
P
R
E
P
R
IN
T

Reducing Application-Stage Latencies For Real-Time Interactive Systems

Jan-Philipp Stauffert∗

University of Würzburg

Florian Niebling†

University of Würzburg

Marc Erich Latoschik‡

University of Würzburg

ABSTRACT

Latency is a pressing problem in Virtual Reality (VR) applications.
Low latencies are required for VR to reduce perceptual artifacts and
cyber sickness. Additionally, latency jitter denotes the variance in
the pattern of latency changes which additionally may cause un-
wanted effects. This paper analyzes latency jitter caused by typi-
cal inter-thread communication (ITC) techniques commonly used
in todays computer systems employed for VR, the influence of the
operating system scheduler, and the effect of different garbage col-
lection (GC) methods to understand their effect on latency spikes,
here for different Java Virtual Machines (JVM). We measure the
scalability and latencies for various ITC techniques with an increas-
ing number of threads and actors performing prototypical concur-
rent tasks. Four different benchmark implementations on a vanilla
Linux kernel as well as on a real-time (RT) Linux kernel assess if
a RT variant of a multiuser multiprocess operating system can pre-
vent latency spikes and how this behavior would apply to different
programming languages and ITC techniques.

We confirmed that scheduler and prioritization of the VR appli-
cation both play an important role and identified the impact they
have on the implementation strategies. Also, Linux RT can limit
the latency jitter at the cost of throughput for certain implementa-
tions. As expected, the choice of a GC method also is critical and
will change the latency patterns drastically. As a result, we sug-
gest that coarse grained concurrency should be employed to avoid
adding up of scheduler latencies and unwanted latency jitter for the
native ITC case, while actor systems are found to support a higher
degree of concurrency granularity and a higher level of abstraction.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; D.4.8 [Operating Systems]:
Performance—Measurements; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

Virtual Reality applications often consist of multiple components
to handle input processing, simulations, artificial intelligence, or
rendering etc. Non-functional software quality requirements like
modularity, maintainability, and reusability can have an unforesee-
able impact on the temporal behavior of software, especially for a
Real-Time Interactive System (RIS), i.e., in Virtual, Augmented,
and Mixed Reality (VR, AR, and MR) and computer games. Due
to the complexity of many RIS applications, they are often split
into different parts to foster cohesion and decoupling. To exploit
todays’ multi-core and multi-CPU architectures and to avoid un-
necessary blocking, these parts often will be executed concurrently
or they will be completely distributed [2, 15].

At a certain point though, all parts have to cooperate and commu-
nicate to generate a consistent world state which implies some sort

∗e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

of inter-process communication (IPC) or inter-thread communica-
tion (ITC). Hence it is critical to understand the impact of IPC/ITC
on the resulting latency patterns. IPC/ITC is heavily affected by
scheduler latencies. Scheduler latency is almost unpredictable and
might show spikes at uncontrolled points in time, resulting, e.g., in
micro stutters. As a result, latency and latency jitter can severely
disturb the performance and experience of users and it can cause
simulator sickness.

Even without an explicit application concurrency, scheduling
impacts the system as the available resources are shared in mul-
tiuser multitasking operating system (MMOS) commonly used to-
day. Here, real-time operating systems (RTOS) give promises about
an upper bound of scheduler latency. While they are common in,
e.g., the embedded world or cyber-physical systems, today’s VR ap-
plications usually run on an MMOS. We investigate how different
programming languages and ITC techniques behave w.r.t latency
and latency jitter when applied to (a) an MMOS compared to (b) an
RTOS. Three languages will be used: (1) C++ to create native bina-
ries and (2) Java and Scala targeting the JVM. We finally compare
threading with mutex locks to an actor model implementation.

2 RELATED WORK

An early discussion of simulator sickness is led by McCauley et
al [17]. Frank et al. [9] found visual delay to be a major factor for
simulator sickness. Ivkovic et al. [12] additionally found latency to
influence the performance and experience of test subjects. While
they conducted tests with a time invariant latency added, Teather
et al. [22] found a reduced performance due to latency spikes. We
assume therefore that latency spikes have a similar effect on the ex-
perience as degraded latency has. Users might be able to compen-
sate for a predictable overall latency when it comes to interaction
tasks (not for the perception though) but they can’t compensate for
unpredictable latency spikes.

