

VRGait: An Immersive Virtual Reality System for Gait-Specific Neurorehabilitation and Therapy

Marc Erich Latoschik, Franz Weilbach, Negin Hamzeheinejad, **Dominik Gall**

Introduction

Neurological injuries can have an impact on the patients' mobility. Motor function can be repaired by repetitive exercises. **Problem**

- Therapy equipment restricts users and has less attractive environment.
- > Current equipment does not exploit the potential of adaptive training stimuli based on movement mimicry.

Approach

- Increased motivation from inspiring walking escapes (beach or mountain scenes) and gamified tasks.
- Exploiting motor mimicry caused by their controlled virtual avatars or counterparts walking together with them.

Grassland Landscape

Waterfall Landscape

Forest Landscape

Beach Landscape

Preliminary Result

21 participants (11 female, 10 male) Age: M= 24.19, SD= 4.38

Measure	Р
Attractiveness	<.05
Stimulation	<.05
Novelty	<.05
Mental Demand	<.05

Methods and Materials

Design

- Hardware: HTC Vive, HMD Headset
- Software: Unity 3D V5.6
- > **Task:** Participants walk 2 minutes on the cross-trainer

Independent Variables

VR Non VR **Dependent** Variables

Task Load, Simulator Sickness, Intrinsic Motivation, User Experience, Affectivity, **Qualitative Questions**

Dependability	<.05
Positive	<.05

(Table 1:Significant difference in VR and Non VR)

Conclusion

VR Gait system has a positive effect on the users and increases the motivation of them.

Human-Computer Interaction - University of Wuerzburg www.hci.uni-wuerzburg.de

