
Semantics-based Software Techniques for Maintainable Multimodal Input
Processing in Real-time Interactive Systems

Martin Fischbach∗

University of Würzburg
Dennis Wiebusch†

University of Würzburg
Marc Erich Latoschik‡

University of Würzburg

ABSTRACT

Maintainability, i.e. reusability, modifiability, and modularity, is
a critical non-functional quality requirement, especially for soft-
ware frameworks. Its fulfilment is already challenging for low-
interactive application areas. It is additionally complicated by com-
plex system designs of Real-time Interactive Systems (RISs), re-
quired for Augmented, Mixed, and Virtual Reality, as well as com-
puter games. If such systems incorporate AI methods, as required
for the implementation of multimodal interfaces or smart environ-
ments, it is even further exacerbated. Existing approaches strive to
establish software technical solutions to support the close temporal
and semantic coupling required for multimodal processing and at
the same time preserve a general decoupling principle between in-
volved software modules. We present two key solutions that target
the semantic coupling issue: (1) a semantics-based access scheme
to principal elements of the application state and (2) the specifi-
cation of effects by means of semantic function descriptions for
multimodal processing. Both concepts are modeled in an OWL
ontology. The applicability of our concepts is showcased by a pro-
totypical implementation and explained by an interaction example
that is applied for two application areas.

Index Terms: D.2.11 [Software Engineering]: Software
Architectures—; H.5.2 [Interfaces and Presentation]: User
Interfaces—

1 INTRODUCTION

Multimodal interfaces often provide a more natural means of inter-
action [11, 24] and increase flexibility and reliability [1, 5]. Specif-
ically, they provide promising alternative interaction techniques for
Real-time Interactive Systems (RISs) in Augmented, Mixed, and
Virtual Reality (AR, MR, and VR) [14], where the application of
classical metaphors and input devices often is restricted or not pos-
sible at all.

Today, several frameworks support the development of multi-
modal interfaces for various application areas [1, 11, 19, 21, 23, 24].
Most of them foster maintainability, i.e. reusability, modifiability,
or modularity [12], to counter the negative impacts of ad-hoc tai-
lored application-specific solutions. However, their application to
the RIS area is not as straightforward as one would expect. This
issue is even further exacerbated, if such systems incorporate ar-
tificial intelligence (AI) methods, as often required for the imple-
mentation of multimodal interfaces [7, 14, 16]. Such intelligent
RISs require a close temporal as well as semantic coupling of many
multimodal processing steps. This is due to the fact that utterances
are strongly related to the dynamically changing state of the virtual
environment, perceived by the user, and the necessity of a com-
mon ground to resolve gestural and verbal expressions. The close

∗e-mail: martin.fischbach@uni-wuerzburg.de
†e-mail: dennis.wiebusch@uni-wuerzburg.de
‡e-mail: marc.latoschik@uni-wuerzburg.de

coupling requirements call for alternative software techniques for
multimodal processing frameworks in order to satisfy the general
decoupling principle of frameworks.

This article focuses on the issue of semantic coupling and uses
the following example interaction to highlight the proposed solu-
tions. A user furnishes a virtual room in an architectural modeling
application. She wants to relocate a particular green lamp from one
table to another and utters:

“Grab [pointing] that green device. Put it on [pointing]
that table.”

Our example is motivated by typical put-that-there interactions
as introduced by Bolt [2]. The example is realized for (I1) a fully
immersive virtual reality application, where pointing signifies a nat-
ural pointing gesture performed with the user’s whole arm and for
(I2) a mixed reality application on an interactive surface, where
pointing signifies the user’s finger touching a certain point on the
interactive surface. Here, the semantic coupling is as follows: Pro-
cessing of the first speech token will require to (1) check if there
is an executable action that is associated with semantic concept
grab. Thereafter, the processing of the first pointing gesture will
require to resolve what objects can be found in the pointing direc-
tion, (2) are a device, and (3) are colored green. In addition, it
is required to (4) check if the referent is a valid parameter for the
corresponding action, i.e. if it is movable. Likewise, the second
sentence has to be processed. However, the application state has
to reflect the selection of the lamp in the first sentence, in order to
allow the resolution of the pronoun it.