Recent work has been done to reduce motion-to-photon latency
of VR environments. Here, the overall goal is to apply the most
current sensor reading as late as possible in the final graphics ren-
dering stage to avoid, e.g., the application of an outdated camera
projection. This latency cause has been measured using different
methods, e.g. sine fitting [21]. Several current approaches optimize
the rendering stage, e.g., using dynamic time warping or frameless
rendering, light sensing [5], and automated frame counting [10].
Our research focuses on a different source for the latency problem,
namely the latency that occurs prior to rendering, i.e., at the appli-
cation stage of a VR system.

RT systems guarantee each process to be invoked within a cer-
tain time, therefore eliminating spikes in latency for ITC when the
receiver has to wait an unbounded timespan until invocation. Most
RTOSs are for embedded systems [20] with applications in robotics
or industrial controllers. The Linux RT-Preempt patch modifies the
Linux kernel to enable hard realtime capabilities [6]. This allows
the comparison of software performance under both operating sys-
tem flavors. Other operating systems exist only in either MMOS
or RTOS variant. Improvements in latency often inversely affects
throughput. Real-time (getting started as quickly as possible) and
real fast (getting done quickly once started) can be considered a
design choice [18].



P
R
E
P
R
IN
T

3 METHOD

We will examine differences in ITC latency jitter on a MMOS and
RTOS to evaluate whether an RTOS can prevent critical latency
spikes and how different programming languages and ITC concepts
need to be adapted. We distinguish between two platforms: Native
binaries are compared to bytecode running on the JVM. Addition-
ally, the traditional multithreading approach with threads and mu-
texes is compared to the abstraction of actors.

Threads are used for concurrent flows of execution inside of one
process. Here, mutexes allow threads mutually exclusive access to
a resource with threads waiting for a resource being able to yield
their execution time to another thread or process. Mutexes there-
fore allow for better real-time behavior than spinlocks that poll for
a resource to be available [6]. Actors on the other hand provide
an abstraction to facilitate parallel programming usually based on
threads and lock-free communication as used for VR applications
in [14]. Actors are entities that run in parallel and which solely
communicate by message passing [13].

3.1 Test Routines

We implemented a comparable test routine using two distinct ITC
techniques and two programming languages:

1. thread based using shared memory and mutex locks in C++

2. thread based using shared memory and mutex locks in Java

3. message based with actors using C++ with the CAF library [4]

4. message based with actors using Scala with Akka [16]

The routines start a variable number of pairs of threads/actors and
tell the senders to get the current nanosecond time, read an integer
from a random location in a memory block of 256k integers and
send it to their peer thread/actor. The receiver waits for the hand-
over, writes the received integer to another random position back
in the memory block, reads the current nanosecond time and logs
the difference of the two timestamps (see Figure 1). To ensure that
all invoking threads/actors send at the same time, they are synchro-
nized with a barrier. The pseudo-code is described in listing 1 and
listing 2. The memory read/write is intended to reliably provoke
cache misses for all cases. In larger applications, cache misses will
certainly occur due to the increased code and large assets, there-
fore urging the processor to load data from the slower main mem-
ory instead of the much faster caches. All tests shown here collect
10,000,000 samples. Latency jitter is introduced by, among oth-
ers, the OS scheduler, other processes and hardware interrupts that
delay the communication.

The actor implementations use default settings. Akka uses by
default a fork-join thread pool with work stealing and three times
the amount of threads than processors as target amount. Threads are
created or dismissed according to the work to do. The C++ Actor
Framework uses by default a thread pool with the same amount of
threads than processors with a central coordinating scheduler [4].

barrier();

t = getTime()

x = readMemory(random)

send(t, x)

Listing 1: Sender reads the time
and a random memory location
and sends it to the receiver.

t1, x = receive()

writeMemory(random, x)

t2 = getTime()

log(t2-t1)

Listing 2: Receiver receives the
information, saves the variable
to a random memory location
and calculates how much time
has passed.

t

t

t

n

s1 r1

s2

sn

r2

rn

.

.

.

