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Fig. 1. Multimodal interface demonstrations realized using the presented techniques: (left) an immersive multimodal game [11], (center)
a multimodal mixed reality strategy game developed within student projects [25], and (right) a result of a master level course [43].

Abstract—Modularity, modifiability, reusability, and API usability are important software qualities that determine the maintainability
of software architectures. Virtual, Augmented, and Mixed Reality (VR, AR, MR) systems, modern computer games, as well as
interactive human-robot systems often include various dedicated input-, output-, and processing subsystems. These subsystems
collectively maintain a real-time simulation of a coherent application state. The resulting interdependencies between individual state
representations, mutual state access, overall synchronization, and flow of control implies a conceptual close coupling whereas software
quality asks for a decoupling to develop maintainable solutions. This article presents five semantics-based software techniques
that address this contradiction: Semantic grounding, code from semantics, grounded actions, semantic queries, and decoupling by
semantics. These techniques are applied to extend the well-established entity-component-system (ECS) pattern to overcome some
of this pattern’s deficits with respect to the implied state access. A walk-through of central implementation aspects of a multimodal
(speech and gesture) VR-interface is used to highlight the techniques’ benefits. This use-case is chosen as a prototypical example of
complex architectures with multiple interacting subsystems found in many VR, AR and MR architectures. Finally, implementation hints
are given, lessons learned regarding maintainability pointed-out, and performance implications discussed.

Index Terms—Real-time interactive systems, virtual reality systems, software architecture, multimodal processing

1 INTRODUCTION

Software architectures for Real-Time Interactive Systems (RIS) often
consist of multiple subsystems for graphics, physics, sound, input,
Artificial Intelligence (AI), and many more. They collectively fulfill
the necessary functional requirements of todays applications of Vir-
tual, Augmented and Mixed Reality (VR, AR, and MR), computer
games, and also robotics. Subsystems commonly include specific data
structures for performance reasons but also exhibit a close semantic
and temporal coupling between each other for consistency reasons. In
contrast, non-functional software quality requirements like reusabil-
ity, modifiability, and low development effort motivate decoupling, a
contradiction known for some time as the coupling dilemma [23].

The Entity-Component-System (ECS) pattern [1] has become a
prominent approach to the coupling dilemma (e.g., [16, 18, 37]). This
pattern organizes the data (the components) associated with subsystems
(the systems) in an object-centered view (the entities) using composi-
tion over inheritance. This composition greatly enhances decoupling.
Problems arise in cases where subsystems need mutual access to com-
ponents outside of their primary data association. Typical examples
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are AI subsystems incorporating data models which reflect the overall
application state, e.g., to provide inference capabilities or semantic
grounding, and subsystems for multimodal interfaces (MMI) as promis-
ing alternative interaction techniques for RIS applications [2, 5, 21].

Specific MMI frameworks, like [2, 5, 14, 24, 34, 36, 39], usually need
real-time state access to information ranging from raw sensor input
at the data level to semantic information of a given context at the
decision level. At the same time, they have to be decoupled from the
main simulation loop to not compromise the overall simulation. Hence,
the increased state access and decoupling requirements of the MMI-
RIS combination are particularly suited as use-cases for developing
improved solutions to the challenging software quality problem [10, 21,
22] of similarly complex RIS architectures.

This article presents five semantics-based techniques that extend the
well-established ECS pattern and explicitly target maintainability, i.e.
modularity, modifiability, reusability, and API usability [31] for VR,
AR and MR-systems. The techniques provide a unified access scheme
to the application state and facilitate the integration of symbolic AI
methods as illustrated for decision level multimodal processing.

2 EXAMPLE INTERACTIONS

Throughout this paper we will use a typical instruction-based speech
and gesture interaction example to identify the resulting requirements
and, subsequently, point out the benefits of the presented approach:
A user furnishes a virtual room in an architectural modeling application.
At first she utters “Put [deictic gesture] that green chair near [deictic
gesture] this table.” (cf. [3]) followed by “Turn it [kinemimic gesture]
this way.” (cf. [20]).

For the realization of both examples, access to representations of the
user, her communicative utterances, e.g., posture and spoken words,
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and the virtual environment in the application state is required (require-
ments Racc and Rrep). The virtual environment comprises objects like
the table and the chair, including properties like positions, orientations,
velocities, textures, and bounding boxes. Sensor data is typically pro-
vided in different abstraction levels by drivers or SDKs, e.g., positions
and orientations from a tracking system or a text representation of
spoken words from an Automatic Speech Recognizer (ASR). It will be
integrated into the application state by input subsystems. Some of it
may have to be accessed (Racc) and processed (Rproc) further before it
can be used for decision-level multimodal fusion, e.g., by determining
meaningful gestures from the users positions and orientations over time
or by annotating text tokens with their lexical category. The result of
this processing is typically event-like symbolic data.

During multimodal fusion, this data has to be checked if it satisfies
syntactic, temporal, and semantic constraints. Syntactic correctness
involves checking of allowed successions, e.g., if a verb is followed by a
noun phrase. Temporal correctness involves checking of co-occurrence
between multimodal channels as in “[deictic gesture] that”. Semantic
correctness involves checking if analyzed expressions make sense in
the scope of the application, e.g., if the pointing gesture really denotes
a green chair or if the chair is movable.