2 RELATED WORK

Multimodal processing frameworks provide different sets of meth-
ods for multimodal processing and fusion at data-, feature-, and
decision-level. Moreover, they utilize high-level graphical [19, 23]
or text-based [1, 11, 14, 24] languages in order to increase API us-
ability [3, 4], e.g., programmability or readability [5]. Generally,
these frameworks foster maintainability by utilizing software en-
gineering methods like modularization and composition [11, 23],
component models [21, 24], or explicit interface definitions [14].

However, current application-independent frameworks struggle
to provide a unified access scheme to the application state. This
missing interface is a potential source for idiosyncratic implemen-
tations with poor reusability, modifiability, and modularity. While
this issue is negligible for low-interactive application areas, it is
a major issue for intelligent RISs. Multimodal frameworks that
explicitly target intelligent RISs, like Latoschik’s framework com-
prising PrOSA (Patterns On Sequences of Attributes) and tATNs
(temporal Augmented Transition Networks) [14], typically provide
a unified access scheme to the application state. However, such
frameworks are often closely coupled to the underlying RIS plat-
form and its main modules. In the case of [14], the unified access
to a central Knowledge Representation Layer (KRL) proved to be
of great benefit, e.g., for resolving pointing gestures. However, its
heavy dependency on a proprietary scene graph hindered the long-
lasting reusability of the framework. This coupling dilemma is a
prominent problem in the RIS area [18]. In addition to those is-
sues, a complete evaluation of a multimodal processing framework

man
us

cri
pt

1 val Spine = EntityType(spine)
2 val RightHand = EntityType(hand) and Chirality(Right) and Reference(sensor)
3 val RightHandRel = EntityType(hand) and Chirality(Right) and Reference(spine)
4

5 Start a new Processor { //that
6 Requires property Transformation from RightHand
7 Requires property Transformation from Spine
8 Creates entity ‘with‘ properties RightHandRel
9 Updates the Transformation of entity RightHandRel ‘with‘{

10 (Transformation of RightHand) relativeTo (Transformation of Spine)
11 }}

Listing 1: DSL-supported definition of semantic entity references by means of an enumeration of semantic values (lines 1-3). Semantic values
are created by combining a semantic type (blue) with an appropriate value, in this case a semantic concept (brown). In addition, DSL-supported
definition of a new thread of execution (Processor) that calculates the position of the user’s left relative to her spine (lines 5-11): Required
properties are described using semantic types and semantic entity references (purple, lines 6-7), a new sink entity is created (line 8), and a
semantic function (orange) is used to define the calculation rule (lines 9-10). Since the DSL is defined using a native programming language, it
can exploit sophisticated IDE features like syntax checks or auto-completion.

should ideally include (1) performance measures, (2) the evalua-
tion of its API usability, as well as (3) a quality evaluation of sup-
ported processing methods. While (1) is paramount for RIS ap-
plications, (2) and (3) apply to all application areas. In some cases,
accompanying performance analyses [11, 21] or developer and end-
user usability evaluations [23] are reported. Beyond, the major-
ity of contributions presents proof-of-concept applications as val-
idation, leaving critical framework properties and potentially con-
ducted evaluations unclear.

To our best knowledge there are no contributions that focus on
the comprehensive evaluation or comparison of alternative multi-
modal processing techniques. We claim that this is at least partly
due to the software quality problems discussed so far, especially
involving a missing reusable unified access scheme.

Altogether, the area of multimodal processing for RIS currently
lacks a platform that provides unified access to a global application
state and at the same time sufficiently fosters maintainability. Such
a platform would additionally provide an important step towards
pending evaluations of existent multimodal processing techniques.

In the next sections, we will present two key solutions for the
motivated issues: (1) a semantics-based access scheme to a glob-
ally accessible application state and (2) the specification of ef-
fects by means of semantic functions, which are suitable for multi-
modal processing. In contrast to work of others, e.g., Latoschik’s
FESN [17], we use standardized tools to further increase reusabil-
ity. Moreover, our semantic description is directly connected to
first-class citizens of the target programming language via a code
generation approach.

3 SEMANTIC-BASED STATE ACCESS

Our globally accessible application state involves the adoption of
an entity model, a widely accepted approach to represent a RIS
application state [22]. Therein, semantic entities are represented
as a set of properties which are described by semantic types, as
presented by [28]. Such semantic types consist of a corresponding
data type and a semantically represented concept, wherefore they
provide basic support for semantic reflection [15]. Both the type
and the concept are specified in a Web Ontology Language (OWL)
ontology, which can be split over multiple files. Thereby, a modular
architecture that comprises core concept files as well as (reusable)
application specific ones is facilitated.