Figure 1: Schema illustrating the test programs: Each of the n
senders is instructed at the same time to get the current timestamp,
to send it to a receiver who additionally gets a timestamp and propa-
gates back the elapsed time for logging.

3.2 Hardware

The tests were conducted on a computer running Ubuntu 14.04.3
with a Linux Kernel version of 3.14.57 with and without the RT-
Preempt patch applied in a dual boot configuration. The CPU was
an Intel c© CoreTM i7-2700K with 4 cores and hyperthreading. The
employed JVMs were an OpenJDK 2.6.3 with the Akka 2.3.11 li-
brary for Scala Actors and for GC comparison additionally the Zing
ZVM version 1.8.0-zing 15.09.0.0-b6.

3.3 Schedulers

Linux supports multiple schedulers with different use cases [3]. If
no special scheduler is requested, Linux defaults to the “other”
scheduler (SCHED OTHER). Real-time scheduling is done with
SCHED FIFO, which implements a FIFO principle, SCHED RR, a
round robin approach, or recently SCHED DEADLINE, which exe-
cutes the thread with the earliest deadline first.

The C++ implementations will use the round-robin scheduler for
it shows the best results in terms of limiting latency jitter for our use
case. The implementations running on the JVM are evaluated both
for the SCHED OTHER and the SCHED RR as they are impacted
differently by the choice of the scheduler. SCHED DEADLINE will
be evaluated in later work.

The test programs are run with the round robin scheduler at pri-
ority 90, which is above most other processes with the exception
of certain kernel processes like “watchdog” and “migration” that
are essential for the proper functioning of the OS. When using the
default scheduler, no further prioritization like nice values are used.

Hardware interrupts will nonetheless be served immediately urg-
ing other processes to wait. With threaded interrupts this time is
held as short as possible with a big part then taken care of in a ker-
nel thread that is subject to the scheduler [7].

The choice for a scheduler is a sensitive one. It should be eval-
uated which one performs best for the software at hand. While our
test implementation with Scala/Akka performs better in terms of
latency jitter with the default scheduler as shown below, it doesn’t
make any promises or efforts for real-time behavior and should not
be favored for RT scenarios.

3.4 Vanilla vs. RT-Preempt

All four implementations were run on Linux with and without the
RT-Preempt patch applied using 16 threads or actor pairs. Fig-
ure 2 depicts the latency for each sample that took more than the
median+2 · standard deviation. Table 1 shows the absolute perfor-
mance values for comparison.

The C++ implementations are heavily affected by scheduler la-
tency on the MMOS Linux and drastically reduce latency spikes
using Linux RT. The native thread implementation sees a decrease



P
R
E
P
R
IN
T

Figure 2: Plot of the latency distribution with 16 thread/actor pairs for all 4 test cases running on MMOS (right column) and on RTOS (left column)
kernels. The x-axis describes the normalized time from start to the end of a test-run while collecting 10,000,000 samples.

Max Mean Median

RT Vanilla RT Vanilla RT Vanilla

Akka 67ms 63.4ms 1.9ms 15.9ms 915.8µs 14.5ms

Java 24.7ms 23.3ms 684.2µs 106.2µs 144.3µs 67.5µs

C++ 380.2µs 577.9µs 48µs 34.8µs 43.1µs 35.3µs

C++Actor 130.8µs 72.5µs 4.1µs 3.7µs 3.5µs 3.2µs

Table 1: Comparison values for latencies with and without RT patch with 16 thread/actor pairs

in average performance with the RT patch but shows fewer outliers
that are bound to a lower maximum latency. The C++ Actor imple-
mentation benefits from the reduced maximum latency while not
suffering the same performance degradation as the native threads.
However, there are spikes in the beginning of the test run on the
RTOS which are not present on the MMOS. This hints to the actor
initialization having more impact there.

3.5 Garbage Collectors

Preliminary studies with a modified version of the here presented
tests showed the GC as a major impacting factor for latency jitter.

The Java Garbage Collection is as beneficial for the language as
it poses problems. It allows for reliable software as a consequence
of the nonexistence of memory corruptions and memory leaks. The
well known problems of the garbage collection are temporary pro-
gram stalls while the GC is conducting its work. Many application

areas don’t mind pauses in execution under 1 second. Due to Java’s
ubiquity especially in the business world, it has advanced to areas
where latency plays a crucial role for the business value like in high
frequency trading [19].