Finally, a successfully analyzed utterance has to result in an appro-
priate reaction that is executed and perceivable by the user (Rexe). For
example, the chair should appear next to the table or rotate as long as
the user performs the respective gesture with her hand. In addition to
deriving and executing an instruction, it is desirable to provide feedback
to the user at the time of processing. This could include presenting in-
termediate results, like highlighting the green chair after the first part of
the first example has been uttered. In order to successfully process the
second example, two additional aspects have to be considered. Firstly,
former utterances or rather the past discourse has to be represented,
e.g., the fact that the green chair has been selected in the first utterance,
in order to resolve the anaphora it. Secondly, the realization of the
kinemimic rotation gesture requires a continuous mapping of posture
features to a virtual object, i.e. the chair’s orientation. Ultimately,
all these functional requirements have to be fulfilled with respect to
non-functional RIS performance requirements (Rper), including low
latency between user actions and system reactions as well as overall
data throughput.

3 RELATED WORK

Starting with Bolt’s “Put-That-There” [3] in 1980, software realizing a
multimodal interface was comprised of a fixed set of subsystems assem-
bled for a dedicated application. These demonstrations showcased that
it is feasible to achieve the processing and performance required for
such interfaces. Around the millennium, non-functional software quali-
ties like reusability, modifiability, and modularity as well as the ease of
development started to gain importance. This lead to domain dependent
frameworks, suitable for the implementation of various applications
in specific domains, e.g., desktop or mobile applications, interactive
surfaces, virtual environments, or robot control. These frameworks
used underlying subsystems to realize domain specific features, like
application logic, simulation, or rendering, and were tailored to the
feature and performance requirements defined by the domain. Inde-
pendent frameworks, on the other hand, further strengthened the ideas
of reusability, modifiability, and modularity: they provide multimodal
processing capabilities without dedication to a specific application area
(see Table 1 column 1–2).

With respect to its applicability for RIS, a framework either can
be independent or has to be integrated into a RIS. An independent
framework, like [7,14,24,28,34–36] or [39], depicted in the left part of
Fig. 2, will typically provide means for representing data (A), integrat-
ing sensor data, as well as processing and fusing data from different
modalities. The communication of obtained results, however, is left
to the application developer and typically achieved by adding a dedi-
cated “processing subsystem” to the framework, e.g., by using sockets.
Similarly, a RIS (Fig. 2 right) will provide features like means for rep-
resenting data (B), input integration and input processing (e.g., for head
tracking), as well as simulation and rendering subsystems. However,

Table 1. Multimodal processing frameworks categorized into demonstra-
tions (demo), domain dependent frameworks (dom.), and independent
frameworks (ind.). The third column indicates if the framework explicitly
supports RIS applications, subdivided in support for virtual environments
(VE) and robot control (RC). The forth column indicates if the framework
is available for research, i.e. if the source code can be obtained and if it
is running on current hardware platforms (*refer to the text for details).

Name Type Explicit RIS
support Available

Put that There [3] demo no no
Cubricon [30] demo no no

eXpert TRAnslator [40] demo no no
ICONIC [15] demo yes (VE) no
QuickSet [6] dom. no no

SGIM & virtuelle
Werkstatt [19, 21] dom. yes (VE) no*

ICARE/FACET [4] dom. yes no
OpenInterface [34] ind. - yes

SKEMMI
(OpenInterface) [24] ind. - yes

Meanings4Fusion
(OpenInterface) [28] ind. - yes

HephaisTK [7] ind. - yes
i*Chameleon [36] ind. - no

Mudra [14] ind. - no
unnamed framework using

COLD [2] dom. yes (RC) no

HCIˆ2 [35] ind. - yes
SSI [39] ind. - yes

M3I [29] dom. no yes
Simulator X/miPro [22] dom. yes (VE) yes

unnamed framework [5] dom. yes (RC) no

the underlying data models most likely will not be the same. Thus a
conversion A→ B is necessary. In addition, some semantic constraint
checks require access to properties of the virtual environment, like
resolution of a pointing gesture. They can either be performed within
the RIS, if the communicated result contains additional parameters for
later resolution (e.g., pointing ray and timestamp), or within the multi-
modal framework, if required properties are communicated (A← B).
Requirements like continuous mapping of posture features exacerbate
the communication needs. Moreover, some requirements necessitate
adaptations in both systems, like semantic constraint checks and feed-
back at the time of processing. This decreases coherence and thus
maintainability. The same holds true for features that can be realized
within both systems (dashed rectangles in Fig. 2). For instance, a dialog
management subsystem can be implemented within the multimodal
framework, if respective wildcards for not yet resolvable referents are
communicated or if relevant application state properties are synchro-
nized. It can also be implemented within the RIS, e.g., to increase
coherence if the system supports virtual agents. Altogether, the access
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Fig. 2. Expectable architecture and requirements for the utilization of
an independent multimodal processing framework in combination with a
RIS. Refer to the text for details.
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and synchronization of application states (red arrows in Fig. 2) is criti-
cal in terms of maintainability and performance. Framework-internal
access is least problematic in this case. Synchronization, however, is a
potential source for ad-hoc implementations with poor maintainability
(due to required conversion) and low performance (due to required
serialization).

RIS dependent multimodal frameworks [4, 19, 21] usually provide a
uniform access scheme to the application state. However, such frame-
works depend on the maintainability of the underlying RIS, which often
suffers from the coupling dilemma due to inherently complex system
architectures. In the case of Latoschik’s work, the integration of a
multimodal processing framework using temporal Augmented Transi-
tion Networks (tATNs) as well as the Multimodal Integration Markup
Language (MIML) [20] into the RIS AVANGO led to groundbreaking
results, like the virtuelle Werkstatt and the multimodal interface to the
virtual agent Max [21]. However, the heavy dependency on AVANGO,
its initial underlying proprietary scene graph system (SGI’s Performer),
and the utilized scripting language, hindered long-lasting reusability.
For example, extensive close coupling by inheritance prevented easy
adoption of other rendering systems, e.g., OpenSceneGraph or Gua-
camole as used by AVANGO’s successors. Even worse, it prohibited
researchers to build upon these results since the virtuelle Werkstatt has
no currently running build or successor; a common issue especially in
the RIS area (see Table 1 column 3-4).

