3 METHOD

We implemented a comparable test routine using two distinct IPC
techniques and two programming languages: A thread based ver-
sion using shared memory and mutex locks in C++ and Java and a
message based communication with actors using Skala with Akka
Actors and the C++ CAF library [1]. The routines start a variable
number of pairs of threads/actors and tell the senders to get the cur-
rent nanosecond time, read an integer from a random location in a
memory block of 256k integers and send it to their peer thread/actor.
The receiver waits for the hand-over, writes the received integer to
another random position back in the memory block, reads the cur-
rent nanosecond time and logs the difference of the two timestamps
(see Figure 1). To ensure that all invoking threads/actors send at the
same time, they are synchronized with a barrier. The pseudo-code
is described in listing 1 and listing 2. The memory read/write is
intended to reliably provoke cache misses for all cases.

The tests were conducted on a system running Ubuntu 14.04
with a Linux Kernel version of 3.14.57 with and without the RT



P
R
E
P
R
IN
T

patch applied in a dual boot configuration. The CPU was an Intel c©

CoreTM i7-2700K with 4 cores and hyperthreading. The employed
JVM was an OpenJDK 2.5.6 with the Akka 2.3.11 library for Scala
Actors. We increased the number of thread/actor pairs running at
the same time by the power of two from 1 to 16. For each run,
10,000,000 samples were gathered.

barrier();

t = getTime()

x = readMemory(random)

send(t, x)

Listing 1: Sender reads the time
and a random memory location
and sends it to the receiver.

t1, x = receive()

writeMemory(random, x)

t2 = getTime()

log(t2-t1)

Listing 2: Receiver receives the
information, saves the variable
to a random memory location
and calculates how much time
has passed.

4 RESULTS

Figure 2: Plot of the latency distribution with 16 thread/actor pairs for
all 4 test cases running on MMOS (left column) and on RTOS (right
column) kernels. The x-axis shows the number of the result with the
leftmost being the first gathered latencies while the rightmost were
gathered at the end of the test run.

Figure 2 depicts the latency for each sample that took more than
the median+ 2 · standard deviation. The C++ implementations are
heavily affected by scheduler latency on the MMOS Linux and
drastically reduce latency spikes using Linux RT at the cost of some
lower overall performance only for the native threads. Both JVM-
based implementations show repeated spikes, apparently caused by
garbage collection. Here, Akka spikes are worse, as the message
system seems to suffer under the many messages that are sent to
log each result, therefore creating a lot of short-living objects. See
Table 1 for comparison.

The threaded RTOS versions exhibit an increased latency with
increasing number of threads, eventually surpassing the latency of
outliers that happen with the MMOS versions. Therefore, a very
fine-grained concurrency should be limited or an actor-based sys-
tem should be applied, potentially due to the user-space implemen-
tation of these systems. We find the RTOS performing worse in
the mean and median while also scaling worse with more threads.

Table 1: Comparison values for latencies with and without RT patch
with 16 thread/actor pairs

Max Mean Median

RT RT RT

Akka 62.9ms 17.8ms 29µs 4.1µs 6.7µs 2.2µs

Java 970.3µs 719.9µs 16.9µs 20.8µs 7.4µs 13.8µs

C++ 583µs 329.1µs 13.1µs 29.8µs 3.4µs 5µs

C++ Actor 56.9µs 21.4µs 2.2µs 2µs 2.2µs 2µs

The latency, however, is better bound with the RTOS, not only for
the C++ implementations. Without, there are repeatedly outliers
that may deteriorate the user experience and may lead to simulator
sickness.

5 CONCLUSION

Linux RT reduces latency jitter at the cost of some overall perfor-
mance in the C++ case, an acceptable trade-off for VR systems.
Additionally, system space IPC concurrency should be limited to
a certain extent of granularity to reduce the impact of scheduler
latency. Running on an RTOS, the Actor model provides a valu-
able alternative for an increased degree of concurrency granularity,
specifically using the C++ implementation. Still, with our imple-
mentation based on the Java VM, latency spikes could not be low-
ered so far as their cause is not the system scheduler but the garbage
collector (GC). Future work will evaluate if different GC implemen-
tations and parametrization can alleviate this problem.

Overall, while VR applications need concurrency and modular-
ity to handle all required software tasks, communication can induce
problems if proper care is not taken and adequate performance mea-
sures are not performed frequently as a standard procedure. We
have only looked at a basic n× (1 : 1) IPC but see the need to ex-
tend the research to test the impact of different approaches as well
as to extend the technical analysis with user-based perception stud-
ies to relate technical measures to perceived qualities, e.g., to see if
and how it makes sense to trade performance for a bounded latency.

REFERENCES

[1] D. Charousset, R. Hiesgen, and T. C. Schmidt. Caf-the c++ actor frame-

work for scalable and resource-efficient applications. In Proceedings

of the 4th International Workshop on Programming based on Actors

Agents & Decentralized Control, pages 15–28. ACM, 2014.

[2] S.-T. Dietrich and D. Walker. The evolution of real-time linux. In 7th

RTL Workshop, 2005.

[3] L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual display

and motion system delays on operator performance and uneasiness in a

driving simulator. Human Factors: The Journal of the Human Factors

and Ergonomics Society, 30(2):201–217, 1988.

[4] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe. Quantifying and

mitigating the negative effects of local latencies on aiming in 3d shooter

games. In Proceedings of the 33rd Annual ACM Conference on Human

Factors in Computing Systems, pages 135–144. ACM, 2015.

[5] P. E. McKenney. “Real Time” vs. “Real Fast”: How to Choose? In

Ottawa Linux Symposium (July 2008), pp. v2, pages 57–65, 2008.

[6] J. A. Stankovic. Real-time and embedded systems. ACM Comput. Surv.,

28(1):205–208, Mar. 1996.

[7] A. Steed. A simple method for estimating the latency of interactive,

real-time graphics simulations. In Proceedings of the 2008 ACM Sym-

posium on Virtual Reality Software and Technology, VRST ’08, pages

123–129, New York, NY, USA, 2008. ACM.

[8] R. Teather, A. Pavlovych, W. Stuerzlinger, and I. MacKenzie. Effects

of tracking technology, latency, and spatial jitter on object movement.

In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on, pages

43–50, March 2009.