For our tests, we use the four different GCs that are implemented
in the OpenJDK, which are the Serial, Parallel, Concurrent Mark
Sweep (CMS) and G1 GCs. Additionally, the Zing JVM [23], which
promises pause free GC, is examined.

Figure 3 shows the measurements for the Scala/Akka implemen-
tation with Figure 4 showing the respective measurements for the
Java thread implementation. The time was normalized to the range
[0;1] but different settings led to differing run times. With the ex-
ception of the Zing GC, every test has information added where the
garbage collection took place. Java garbage collection is divided
into two different steps, the Young generation (YG) GC and the
Old generation (OG) GC, where short living objects are faster to



P
R
E
P
R
IN
T

Figure 3: Comparison of different GCs for the Scala/Akka implementation using 16 actors with the default Linux scheduler (SCHED OTHER)
and the round robin scheduler (SCHED RR) running on a Linux with and without the RT patch applied. The y-axis is differently scaled for each
test to better convey the individual behaviour that would otherwise get lost due to the big difference in latency behaviour.

Max Mean Median

GC Scheduler RT Vanilla RT Vanilla RT Vanilla

CMS
SCHED OTHER 67ms 63.4ms 1.9ms 15.9ms 915.8µs 14.5ms

SCHED RR 191ms 212ms 18.3ms 12ms 14.9ms 9.5ms

G1
SCHED OTHER 241ms 216.8ms 3.4ms 15.3ms 1.1ms 14.1ms

SCHED RR 235.9ms 210.6ms 45.1ms 8.8ms 28.9ms 454.8µs

Parallel
SCHED OTHER 911ms 1110.2ms 3.1ms 17.1ms 1.8ms 14.8ms

SCHED RR 3756.6ms 192ms 212.7ms 46.3ms 62.3ms 13.8ms

Serial
SCHED OTHER 631.8ms 385.1ms 4.2ms 16.4ms 1.9ms 14.9ms

SCHED RR 1423.5ms 717.4ms 90.8ms 42.6ms 58.6ms 24.4ms

Zing
SCHED OTHER 744.3ms 387.5ms 11.2ms 13.7ms 2.7ms 11.4ms

SCHED RR 720.1ms 655.6ms 137.7ms 126.6ms 4.8ms 4ms

Table 2: Comparison values for latencies for the Scala/Akka implementation running with different GCs. The tests were conducted with and
without RT patch with 16 actor pairs

get collected. Longer living objects and those surviving the YG GC
are cleaned up less often but with more impact on the system. As
the test routines are only shortlived and only create objects to pass
the results around, they mostly don’t provoke a Full Garbage Col-
lection that sweeps the OC. Depending on the GC, this can happen
nonetheless as is seen for the Serial and Parallel GC. There, spikes
in latency are the result of the longer running full GC. If full GC is
provoked for the other GCs, the impact is comparable.

The runtime and frequency of the full GC can be adjusted with

the assignment of different ratios of the available memory to the YG
and OG. This can be done to trade less frequent garbage collection
for an increased stall time of the program but doesn’t change the
phenomenon of programm pauses in general. While this makes it
possible to delay garbage collection in our tests until after the test
run, we kept the memory assignment with default values to have
our tests exhibit common behaviour.

Furthermore, the memory usage was not optimized for this case.
It is possible to work around the GC by allocating memory without



P
R
E
P
R
IN
T

Figure 4: Comparison of different GCs for the Java thread implementation using 16 threads with the default Linux scheduler (SCHED OTHER)
and the round robin scheduler (SCHED RR) running on a Linux with and without the RT patch applied. The y-axis is differently scaled for each
test to better convey the individual behaviour that would otherwise get lost due to the big difference in latency behaviour.

its knowledge that has then to be managed manually. Addition-
ally, the GC’s work can be alleviated by reusing objects. Since
these measures are not used in common Java programming, they
are omitted for the comparison here.

The tests were run with both the FIFO and the round robin sched-
uler because the decision for the SCHED RR is not as obvious as
in the C++ tests.