Close coupling caused by inheritance is a well-known problem by
now. In general, it is understood that decoupling will favor composition
over inheritance. Too often, the latter has been a primary method of
software architectures based on the object-oriented paradigm. As a
result, the ECS pattern [1] has more and more been used in RIS archi-
tectures [16, 18, 37] since it fosters low coupling and hence increases
maintainability [41,45]. However, it still possesses some deficits: Com-
ponent type information is not necessarily available at runtime and
components from different applications are mostly incompatible with
each other. More importantly, in application areas that heavily depend
on symbolic AI methods, like multimodal processing, the ECS pattern’s
object-centered data model and access is detrimental, since subsystems
typically need mutual access to components outside of their primary
data association.

4 SEMANTICS-BASED SOFTWARE TECHNIQUES

This section presents five semantics-based software techniques that
improve and extend the ECS pattern to facilitate state representation
and access, foster modularity, and enhance overall maintainability.
Each subsection is structured as follows: First, the generalized concept
of the technique is presented. Afterwards, the technique is showcased
on the basis of the example interactions using code samples from a
reference implementation. Finally resulting benefits are discussed. The
discussion focuses on modularity, modifiability, and reusability, arising
from application of the technique to the architecture of a RIS, as well
as on the API usability of the presented code samples.

The ECS pattern is central for structuring content and logic: every
object that is meaningful to the application, ranging from rendered and
simulated objects to input devices or the user(s), is represented as an
entity. Entities consist of components (i.e., sets of properties) that are
altered and observed by subsystems. The reference implementation is
realized using the open source research platform Simulator X [18] and
its integrated multimodal processing framework miPro [22].

4.1 Semantic Grounding
The first technique is a grounding mechanism for elementary system
and application properties (Rrep) at the core level of a platform [44]. In-
stead of direct variable access or using mutator methods, the technique
applies separately defined tokens to access properties (Racc). Those
tokens, called grounded symbols, reflect the property’s meaning and
facilitate an explicit common ground for identifiers, as an improvement
over agreeing on variable- and function names in an API definition.
As opposed to such techniques, grounded symbols are intended to be
defined externally (see Sect. 4.2) and thus provide the opportunity to be
used in multiple, possibly unrelated applications. In order to identify
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Fig. 3. Grounded symbols (brown), semantic types (blue), semantic
values (blue), and entities (orange) are utilized to represent the applica-
tion state. A potential modeling for the environment of our example is
shown. In addition to properties based on common data types, grounded
symbols are used as entity property values denoting high-level symbolic
values, like pointing, and entity references are used to denote relations,
cf. HasPart. Sensory input is integrated as follows: a VRPN subsys-
tem creates and updates entities each representing one tracked joint
(e.g., entity#34), comprised of at least one Transformation property.
Another subsystem wrapping an ASR continuously updates the user
entity (entity#42) with a property representing the last word spoken.

and query the value of an entity property, a so called semantic type is
utilized. A semantic type is a tuple, consisting of a grounded symbol
and a data type, that allows to create meaningful types. For example, a
radius property can be distinguished from a diameter property at com-
pile time (cf. [41, p. 107]), even if both are represented by floating point
values. Finally, an entity property is a triple consisting of a grounded
symbol, a data type, and a concrete value of that type. Such a triple is
called a semantic value and can be added to and removed from entities
at runtime.

Fig. 3 exemplifies the technique by means of our running example
while the API for accessing entity properties is illustrated in Listing 1.

Altogether, this explicit modeling of semantics at the core level cen-
tralizes the agreement on identifiers and their meaning and decouples
it from the underlying data model. Thus, the technique links the ECS
pattern and the concept of semantic entities [21]. Furthermore, it facili-
tates the reflection of entity properties even if the target programming
language does not support that level of introspection. This way, the ECS
pattern’s lack of component type information at runtime is addressed
and the rigidity of components is countered by facilitating access to en-
tity properties. Extensive use of callback functions to handle accessed
values enables the interface to be used in synchronous as well as in
asynchronous environments, as eventual invocations can occur instantly
or may be delayed. Depending on the implementation, this requires
utilizing synchronization mechanisms to counter race conditions, which
are inherent to multi-threaded asynchronous state access.

Two additional design decisions underlie the code sample in List-
ing 1: the utilization of the actor model [13] and the use of the Scala
programming language. On basic levels, requesting entity properties
requires to exchange messages between actors. As a consequence the
requested Transformation property can not be handled until a respec-
tive answer is received. The API reflects this by requiring a handler
function that is called as soon as the property is available. Scala’s

1 def setPointingRay(hand: Entity) {

2 if(hand.has(Transformation)) {
3 hand.get(Transformation){ t =>
4 hand.set(

5 Pointing(new Ray(t.origin, t.zAxis))
6 )

7 }}}

Listing 1. Definition of a function that retrieves the Transformation
property of an entity (line 3), extracts its origin and z-axis (line 5), and
uses it to create and set a Pointing property (lines 4–6).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TVCG.2017.2657098

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



Programming Language

EntitiesAction
Descriptions

Entity
Filter

ValueIRI Data
Type

Semantic 
Value

Semantic 
Type

Grounded 
Symbol

DSLsOntology
Symbol

Relation

Type
Action

chair

stool
isA

toPut

move

describes

Fig. 4. Conceptual overview of the generation technique. Besides
grounded symbols, semantic types, and -values, also higher-level con-
cepts are generated: semantic entities, action descriptions, semantic
queries, and finally Domain Specific Languages (DSLs) use the lower-
level primitives as building blocks. In the context of the example envi-
ronment, domain knowledge modeled in OWL can be utilized at runtime,
like the fact that a stool is a chair or that the verb to put can denote an
instruction to move something somewhere.

functional aspects help maintaining concise code by allowing an inline
definition using a lambda expression (lines 3–6) or alternatively by
passing a function (a first class citizen in Scala).