Type and concept definitions are supposed to be automatically
transformed into respective code representations in the target pro-
gramming language, allowing for their utilization in an eventual
framework (see figure 1). In contrast to our previous work on
semantic-based access schemes [26], which focuses on creating and

relating entities as well as on observing and modifying properties
of those entities, the approach presented in this paper deals with
selecting entities from the global state using semantic descriptions.

We recall the interaction example I1 from the introduction to il-
lustrate the presented concepts: the user of a fully immersive virtual
environment points at a green lamp and utters her desire to put it
onto a table. In this context, e.g., the lamp is represented by a se-
mantic entity, which (at least) contains a color and a transformation
property (shown in the upper parts of figures 1 and 2).

Upon their creation, semantic entities are inserted into a central
registry, which also is illustrated in the upper part of figure 2. In
order to access existing entities—which constitute the entire ap-
plication state—the central registry can be queried by passing an
entity filter. Entity filters can process properties of semantic enti-
ties, check the existence of properties, or even utilize concepts like
semantic traits (as suggested by [28]) to decide if a semantic en-
tity meets the filter’s criteria. The central registry answers such a
request by returning all entities that match the filter.

The utilization of entity filters for multimodal processing is ex-
emplified in listing 1: semantic entity references for the user’s spine
and right hand are defined in lines 1–3. Those references are used
to create respective entity filters and query the central registry in
lines 6 and 7. The results are then used by the thread of execution
that realizes the defined processing step (called a Processor).

OWL Code

Transformation

EntityType

Velocity

Transformation

EntityType

Velocity

selectto_select

to_grab

select hasEffect
hasEffect

SelectAction

hasEffect

simx.action.selectimplementedBy

smallLamp

grab

lamp

Color

SemanticType

SemanticEntity

green green

SemanticFunction

hasReturnType
hasParameterType

hasProperty

Device device
Lamp

Color

Figure 1: A conceptual overview of ontology contents and generated
code elements: semantic concepts (brown), semantic types (blue),
and semantic functions (green).

man
us

cri
pt

Globally Accessible Registry

Feature Level

Decision Level

Data Level

hasPart

hasPart

hasPart

<<SemanticEntity>>
Hand#2

EntityType
Transformation

Velocity

<<SemanticEntity>>
Spine#1

EntityType
Transformation

<<SemanticEntity>>
Table#1

Transformation
EntityType

<<SemanticEntity>>
Lamp#42

Transformation
Color

EntityType

Legend

Message passing using
semantic types

Speech Recognizer
User#1

Tracking
Spine#1
Hand#2 FeatureExtractor#1

Hand#2
Elbow#2

User#1

FeatureExtractor#3
Hand#2
Spine#1

User#1
FeatureExtractor#2

Hand#2 Hand#2

Neural Network
Hand#4
Hand#2

User#1

Part-of-speech Tagger
User#1 User#1

Fusion
User#1
Lamp#42

Application
Invoke function Select(e)

Module
Calculation Result

Runtime
Source Entity

Runtime
Sink Entity

Processor

<<SemanticEntity>>
User#1

EntityType
PointingRay

Gesture
Token

PartOfSpeech

Transformation of
RightHandRel

Velocity of
RightHand

Gesture
(pointing)

PartOfSpeech
(grab) Token("Grab")

PointingRay of
User

Gesture of User
PartOfSpeech of

User

Action(select)
Entity(Lamp#42)

PointingRay between (Transformation of
RightHand, Transformation of RightElbow)

(Transformation of RightHand) relativeTo
(Transformation of Spine)

Velocity calculatedFrom
(Transformation of RightHand)

Token
("Grab")

Transformation
(ConstMat4(...))

Internal calculations

Figure 2: A conceptual overview of the utilization of the presented semantics-based techniques throughout the first sentence of example I1: At
data level, sensor data is mapped to semantic values (blue with subsequent value in braces) and associated with properties of semantic entities.
Moreover, additional features are extracted from the tracking data using semantic functions (orange). At feature level, higher level symbolic
properties, i.e. semantic concepts (brown), are derived. The results are fused at decision level and passed to the application. All levels use
semantic types (blue), semantic values and semantic entity references (purple) to define requirements and provide their results to the application
state by updating the associated semantic entity property.