4 RESULTS

Both JVM-based implementations show repeated spikes, appar-
ently caused by garbage collection. Here, Akka spikes are worse,
as the message system seems to suffer under the many messages
that are sent to log each result, therefore creating a lot of short-
living objects. The values in Table 1 and Figure 2 show selected
combinations of GC and scheduler (Scala/Akka: Concurrent Mark
Sweep GC, SCHED OTHER; Java: Concurrent Mark Sweep GC,
SCHED RR). The Akka measurements show far longer mean laten-
cies which is a result of an implementation problem. The increasing
delay occurred when changing the test program to not only send
the measured latency but also the time when it occurred for log-
ging reasons. The reason for this has to be assessed in the future.
This problem makes it not possible to compare the Akka version
to the other implementations but only to itself. Preliminary studies
showed Akka’s performance comparable or better than Java’s but
were not yet replicated with different GCs.

Both actor implementations show a better scaling with more par-
allelism. More threads lead to more mean and maximum latency,
while the actor values are growing at a slower pace.

The Scala/Akka implementation shows more and larger latency
spikes with the SCHED RR which should support RT, but prof-
its from the changes to Linux with the RT-Preempt patch if no RT
scheduler is used. All test runs show outliers, which can be par-
tially explained with full GC for the Serial and Parallel GC. The
Java implementation has similar patterns for the Serial and Parallel
GC, where repeated spikes are provoked by the full GC but besides
this the latencies stay bound. The other GCs show very specific
patterns with the CMS GC exhibiting repeated spikes, the G1 GC
starting with large latencies that go down to then slowly increase
again and the Zing GC that has times with higher latencies around
certain points in time though still very low latencies in comparison
to other GCs.

We tried to introduce pauses of 1ms after each measurement to
see if the OS and GC can make use of this time window of inactiv-
ity. The Scala/Akka implementation reduced its outliers roughly by
a factor of four, which is probably due to skipping certain internal
mechanics that cause latency spikes. It is more a working around
spikes by hoping that certain characteristics fall into the pause than
a real solution. The C++ implementation showed a slight increase
in latency, which is explained by the added overhead of waking up
the main application that then invokes all the threads that have been



P
R
E
P
R
IN
T

Max Mean Median

GC Scheduler RT Vanilla RT Vanilla RT Vanilla

CMS
SCHED OTHER 57.1ms 25.9ms 4.7ms 141.6µs 201.8µs 74.2µs

SCHED RR 24.7ms 23.3ms 684.2µs 106.2µs 144.3µs 67.5µs

G1
SCHED OTHER 37.1ms 33.7ms 1.1ms 623.5µs 128µs 109µs

SCHED RR 32.5ms 31ms 734.3µs 572.9µs 125.6µs 87.8µs

Parallel
SCHED OTHER 324.4ms 750.8ms 14.8ms 27.7ms 405.3µs 563.4µs

SCHED RR 1447.5ms 761.4ms 299.6ms 172.8ms 58.1ms 49.9ms

Serial
SCHED OTHER 304.8ms 32.6ms 38.8ms 70.9µs 21.7ms 66.8µs

SCHED RR 124.3ms 165.8ms 2ms 5.2ms 198.6µs 288.8µs

Zing
SCHED OTHER 3.7ms 5.6ms 61µs 72.1µs 58.7µs 65.5µs

SCHED RR 2.9ms 3.3ms 50.8µs 90.9µs 49.3µs 83.9µs

Table 3: Comparison values for latencies for the Java thread implementation running with different GCs. The tests were conducted with and
without RT patch with 16 thread pairs

idle in the mean time.

While we tried CPU pinning for the thread implementations, it
didn’t affect the measurements. CPU pinning describes the process
of assigning a thread to a CPU. If this is not done, the scheduler is
free to schedule a thread each time it is resumed on a different CPU.
If a thread changes the CPU, the cache of the new CPU might not
have pre-loaded the required data and additional time is wasted to
load the program code and data. This is most likely due to our
implementation being too small in terms of executable size to make
a difference. Other use cases e.g. in big data applications found
a significant improvement of throughput by assigning threads to
CPUs [8].