4.2 Code from Semantics

The second essential technique is the use of an external ontology in
combination with a code generation approach: grounded symbols, se-
mantic types, and semantic values are transformed from an external
ontology into program code of a target programming language, as sug-
gested in [41, 44]. The generated primitives contain a reference to the
associated external concept, facilitating lookups and utilization of ontol-
ogy content at runtime. If this transformation was performed manually,
this technique would correspond to specifying respective function- and
variable names in software interfaces. Instead, we propose to run an
automated task that is integrated into the development tool-chain to
generate said first class citizens.

Fig. 4 illustrates this transformation. An exemplary definition of a
grounded symbol Transformation and the associated semantic type
using the Web Ontology Language (OWL [38]) is shown in Listing 2
and Listing 3, respectively. The definition of the semantic type creates
a direct link by referencing the defined grounded symbol (see line 6

1 <!-- GroundedSymbols.owl -->

2 <Declaration>
3 <Class IRI="#Transformation"/>
4 </Declaration>
5 <SubClassOf>
6 <Class IRI="#Transformation"/>
7 <Class IRI="Core#GroundedSymbol"/>
8 </SubClassOf>

Listing 2. OWL definition of the GroundedSymbol transformation.

1 <!-- SemanticTypes.owl -->

2 <Declaration>
3 <NamedIndividual IRI="#Transformation"/>
4 </Declaration>
5 <ClassAssertion>
6 <Class IRI="GroundedSymbols#Transformation"/>
7 <NamedIndividual IRI="#Transformation"/>
8 </ClassAssertion>
9 <ObjectPropertyAssertion>
10 <ObjectProperty IRI="Core#hasDataType"/>

11 <NamedIndividual IRI="#Transformation"/>
12 <NamedIndividual IRI="DataTypes#math.Mat4f"/>
13 </ObjectPropertyAssertion>

Listing 3. OWL definition of the semantic type Transformation. The
definition references the grounded symbol from Listing 2 and specifies
the data type of the semantic type.

1 object GroundedSymbols {

2 object transformation extends GroundedSymbol(
3 symbol = "Transformation",

4 iri = new IRI("GroundedSymbols#Transformation")

5 )

6 }

7 object SemanticTypes {

8 object Transformation extends SemanticType[Mat4](
9 iri = new IRI("SemanticTypes#Transformation"),

10 symbol = GroundedSymbols.transformation)
11 {

12 def apply(value: Mat4): SemanticValue = {/*...*/}

13 } }

Listing 4. Grounded symbol transformation and semantic type
Transformation that are generated from the OWL files shown in List-
ing 2 and 3. The link to ontology concepts is maintained by specifying
the respective Internationalized Resource Identifier (IRI).

of Listing 3). Listing 4 shows the generated first class citizens of the
target programming language. After the code generation process these
elements can be used as shown in Listing 1 in Sect. 4.1.

Due to the utilization of native programming language primitives
that are linked to ontology content, the generation-based approach
enables fast access to the knowledge representation at runtime (Rper).
This comes at the cost of additional time to generate code at or before
compile time as well as some slight development overhead for the
integration of symbols and types in the ontology (as compared to
the traditional creation of variables and types). The latter costs are
largely reduced by essential tool support for efficient development. For
instance, we use common tools, like Protégé, for which we developed
a tailored editor plugin. In addition, reasoning software can be utilized
at both compile- and runtime. The internal representation of such a
software component can be kept in sync with the simulation state by
means of said linked primitives. This way, additional assertions can be
inferred from existing information and integrated into the application
state representation, omitting the need for manual assertion of such
inferable facts. This is beneficial for checking semantic constraints,
e.g., during multimodal fusion. Moreover, the externalized definition
of identifiers, used for application state access (Racc) as well as for
symbolic properties, increases cohesion (regarding the definition of
identifiers) and further decouples data model, subsystems, and API
description. Finally, it facilitates reuse of the interface description even
for other RISs and enables use of common editing tools. This way,
the issue that ECS components from different applications are mostly
incompatible with each other can be overcome.
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mation

Entity
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Fig. 5. Illustration of an action description (left) as well as of a concrete
practice in the context of the example interaction (right). The grounded
action collocate is related to the verb toPut (cf. Fig. 4) and can be
retrieved when processing the respective token. The fusion process
is successful and can trigger the action’s execution, if further process-
ing of the user’s utterance yields an entity that is movable (i.e. has a
Transformation property) and an entity that it will be moved to.
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1 object Collocate extends ActionDescription(

2 identifier = collocate,
3 preConditions = Set(Entity named subject hasProperty Transformation,
4 Entity named target hasProperty Transformation),
5 effects = Set(Entity named subject is Near the Entity named target)
6 )

7

8 def collocateImplementation(parameters: NamedParameters){/*...*/}

9

10 registerAction(Collocate, collocateImplementation)

11

12 def collocateEntities(subject: Entity, target: Entity){ Planner.accomplish(subject is Near the target) }

Listing 5. Action description (lines 1–6), implementation (indicated in line 8), registration (line 10), and execution (using a planning subsystem in
line 12) of a grounded collocate action that moves one entity (the subject) near an other (the target). The action description, access to the
parameters map, as well as the execution utilize grounded symbols and semantic types.