4 SEMANTIC FUNCTIONS

In order to support a uniform definition of actions and processing
steps, we propose an approach similar to semantic entities for re-
occurring application- or domain specific functions: semantic func-
tions. Their semantics and signature are described in the system’s
external OWL ontology, using semantic types for parameters and
results. The respective interfaces for their application and imple-
mentation are created in the above-mentioned process of automatic
code generation from that ontology. This way, the utilization of
a semantic function removes implementation details from the de-
scription of a calculation rule or action sequence, while preserv-
ing (semantic) type safety. Semantic functions typically implement
low-level computation methods to process (sensor) data as well as
high-level actions that modify the application state.

In our example, low-level functions are used to process sensor
data in order to extract features suitable to improve the pointing
gesture detection, whereas the high-level selection function vi-
sually highlights a semantic entity: the velocity of the user’s hand
and its position relative to the spine are computed from data pro-
vided by the utilized tracking client. In the process, the concrete ve-
locity value is obtained by invoking the respective semantic type’s
calculatedFrom function and accessing the hand’s transforma-
tion using a semantic type (see figure 2, FeatureExtractor#2). Sim-
ilarly, the relative position is computed using the relativeTo
function (see listing 1 and figure 2, FeatureExtractor#3).

Computed properties are stored in entities and accessed via the
KRL by other modules (shown in the lower right of figure 2): ve-
locities, transformations, and relative positions are fed into a neural
network that is able to detect gestures. Detection results are in-
serted into the respective entity property and subsequently available
via the associated semantic type Gesture. Similarly, the part-of-
speech tagger maps detected tokens to semantic concepts, e.g., the
word “grab” to the concept grab. Verbs denote functions, whereas
adjectives represent properties and nouns represent entities. The
associated semantic functions, semantic entities, and their proper-

ties are accessed, utilizing the ontological grounding. For example,
the adjective “green” is identified to be an instance of the semantic
type Color and “grab” is detected to denote a SelectAction
(cf. figure 1).

With this information, the fusion module determines the entity
referenced by the user: the central registry is queried using an entity
filter that includes all user-specified and semantically described fea-
tures. Finally, the application executes the previously determined
semantic function select, passing the identified entity.

5 IMPLEMENTATION

The implementation of the presented concepts is realized within the
Simulator X framework [13], an open source research platform for
RIS applications. It already provides beneficial aspects regarding
maintainability, which especially include an entity model and an
architecture that is built on the actor model [10]. This entity model
is composed of semantic entities that are realized by means of se-
mantic types. Moreover, semantic functions are utilized to define
actions and processing steps.

Both, semantic types and semantic functions are defined in an
OWL ontology and automatically transformed into the the used pro-
gramming language Scala (see figure 3). In addition to the runtime
references of semantic types, -values, and -functions to the appli-
cation’s ontology, the entity model facilitates the representation of
relations between entities (for details see listings 6, 7, and 8 in the
appendix). Dedicated reasoning software, like HermiT or Pellet,
can thus be used to infer new information about semantic entities
and add inferred information to the application’s state. In the same
way, information about the current state of the simulation can be
added to the ontology and in turn be used by the reasoning soft-
ware.

The presented techniques extend the Simulator X platform and
constitute essential building blocks of the Multimodal Input PRO-
cessing framework miPro [16]. miPro is built upon Simulator X
and provides a uniform description language for interconnecting

man
us

cri
pt

relativeTo(Transformation)

value
timestamp
ONTO_LINK

Transformation

apply(ConstMat4, Long)

<<singleton>>
Transformation

SemanticType

SemanticValue

generation compiling

value = ConstMat4(...)
timestamp = 1474364016L
ONTO_LINK = "Descriptions.owl#

 TransformationDescription"

LeftHand:Transformation

value = ConstMat4(...)
timestamp = 1474364000L
ONTO_LINK = "Descriptions.owl#

 TransformationDescription"

Head:Transformation

has
DataType

Transform
RelativeTo
Transform

SemanticFunction

Transformation
Description

Core
Component

ConstMat4f

Transformation

SemanticType

has
Paramenter

has
ReturnValue

for
Component

...