5 DISCUSSION

The threaded RTOS versions exhibit an increased mean and max-
imum latency with increasing number of threads, eventually sur-
passing the latency of outliers that happen with the MMOS ver-
sions. Therefore, a very fine-grained concurrency using many OS
threads should be limited or an actor-based system should be ap-
plied. An actor-system implemented in user-space can make bet-
ter use of the application’s concurrency without burdening the OS
scheduler with huge amounts of threads. We find the RTOS per-
forming worse in the mean and median while also scaling worse
with more threads. The scaling is negatively affected by the ad-
ditional scheduling complexity in Linux RT where mutexes in the
kernel lead to more context switches and therefore more overhead.
The latency, however, is better bound with the RTOS, not only for
the C++ implementations. Without, there are repeatedly outliers
that may deteriorate the user experience and may lead to simulator
sickness.

Applications can change their behaviour in different environ-
ments. Therefore, it is important to test every application in differ-
ent settings to determine the best configuration. Here, the C++ Ac-
tors have an initialization cost under Linux RT and should therefore
be created in program sections where latency outliers have lesser
impact. With the unpatched Linux, this adaptation is not needed.
Even more varying behaviour is shown by our Akka test, which
performs better either on the patched or unpatched Linux depend-
ing on the scheduler and garbage-collector.

Furthermore, the JVM does a lot of optimizations behind the
scenes [11] that we did not fully account for that can lead to dif-
ferent behaviour in other scenarios. The test applications presented
here are small and run fast to allow quick testing of various settings.
Larger applications might be handled differently and get more and
more optimized the longer they are running. In the financial sec-
tor, some JVMs are “warmed up” for hours before they are put in
production [1].

Only 1:1 communication with a certain amount of threads/actors
in parallel at the same time was investigated. In a VR application,

the communication might not be in sync. Input devices will report
their measurements at different times and their messages are prop-
agated through the program components in different paths. The
amount of entities taking part in a communication will vary. This
research is trying to start the evaluation of latency jitter sources for
a restricted communication pattern, which will be present in more
complicated settings as well.

The analysis only sheds light onto a very selected piece of VR
applications. Even in this restricted test setting, there are many
influencing factors that can provoke latency spikes that can only
partially be avoided. Hardware/firmware interrupts can influence
the CPU in a way that is not preventable from an application side.
Bigger applications will suffer from even more sources of latency
due to the underlying hardware and operating system, which makes
controlling latency jitter even more difficult.

6 CONCLUSION

Linux RT reduces latency jitter at the cost of some overall perfor-
mance in the C++ case, an acceptable trade-off for VR systems.
Additionally, system space ITC concurrency should be limited to
a certain extent of granularity to reduce the impact of scheduler
latency. Running on an RTOS, the Actor model provides a valu-
able alternative for an increased degree of concurrency granular-
ity, specifically using the C++ implementation. Still, with our im-
plementation based on the Java VM, latency spikes could not be
lowered so far as their cause is not the system scheduler but the
GC. Different GCs provoke special latency patterns that need to be
found out for every application anew and be considered. As long as
a language running on the JVM is the choice for a VR project, the
GC has to be accounted for.

Overall, while VR applications need concurrency and modular-
ity to handle all required tasks, communication can induce prob-
lems if proper care is not taken and adequate performance measures
are not performed frequently as a standard procedure. We have only
looked at a basic n× (1 : 1) ITC but see the need to extend the re-
search to test the impact of different approaches as well as to extend
the technical analysis with user-based perception studies to relate
technical measures to perceived qualities, e.g., to see if and how it
makes sense to trade performance for lower latency spikes.

There is a need for special hardware and software to avoid la-
tency jitter and provide an immersive experience. The VR commu-
nity has identified the problem of latency and is working on it. We
want to stress that low mean latency is not enough but the jitter has
to be kept low as well.

REFERENCES

[1] Azul Preps Java For Trading – Avoid Practice Trades Leaking

Into Markets - Forbes. http://www.forbes.com/sites/

tomgroenfeldt/2014/03/20/azul-preps-java-for-



P
R
E
P
R
IN
T

trading-avoid-practice-trades-leaking-into-

markets/#33d6bbbe2c78. Accessed: 2016-02-01.