4.3 Grounded Actions

The third essential technique is the semantic description of reusable sys-
tem operations [12, 46], e.g., the application’s reactions to commands
the user utters: So called grounded actions are implemented as func-
tions in program code and registered by means of action descriptions.
These consist of a set of preconditions, a set of parameters, and a set of
effects, the contents of which are defined by means of semantic types
and -values. In consequence, action descriptions can also be specified
in the ontology and transformed into program code.

Fig. 5 and Listing 5 (lines 1–6) illustrate an exemplary action de-
scription of a collocate action. The implementation of the described
function is hinted in line 8 and the registration shown in line 10. Note
that any other implementations could be registered with this action
description. Hence it is the developer’s task to ensure that the specified
preconditions and effects match the implementation. Finally, line 12
of Listing 5 illustrates the utilization of a planning subsystem that uses
the action description. Since the requested state matches the effects of
the collocate action description, the planner will verify if the shown
preconditions are met and in that case execute the action. Otherwise,
it will identify a chain of further registered actions to be executed to
satisfy the preconditions or signal an error if no such sequence exists.

Since action descriptions can easily be transformed into fragments
of common definition languages, like PDDL [26], the utilization of
planning software that is compatible with such languages is facilitated
(cf. [25, 46]). If the preconditions of an action are not completely met,
action planning subsystems can be applied to automatically derive a
sequence of actions that leads to a state that permits the execution of
the desired action. This approach allows to react dynamically to a
user’s requests, even if they were not anticipated by the developers.
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Fig. 6. Conceptual overview of an entity request by a subsystem using
a logical combined entity filter. The request is answered with a set
of entities that passed the filter. This could be a request necessary
during multimodal fusion querying all entities that represent a chair, have
a Transformation property, are of color green, and are near a given
pointing ray. If the application state does not contain a chair fulfilling all
requirements, but rather a stool, the implementation of the IsA filter can
apply a reasoning operation on the associated ontology to determine the
user’s intention nevertheless, due to available references. Besides initial
queries, entity property access does not involve the central registry.

In this context, the definition of concepts in an ontology is beneficial:
primitives generated from the ontology (i.e. semantic types) are also
utilized for the implementation of the described action. Thus, a uniform
interface between the application state, the implementation of actions,
and action planning software is achieved via the semantic grounding.
Consequently, grounded actions decouple the description of system
capabilities, their implementation, and their invocation. This extends
the ECS pattern with the possibility to create reusable operations of
arbitrary complexity that can be executed by subsystems or stand-alone
(Rexe). Actions can be reused in other contexts and applications, as long
as the required semantic concepts are part of the utilized application on-
tology. Furthermore, they are beneficial for decision-level multimodal
fusion, since grounded actions are typically related to concepts that
denote verbs in instruction scenarios. During fusion, processed verbal
phrases can be utilized to detect a related grounded action. The action’s
preconditions and parameters then serve as a frame-like structure that
has to be integrated with the rest of the utterance.

4.4 Semantic Queries
The fourth essential technique comprises accessing higher level ele-
ments (Racc), i.e. entities and actions, by means of semantic [12, 45] or
more general descriptions [46]: On the one hand, this technique deals
with requesting one or more entities from a central registry (as opposed
to accessing properties of one entity). For this purpose, semantic types
and semantic values are utilized to define entity selection filters. A
central entity registry can be queried by passing these entity filters.
Respective answers contain a list of all matching entities. On the other
hand, this technique facilitates grounded action lookup in a similar
manner (showcased in Sect. 5).

Fig. 6 illustrates the technique for selecting the green chair from
our example. A corresponding code sample is shown in Listing 6.

1 def getGreenChairNear(ray: Ray,

2 handler: Entity => Any) {

3 WorldState apply handler toFirstEntityThat (

4 IsA(Type(chair)) and
5 HasProperty(Transformation) and
6 HasValue(Color(Constants.green)) and
7 IsNear(Pointing(ray))
8 )

9 }

Listing 6. A complex entity filter to query the central registry, constructed
by passing semantic values as well as -types and combined by applying
the function and (lines 4–7). By utilizing Scala’s capability to omit the
dot operator and parentheses in certain cases, the query statement
can be written in an easily readable manner. As soon as the central
registry has provided the respective answer the handler function is called
asynchronously. Therein, entity properties can be accessed without
involving the registry again. Creating a new matching entity as well as
adding or modifying existing entity properties, subsequently matching
the filter, will trigger the handler.
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1 val RightHand = Type(hand) and Chirality(right)
2 Start a new Processor { //that

3 Requires property Transformation from RightHand
4 Updates the properties of entity describedBy RightHand ‘with‘ {

5 Position from (Transformation of RightHand)
6 }}

7 Start a new Processor { //that

8 Requires property Position from RightHand
9 Updates the properties of entity describedBy RightHand ‘with‘ {

10 val delta = (Position of RightHand at Milliseconds(0)) - (Position of RightHand at Milliseconds(60))
11 Velocity(delta / 60f)
12 }}

Listing 7. Semantic values are defined for referencing sinks and sources in line 1. DSL-supported definition of two processors operating on the user’s
right hand: one that extracts the position from the transformation (lines 2-6) and one that calculates the velocity from the position (lines 7-12).

Besides specific queries, this technique allows subsystems to specify
their data sinks and sources without requiring explicit entity references.
These, at large, are the observable properties of entities. For instance,
a subsystem that processes the transformation of the user’s right hand
does not need the respective entity reference nor does it need to know
the entity’s creator. Instead, a query using an entity filter checking for
Type(hand) and Chirality(right) can be used at its creation.