Figure 3: A an overview of the transformation of OWL definitions into Scala code and their usage: Semantic types and semantic functions are
defined in an OWL ontology (see listings 2 and 3 in the appendix for details). Before the actual implementation, these definitions are used to
automatically generate respective Scala first-class citizens (see listing 4 in the appendix for details). During the implementation phase, semantic
types can be combined with actual values to create new instances of so called semantic values (see listing 5 in the appendix for details), to
query semantic entity properties, or to apply semantic functions (cf. listing 1). During runtime on the Java Virtual Machine (JVM), semantic types,
-values, and -functions still have a reference to the application’s OWL ontology.

multimodal processing steps, as showcased in listing 1. Using Sim-
ulator X and miPro results in multiple benefits, as discussed below.

Simulator X is implemented using the programming language
Scala. Due to the uniform definition of semantic types and func-
tions as well as Scala’s capability to omit the dot operator in certain
cases, it is feasible to create convenient Domain Specific Languages
(DSLs) that foster API usability. This feature is especially utilized
by the description language of the miPro framework.

The benefits of a generative approach regarding maintainability
include the reduction of potentially misused identifiers, the incor-
poration of a reference to the concepts’ ontological definition, the
resulting connection to relations to other concepts, and the possi-
bility to specify knowledge about application content outside of the
actual program code.

Moreover, the set of all registered entities and the described
semantics-based access constitute a core-level KRL. Its architecture
is similar to a blackboard model [20]. However, there is no multi-
agent system in our framework, which is concurrently working on
the blackboard. In addition, we do not use high-level messages like
KIF/KQML [6], reducing marshaling overhead.

The semantics-based approach decouples the process of access-
ing the application state from the actual implementation of the RIS
framework. This way, application developers can create software
without knowing about the exact composition of software compo-
nents, e.g., in terms of used classes and data types. Thus, changes
to this composition that retain its feature set do not affect an ap-
plication. Therefore, development, integration, and replacement of
framework components is immensely simplified.

Altogether, the implementation allows for maintaining the func-
tionalities that have been created for the interaction example I1 and
to reuse them in the second example I2: Therein a pointing gesture
would not be detected by a neural network but directly extracted
from the touch on the interactive surface. Due to the coupling on
a semantic level, all other parts of the application can be retained.
Similarly, an alternative implementation of the select function
can be provided, which fits the new application’s needs. On a higher
level, complete simulation modules can be easily exchanged. For
example, the 3D rendering component used for I1 can be replaced
by a more appropriate 2D renderer.

6 RESULTS

The presented semantics-based techniques support maintainability
in various facets: Types and functions are decoupled by means of
semantic concepts. This eases their reuse in different multimodal

applications. For instance, the select function is useful in many
applications and can be utilized with minimal effort. The same is
true for types like color or transformation. In addition, the approach
of generating semantic types and semantic functions from an ontol-
ogy fosters reusability.

Existing reasoning modules can be (re)used to query the cen-
tral registry, e.g., to be able to handle the utterance “Grab [point-
ing] that green light” by matching light with the semantic concept
lamp. Moreover, the definitions of semantic entities and semantic
functions become independent of the target programming language.
They thus can be reused for many different RIS platforms.

Our implementation of these concepts on top of Simulator X
furthermore supports the reuse of many processing steps even in
different application areas with divergent module configurations.
This is due to decoupling, achieved by the core-level integration of
semantics-based software techniques; a unique characteristic of our
approach.

Semantic types and semantic functions are also beneficial in
terms of flexibility, since all specifications are based on semantic
concepts—not data types. This allows to better cope with changes
or diversity of underlying data types. The representation of a trans-
formation or color, for example, can be altered requiring no changes
in high-level DSL descriptions and only minor changes in the data-
type related low-level (function) implementations. The required ef-
fort can be additionally reduced using automatic type converters,
as proposed by [27]. Moreover, semantic functions can be easily
adapted in the ontology, e.g., to accept alternative verbs for a se-
lection task. Likewise, semantic types and semantic functions are
extended by adding new elements to the respective OWL file. For
those use cases, we developed a plugin for the protégé OWL editor
that extends existing editing capabilities.