[2] T. Arcila, J. Allard, C. Ménier, E. Boyer, and B. Raffin. Flowvr: A

framework for distributed virtual reality applications. Journees de

lAFRV, 2006.

[3] D. P. Bovet and M. Cesati. Understanding the Linux kernel. ” O’Reilly

Media, Inc.”, 2005.

[4] D. Charousset, R. Hiesgen, and T. C. Schmidt. Caf-the c++ actor

framework for scalable and resource-efficient applications. In Pro-

ceedings of the 4th International Workshop on Programming based

on Actors Agents & Decentralized Control, pages 15–28. ACM, 2014.

[5] M. Di Luca. New method to measure end-to-end delay of virtual real-

ity. Presence: Teleoper. Virtual Environ., 19(6):569–584, Dec. 2010.

[6] S.-T. Dietrich and D. Walker. The evolution of real-time linux. In 7th

RTL Workshop, 2005.

[7] J. Edge. Moving interrupts to threads [LWN.net], Oct. 2008.

[8] A. Foong, J. Fung, and D. Newell. An in-depth analysis of the im-

pact of processor affinity on network performance. In Networks,

2004.(ICON 2004). Proceedings. 12th IEEE International Conference

on, volume 1, pages 244–250. IEEE, 2004.

[9] L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual

display and motion system delays on operator performance and un-

easiness in a driving simulator. Human Factors: The Journal of the

Human Factors and Ergonomics Society, 30(2):201–217, 1988.

[10] S. Friston and A. Steed. Measuring latency in virtual environ-

ments. Visualization and Computer Graphics, IEEE Transactions on,

20(4):616–625, April 2014.

[11] V. Hork, P. Libi, A. Steinhauser, and P. Tma. DOs and DON’Ts

of Conducting Performance Measurements in Java. pages 337–340.

ACM Press, 2015.

[12] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe. Quantifying

and mitigating the negative effects of local latencies on aiming in

3d shooter games. In Proceedings of the 33rd Annual ACM Confer-

ence on Human Factors in Computing Systems, pages 135–144. ACM,

2015.

[13] R. K. Karmani and G. Agha. Actors. In Encyclopedia of Parallel

Computing, pages 1–11. Springer, 2011.

[14] M. Latoschik and H. Tramberend. A scala-based actor-entity architec-

ture for intelligent interactive simulations. In Software Engineering

and Architectures for Realtime Interactive Systems (SEARIS), 2012

5th Workshop on, pages 9–17, March 2012.

[15] M. E. Latoschik and H. Tramberend. A scala-based actor-entity ar-

chitecture for intelligent interactive simulations. In Software Engi-

neering and Architectures for Realtime Interactive Systems (SEARIS),

2012 5th Workshop on, pages 9–17. IEEE, 2012.

[16] Lightbend. Akka, 2016.

[17] M. McCauley, L. Hettinger, T. Sharkey, and J. Sinacori. The effects

of simulator visual-motion asynchrony on simulator induced sickness.

American Institute of Aeronautics and Astronautics, 2015/11/26 1990.

[18] P. E. McKenney. “Real Time” vs. “Real Fast”: How to Choose? In

Ottawa Linux Symposium (July 2008), pp. v2, pages 57–65, 2008.

[19] L. O. Ramirez. High frequency trading. Technical report, Working

Paper, 2011.

[20] J. A. Stankovic. Real-time and embedded systems. ACM Comput.

Surv., 28(1):205–208, Mar. 1996.

[21] A. Steed. A simple method for estimating the latency of interactive,

real-time graphics simulations. In Proceedings of the 2008 ACM Sym-

posium on Virtual Reality Software and Technology, VRST ’08, pages

123–129, New York, NY, USA, 2008. ACM.

[22] R. Teather, A. Pavlovych, W. Stuerzlinger, and I. MacKenzie. Effects

of tracking technology, latency, and spatial jitter on object movement.

In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on, pages

43–50, March 2009.

[23] G. Tene, B. Iyengar, and M. Wolf. C4: The continuously concurrent

compacting collector. ACM SIGPLAN Notices, 46(11):79–88, 2011.