This semantics-based state access decouples subsystems in terms
of data sinks and sources. It facilitates entity lookup based on com-
binations of predicates and symbolic as well as numeric data. This
is especially useful for the incorporation of AI methods. Moreover,
it facilitates reuse of subsystems in other contexts or applications, as
long as the required application state elements exist. In general, the ap-
proach is similar to semantic query languages like SPARQL. However,
it enables to avoid parsing overhead, if the code generation technique
presented above is applied. Semantic queries counter the problem of
identifying entities in ECS applications by facilitating mutual access
for subsystems to entities outside of their primary data association.

4.5 Decoupling by semantics

The fifth essential technique applies all previous techniques to decouple
processing (Rproc) in RISs. Instead of passing specific entity references
or callback functions on creation, required data sources and sinks
as well as application specific operations are semantically described
utilizing grounded actions and semantic queries.

Listing 7 exemplifies the definition of two simple processing steps,
so called processors, that run calculations or algorithms as a reaction
to changes of required entity properties [22]. These are specified us-
ing semantic values (lines 3 and 8), which are implicitly converted to
semantic queries using a conjunction of HasProperty. Upon value
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Fig. 7. Overview of an exemplary processing chain. Simple calculations
are realized using the basic processors. In addition, more complex
techniques or external libraries are integrated by means of specialized
processors. All steps utilize semantic queries to specify sources, sinks,
and grounded actions as well as semantic types and -values to access
entity properties. The final system reaction is represented by an action.

changes the specified calculation rules (lines 5 and 10–11) are applied,
respectively. They are implemented using convenience functions de-
fined for semantic types and values, e.g., the from function in line 5
or the - function in line 10 (cf. [12]). Their results are each used to
set a property of another specified entity. Timestamps and histories of
required properties are automatically stored. Access to those locally
stored values is facilitated by a combination of a semantic type, a seman-
tic query, and the of function, e.g., Transformation of RightHand
in line 5. Local histories are accessible using the at function (line 10).
The passed value specifies a point in time relative to the latest value
available. In case of multiple requirements with asynchronous update
rates this access additionally performs interpolations or extrapolations
to guarantee temporal synchronization.

Decoupling by semantics allows the definition of dataflow network-
like processing chain elements by means of semantic descriptions and
improves the ECS approach to the coupling dilemma. Defined process-
ing steps are highly reusable, due to the utilization of semantic queries
and grounded actions (showcased in the next section). Moreover, the
technique facilitates high-level APIs that foster usability for developers.
By using Scala, such a high-level API can be realized in native code
without any further intermediate representation below the DSLs. Thus,
IDE features as syntax checks, highlighting, or auto-completion can be
exploited, further increasing API usability.

5 MULTIMODAL INPUT PROCESSING

The realization of multimodal interfaces entails demanding require-
ments for RISs. Therefore, we use it to further highlight the benefits
of the presented techniques. Multimodal input has to be processed on
data-, feature-, and decision-level in order to derive an adequate system
reaction to a user utterance (see Fig. 7).

start verbisVerb

process
Verb process

Gesture

isPointing

...

mergewithin
500ms

Fig. 8. Excerpt of a tATN capable of parsing “Put [pointing] that”. It is
composed of states (circles), transitions (black arrows) with constraints,
and functions that are applied if a transition is carried out (white arrows).
Cursors (green) represent active interim results. They fill the associated
registers (orange) using semantic values (blue) as they move through
the tATN: certain application state changes, e.g., updated speech recog-
nition or gesture detection results, trigger the evaluation of the cursors’
outgoing transitions. Reaching an end state (not shown) corresponds to
a successful parse of a multimodal utterance and should gather all data
relevant for an respective action invocation in the cursor’s register.
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1 Start a new SupervisedLearningProcessor { //that

2 Is configuredBy NeuralNetworkConfiguration("pointing.xml")

3 Requires properties (Transformation and Velocity) from RightHand
4 Updates property PointingConfidence of entity describedBy User ‘with‘ {prediction}
5 } // Assuming a similar processing step for ’rotate’ gestures

6 Start a new Processor { //that

7 Requires properties (PointingConfidence and RotateConfidence) from User
8 Updates the properties of entity describedBy User ‘with‘ {

9 if((PointingConfidence of User) > (RotateConfidence of User)) Gesture(pointing) else Gesture(rotate)
10 }}

Listing 8. Definition of a simple gesture classification. A specialized processor utilizing a neural network (lines 1-5) is defined to take the tranformation
and the velocity of the user’s right hand as input. The prediction of the network is stored in the PointingConfidence property of the entity representing
the user. The configuration of the network is outsourced in pointing.xml. A subsequent processing step is defined to do a simple classification task
(lines 6-13), by comparing pointing- and rotate confidence and storing the result in the Gesture property of the user entity using grounded symbols.

For the example interaction, it is useful to extract additional features
from the raw positions and orientations of the user’s joints before apply-
ing template-based or supervised learning methods to detect gestures
like pointing (Rproc). In contrast to simple processing steps, where
calculation rules can be defined inline, more complex techniques are
integrated by means of specialized processors. The typically required
additional configuration is outsourced into external files or classes,
while requirements and results are defined in analogy to other pro-
cessing steps. A classification utilizing a neural network is defined
in Listing 8 by requiring entity properties as input for the network as
well as by specifying a sink property by means of the semantic type
PointingConfidence that has to be of data type float. All required
properties are sorted and fed into a suitable network. The prediction of
the network is treated as the result of the processing step’s calculation
rule. The outsourced configuration file contains information like the
storage location of training related data and optional parameters that
configure parts of the automated behavior.

The final step for processing speech and gesture input typically
applies an multimodal fusion approach. Fig. 8 presents an example of

1 class UniversalInteractions extends AtnLayout {

2 create StartState "start" withArc "verb" toState "split"

3 create SplitState "split"

4 withCondition TimeConstraint(Milliseconds(500))
5 withArc "gesture" toState "merge"

6 withArc "determiner" toState "merge"

7 create MergeState "merge" //...