All our software components provide an OWL file, which im-
ports a set of basic concept definitions that is shared by all com-
ponents. These shared concepts comprise basic semantic types, for
example position, rotation, color, and simple relations (e.g., has-
part). Each software component adds specific concepts, which are
relevant for its functionality. Finally, each application combines
the files of the used components and addditional domain specific
concepts, resulting in the applications knowledge base. A possible
structure for such ontologies, which is currently applied by the open
source Simulator X framework, is described in [25].

We believe that, in the long term, ontology files with common
basic concepts as well as files that are shared between components
of the same type (e.g., renderers or physics engines) will evolve. Al-

man
us

cri
pt

though there will most probably be a certain part of the domain spe-
cific ontology that is specific to one application, other parts could
be split into multiple reusable files.

7 CONCLUSION

The presented semantics-based access to a globally accesible appli-
cation state and semantic functions are general software techniques
to address the requirement of close semantic coupling. They sup-
port maintainability even under the challenging conditions of the
RIS domain. Due to their intrinsic semantic grounding they are
especially suitable for intelligent RISs, as required for the imple-
mentation of multimodal interfaces. They provide a valid solution
for the coupling dilemma and are also applicable for the definition
of application logic.

The evaluation of maintainability beyond expert reviews is an
important target of our ongoing research, which is no easy endeavor
due to the complexity of the systems. First static as well as dy-
namic code analyses have been conducted for Simulator X [25].
Explorations and proof of concept evaluations have been done in
the scope of various VR and MR projects [8, 9, 29]. In addition, we
use the framework for practical parts of lecture modules. Simula-
tor X and miPro are available to the public to enable feedback for
maintainability refinement and to promote reuse.

REFERENCES

[1] A. Ameri Ekhtiarabadi, B. Akan, B. Çürüklu, and L. Asplund. A
General Framework for Incremental Processing of Multimodal Inputs.
In Proceedings of the 13th International Conference on Multimodal
Interfaces, ICMI ’11, pages 225–228. ACM, 2011.

[2] R. A. Bolt. ,,put-that-there”: Voice and gesture at the graphics in-
terface. In Proceedings of the 7th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’80, pages 262–
270, New York, NY, USA, 1980. ACM.

[3] S. Clarke. Measuring API usability. Dr. Dobb’s Journal, 2004.
[4] J. M. Daughtry, U. Farooq, J. Stylos, and B. A. Myers. Api usability:

Chi’2009 special interest group meeting. In CHI ’09 Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA ’09, pages
2771–2774. ACM, 2009.

[5] B. Dumas, D. Lalanne, and S. Oviatt. Multimodal interfaces: A sur-
vey of principles, models and frameworks. In Human Machine Inter-
action, pages 3–26. Springer, 2009.

[6] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson,
D. McKay, S. Shapiro, J. McGuire, R. Pelavin, and C. Beck. Specifi-
cation of the kqml agent-communication language. 1994.

[7] M. Fischbach. Software techniques for multimodal input processing in
realtime interactive systems. In Proceedings of the 17th International
Conference on Multimodal Interaction (ICMI ’15), ICMI’15. ACM,
2015.

[8] M. Fischbach, D. Wiebusch, A. Giebler-Schubert, M. E. Latoschik,
S. Rehfeld, and H. Tramberend. SiXton’s curse - Simulator X demon-
stration. In Virtual Reality Conference (VR), 2011 IEEE, pages 255–
256, 2011.

[9] M. Fischbach, D. Wiebusch, M. E. Latoschik, G. Bruder, and
F. Steinicke. Blending Real and Virtual Worlds Using Self-reflection
and Fiducials. In ICEC, volume 7522 of Lecture Notes in Computer
Science, pages 465–468. Springer, 2012.

[10] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, IJCAI’73, pages
235–245. Morgan Kaufmann Publishers Inc., 1973.

[11] L. Hoste, B. Dumas, and B. Signer. Mudra: A Unified Multimodal In-
teraction Framework. In Proceedings of the 13th International Con-
ference on Multimodal Interfaces, ICMI ’11, pages 97–104. ACM,
2011.

[12] ISO. Systems and software engineering – systems and software qual-
ity requirements and evaluation (square) – system and software qual-
ity models. ISO ISO/IEC 25010:2011, International Organization for
Standardization, Geneva, Switzerland, 2011.