8 create Arc "verb" withCondition isVerb andFunc doVerb

9 create Arc "gesture" withCondition isPointing

10 andFunction processGesture /*...*/ }

Listing 9. Excerpt of an outsourced tATN configuration implementing
Fig. 8. The related processor is defined to require the user’s gestures and
spoken tokens as input and to update the user entity’s Action property
with successfully fused commands. The internal DSL for defining states
(lines 2-6) and arcs (lines 7-10) is intermixed with references to functions
(isVerb, processVerb, isGesture, and processGesture). The split-
merge construct (lines 3-7) is utilized to constrain occurences of the
pointing gesture and the determiner that to a time window of 500ms.

1 def doVerb(input: Event, register: Register) {

2 val token = input.get(Token).value
3 val pos = Dictionary.verbs(token)

4 val action = ActionRegister.lookUp(pos.assocAction)

5 register.put(action)

6 }

Listing 10. Definition of a transition function for the tATN of Listing 9.
The application state change that triggered the transition (input) can
be assumed to be a verb, e.g., put. It is used to lookup an associated
grounded action using a dictionary (lines 2–4). The retrieved action is
stored in the cursors register to subsequently facilitate checks if parsed
input matches the action’s parameters and conditions and to ultimately
execute or return the action if an end state is reached.

this based on an temporal Augmented Transition Network (tATN) [20].
The corresponding processor configuration is showcased in Listing 9.

Functions referenced in the tATN definition can use semantic queries
and semantic grounding, e.g., to resolve a pointing ray similar to List-
ing 6, to alter the application state to provide feedback to the user,
or to start a processor to continuously map user input to virtual ele-
ment properties. Moreover, if a user-desired state is derived during
parsing, a planning subsystem can trigger respective grounded actions
(cf. Listing 5). An alternative approach realizing semantic queries for
a grounded action lookup is showcased in Listing 10. The required
dictionary is illustrated in Listing 11. It can be auto-generated from
the system’s ontology, if a ontology containing words supported by the
application is imported and necessary relations to grounded symbols
and actions are added.

Altogether, the application of the presented techniques for the real-
ization of multimodal interfaces results in a highly configurable solu-
tion suitable for analyzing input on data-, feature-, and decision level.
The underlying semantic grounding is highly beneficial for decision
level processing and fusion approaches, since they typically deal with
symbolic data. Moreover, entity properties required by single steps
are described in terms of their semantics and requested from a cen-
tral registry. They are thus decoupled from other processing steps or
subsystems, which fosters exchangeability and reuse. Processors, de-
scribed using a high-level DSL, support API usability, especially in
combination with Scala’s syntax capabilities.

6 RESULTS

In the previous sections we introduced five techniques to enhance soft-
ware quality in multimodal RISs and illustrated their application with
the aid of a multimodal input processing use-case. They solve the
ECS pattern’s runtime type as well as incompatibility issues. More-
over, they improve component granularity as well as mutual access
to entities by subsystems to match the requirements of complex AI
dependent RISs, e.g., realizing multimodal interfaces. In addition, they
extend the pattern with a technique for semantically described reusable
operations. The showcased reference implementation comprises de-

1 object Chair() extends Noun {

2 val entityReference = Type(chair)}
3 object Green() extends Adjective {

4 val associatedProperty = Color(Constants.green))}
5 object Collocate() extends Verb {

6 val actionReference = collocate}
7 object Dictionary {

8 val verbs =

9 Map("put" -> Collocate() , /*...*/)

10 val adjectives =

11 Map("green" -> Green(), /*...*/)

12 val nouns =

13 Map("chair" -> Chair(), /*...*/)}

Listing 11. Explicit mapping of parts of speech [47]: verbs denote actions,
adjectives entity properties, and nouns entities.
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sign decisions, like the use of the Scala programming language and
the internal DSL. The presented techniques, however, are indepen-
dent of a certain programming language. Table 2 shows their mutual
dependencies in case only a subset of them is to be implemented. Addi-
tional implementation hints and details can be found in previous work
on semantic grounding [44], code from semantics [41, 44], grounded
actions [12, 46], semantic queries [12, 45, 46], and decoupling by se-
mantics [22]. The remainder of this section will discuss the showcased
reference implementation and the impact of the presented techniques
on maintainability and performance, including effects on coupling.

6.1 Reference Implementation
The presented techniques can be made use of by two approaches: (1) By
low-level system integration. This requires access to the specific ap-
plication state management to enable semantic grounding. Here, the
presence of an entity model is beneficial. (2) By loose coupling of a
(partly) closed source system. This requires an existing system that
realizes approach (1). Our reference implementation comprises both
approaches. Variant (1) is showcased in this paper. In addition, the cou-
pling to two commercial game engines, Unity3D [37] and Unreal 4 [9],
yielded first promising results [8, 43] for variant (2).

Several design decisions of the reference implementation are not
necessary for the presented techniques. On the one hand, Scala was cho-
sen due to its combination of object-oriented and functional paradigms
as well as due to its syntactical flexibility. The former is beneficial
for addressing a preferably large number of developers while facilitat-
ing concise APIs, especially comprising callbacks. The latter greatly
facilitates the definition of internal DSLs. On the other hand, actors
provide a solution for typical RIS concurrency requirements and fos-
ter scalability and extensibility. Their use avoids the necessity for
techniques like mutexes to synchronize memory access. High-level
synchronization mechanisms, e.g., to handle temporal dependencies
between rendering and physics simulation, may still be required and
have to be implemented at higher layers. An actor model implementa-
tion is natively included in Scala. Both decisions positively influence
maintainability [42].