[13] M. Latoschik and H. Tramberend. Simulator X: A scalable and con-
current architecture for intelligent realtime interactive systems. In Vir-
tual Reality Conference (VR), 2011 IEEE, pages 171–174, 2011.

[14] M. E. Latoschik. A User Interface Framework for Multimodal VR
Interactions. In Proceedings of the 7th International Conference on
Multimodal Interfaces, ICMI ’05, pages 76–83. ACM, 2005.

[15] M. E. Latoschik. Semantic reflection–knowledge based design of in-
telligent simulation environments. KI 2007: Advances in Artificial
Intelligence, pages 481–484, 2007.

[16] M. E. Latoschik and M. Fischbach. Engineering Variance: Soft-
ware Techniques for Scalable, Customizable, and Reusable Multi-
modal Processing. In Proceedings of the HCI International Confer-
ence, pages 308–319. Springer, 2014.

[17] M. E. Latoschik and M. Schilling. Incorporating VR databases into
AI knowledge representations: A framework for intelligent graphics
applications. In Proceedings of the Sixth IASTED International Con-
ference on Computer Graphics and Imaging, pages 79–84, 2003.

[18] M. E. Latoschik and H. Tramberend. Short Paper: Engineering Re-
altime Interactive Systems: Coupling & Cohesion of Architecture
Mechanisms. In Proceedings of the 16th Eurographics Conference
on Virtual Environments & Second Joint Virtual Reality, EGVE -
JVRC’10, pages 25–28. Eurographics Association, 2010.

[19] J.-Y. L. Lawson, A.-A. Al-Akkad, J. Vanderdonckt, and B. Macq.
An Open Source Workbench for Prototyping Multimodal Interactions
Based on Off-the-shelf Heterogeneous Components. In Proceedings
of the 1st ACM SIGCHI Symposium on Engineering Interactive Com-
puting Systems, EICS ’09, pages 245–254. ACM, 2009.

[20] H. Nii. The blackboard model of problem solving and the evolution
of blackboard architectures. AI magazine, 7(2):38, 1986.

[21] M. Serrano, L. Nigay, J.-Y. L. Lawson, A. Ramsay, R. Murray-Smith,
and S. Denef. The Openinterface Framework: A Tool for Multimodal
Interaction. In Extended Abstracts on Human Factors in Computing
Systems, CHI EA, pages 3501–3506. ACM, 2008.

[22] A. Steed. Some Useful Abstractions for Re-Usable Virtual Environ-
ment Platforms. In M. E. Latoschik, D. Reiners, R. Blach, P. Figueroa,
and R. Dachselt, editors, IEEE VR Workshop on Software Engineer-
ing and Architectures for Realtime Interactive Systems, pages 33–36.
Shaker Verlag, 2008.

[23] W. W. Tang, K. W. Lo, A. T. Chan, S. Chan, H. V. Leong, and G. Ngai.
I*Chameleon: A Scalable and Extensible Framework for Multimodal
Interaction. In CHI ’11 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’11, pages 305–310. ACM, 2011.

[24] J. Wagner, F. Lingenfelser, T. Baur, I. Damian, F. Kistler, and
E. André. The Social Signal Interpretation (SSI) Framework: Mul-
timodal Signal Processing and Recognition in Real-time. In Proceed-
ings of the 21st ACM International Conference on Multimedia, MM
’13, pages 831–834. ACM, 2013.

[25] D. Wiebusch. Reusability for Intelligent Realtime Interactive Systems.
PhD thesis, Universität Würzburg, 2015.

[26] D. Wiebusch and M. Latoschik. A uniform semantic-based access
model for realtime interactive systems. In Software Engineering and
Architectures for Realtime Interactive Systems (SEARIS), 2014 IEEE
7th Workshop on, pages 51–58, March 2014.

[27] D. Wiebusch and M. E. Latoschik. Enhanced Decoupling of Compo-
nents in Intelligent Realtime Interactive Systems using Ontologies. In
Software Engineering and Architectures for Realtime Interactive Sys-
tems (SEARIS), pages 43–51. IEEE, 2012.

[28] D. Wiebusch and M. E. Latoschik. Decoupling the Entity-Component-
System Pattern using Semantic Traits for Reusable Realtime Interac-
tive Systems. In IEEE VR Workshop on Software Engineering and
Architectures for Realtime Interactive Systems, IEEE VR, 2015.

[29] C. Zimmerer, M. Fischbach, and M. E. Latoschik. Fusion of mixed re-
ality tabletop and location-based applications for pervasive games. In
Proceedings of the 2014 ACM International Conference on Interactive
Tabletops and Surfaces. ACM, 2014.man

us
cri

pt

8 APPENDIX

1 <Descriptions.owl#TransformationDescription>
2 rdf:type <CoreOntology.owl#SemanticType> ,
3 <Types.owl#Transformation> ,
4 owl:NamedIndividual ;
5 <CoreOntology.owl#forComponent>
6 <CoreComponent.owl#CoreComponent> ;
7 <CoreOntology.owl#hasDataType>
8 <Types.owl#simplex3d.math.floatx.ConstMat4f> .

Listing 2: Simplified Turtle (Terse RDF Triple Language) def-
inition of the semantic type Transformation used by the
Simulator X platform.

1 <Functions.owl#TransformRelativeToTransform>
2 rdf:type <CoreOntology.owl#SemanticFunction> ,
3 owl:NamedIndividual ;
4 <Functions.owl#hasName>
5 "relativeTo"ˆˆxsd:string ;
6 <Functions.owl#implementedBy>
7 "functions.Default.realtiveTo"ˆˆxsd:string ;
8 <Functions.owl#hasOperatorType>
9 <Functions.owl#InfixOperatorType> ;

10 <Functions.owl#hasParameter>
11 <Descriptions.owl#TransformationDescription> ;
12 <Functions.owl#hasReturnValue>
13 <Descriptions.owl#TransformationDescription> ;
14 <Functions.owl#hasParameter>
15 <Descriptions.owl#TransformationDescription> .

Listing 3: Simplified Turtle (Terse RDF Triple Language) defi-
nition of the semantic function relativeTo used by the Sim-
ulator X platform.

1 object Transformation
2 extends SemanticType[ConstMat4f](
3 types.NullType as
4 SemanticConcepts.transformation withType
5 classOf[ConstMat4f] definedAt
6 "Types.owl#Transformation"
7)
8 {
9 override def apply(

10 value: ConstMat4f,
11 timestamp : scala.Long
12): Transformation =
13 new Transformation(value, timestamp)
14 }
15

16 class Transformation(
17 value : ConstMat4f,
18 timestamp: Long
19) extends SemanticValue[ConstMat4f](
20 value,
21 timestamp,
22 Transformation
23)
24 {
25 def relativeTo(newCs : Transformation)
26 (implicit functions: Functions) =
27 functions.relativeTo(this, newCs)
28 }

Listing 4: Simplified generation output for the semantic type
Transformation showcased in listing 2 and the semantic
function showcased in listing 3.

1 def setTransformation(t: ConstMat4f, e: Entity) {
2 val semanticValue = Transformation(t)
3 e.set(semanticValue)
4 }

Listing 5: Example usage of the generated scala class and
-object showcased in listing 4: The apply method of the
Transformation object (semantic type) is called by pass-
ing a ConstMat4f to create a new respective semantic value
instance (line 2). This instance is used to set a property of an
entity (line 3).

1 <Types.owl#hasPart>
2 rdf:type owl:ObjectProperty ;
3 rdfs:subPropertyOf
4 <CoreOntology.owl#SimX_BinaryRelation> .

Listing 6: Simplified Turtle (Terse RDF Triple Language) defini-
tion of the relation HasPart used by the Simulator X platform.

1 class RelationType
2 extends SemanticType[Relation]
3 {/*...*/}
4

5 object HasPart
6 extends RelationType(
7 types.Relation as
8 SemanticConcepts.hasPart definedAt
9 "Types.owl#hasPart"

10)
11 {/*...*/}

Listing 7: Simplified generation output for the relation
HasPart showcased in listing 6.

1 def connect(user: Entity, arm: Entity) {
2 user.set(types.HasPart(arm))
3 }

Listing 8: Example usage of the generated scala object show-
cased in listing 7: The apply method of the HasPart object
(relation) is called by passing an entity (line 2). The set
method of the entity class is overloaded for relations. It
internally creates a Relation instance, which holds the sub-
ject and object of a relation (in this case user and arm), uses
it to create a respective semantic value, and finally calls it’s
set that takes a semantic value.

man
us

cri
pt