The API showcased throughout the listings is the proposed solution
for implementing the presented techniques. Our current DSL consists
of about 10 constructs that proved sufficient for our test cases and
demonstrations. It can be extended and intermixed with non-DSL API
calls and is subject of our ongoing research.

6.2 Maintainability
Evaluating or even comparing maintainability is an expensive endeavor
with a limited amount of methods and no obvious choices [32]. This
holds especially true for API usability [31], despite its critical impact.
Available objective reusability, modularity, and modifiability prediction
methods are based on algorithms that automatically analyze source
code based on a certain metric [32]. Subjective methods rely on expert

1 2 3 4 Facilitated requirements
semantic grounding 1 Rrep, Racc

code from semantics 2 r Rper , Racc
grounded actions 3 r b Rexe
semantic queries 4 r b b Racc

decoupling by semantics 5 r b b r Rproc

Table 2. Dependencies between the presented techniques as well as
facilitated requirements. Each row represents a technique and indicates
which other techniques are required (r) or beneficial (b) for its imple-
mentation. Code from semantics is not required to implement the other
techniques, since the generation result can also be defined manually.
However, utilizing ontologies fosters exchangeability and the use of plan-
ning software as described in Sect. 4.2. Similarly, semantic queries and
decoupling by semantics can be realized solely upon semantic ground-
ing. However, grounded actions contribute to further decouple function
executions, as showcased by the multimodal processing use case. In
addition, essential requirements that are facilitated by a certain technique
are summarized. See Sect. 4 for details.

judgment in the context of reviews [27, 32] and are the most commonly
applied form of evaluation for these software qualities [32]. To assess
API usability subjective methods are even more essential, e.g., API
peer reviews [33] or questionnaires based on programming tasks [31].

However, all subjective measures implicate one crucial requirement:
persons that are familiar enough with a certain platform to solve com-
plex tasks or reflect on non-functional qualities. This obviously is
a problem in the area of complex RISs. At least, the availability of
such experts for widespread platforms is moderate. However, those
platforms are often commercial and do not permit changes necessary to
conduct research on maintainability. Open-source research platforms
facilitate the necessary flexibility with the drawback of an often scat-
tered user base. Given these constraints, we applied several methods to
ensure high or rather improved maintainability including API usability:
(1) We applied the API peer review method presented in [33]. The
results of this process are showcased by the presented code samples.
Following the review’s idea, readers can assess the API usability them-
selves with the aid of the code samples and the explanations in this
paper. (2) The reference implementation is utilized in several VR and
MR research projects as well as for various teaching projects, including
a dedicated multimodal interaction course (cf. Fig. 1). This way, we are
able to get API usability feedback on dedicated programming tasks in
the sense of [31]. (3) We conducted expert reviews accompanying the
development of the presented techniques targeting maintainability in
general [42]. (4) Objective measures have been conducted showcasing
the improved reusability of the presented concepts outside the scope of
this paper [41].

The lessons we learned concerning maintainability especially related
to API usability can be summarized as follows:

• Good workflow, tool support, and IDE integration are essential.

• The functional paradigm fosters a concise API that is tricky at
first but beneficial when used longer and for non-trivial tasks.

• Good code examples greatly ease the issue of missing documen-
tation (due to limited resources).

• API oversimplification will result in decreased understandability.

Especially the first lesson is key to inhibit potential development
overhead and to prevent a misuse of concepts resulting in idiosyncratic
code and poor maintainability.

6.3 Performance Evaluation
The presented techniques introduce a novel way of representing and
accessing the application state (Rrep and Racc), the most fundamental,
and thus most important operations in a RIS. Naturally, their beneficial
aspects come at the cost of some performance overhead, which will be
discussed in this section.

Semantic grounding introduces one layer of redirection: symbol-
based access of properties. Two representative alternatives are con-
trasted with the presented approach considering performance overhead
(Rper), expressivity, and effect on coupling. The fastest possible ap-
proach – direct access to variables and invocation of functions – would
result in the strongest coupling between subsystems and thus in a main-
tenance nightmare. Hence, it is not considered any further. The closest
alternative to direct access is the utilization of a hash map that links
values with some sort of identifier, introducing one layer of redirection.
This approach is adopted by most implementations of the ECS pattern,
e.g., in the form of wait-free hash maps [17]. Maximum independence
is achieved by an approach that uses a centralized or external storage
that is accessed via a dedicated query language. This would immensely
reduce coupling, but at the cost of parsing overhead.

In order to compare the performance of the different approaches
we performed a simple benchmark, measuring a combined read/write
operation. The benchmark consisted in invoking a method that updates
a floating point vector with three elements and reading the vector
back from the storage. The operation was requested by one actor
and executed by another, simulating the communication between two
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Fig. 9. Performance comparison of three different state representation
alternatives: hash maps, semantic entities, and in-memory databases.
Times (in milliseconds) were measured for 100,000 read and write opera-
tions. Blue columns represent concurrent access, whereas red columns
represent sequential read and write operations.

concurrent subsystems. Two different types of access were tested:
alternating read and write requests were sent, waiting for one request
to be processed before sending the next (serialized access) and all
read and write requests were sent at once (concurrent access). In both
cases the time between sending the first request and receiving the last
response was measured. All benchmarks were conducted on the same
hardware within the environment of our reference implementation,
which introduces some overhead. Nevertheless, the depicted relative
differences allow a performance assessment.

The results for the hash map-based approach are shown in column
HashMap in Fig. 9. As expected, this variant preformed best. In addi-
tion to performance advantages, the use of a programming language,
as applied in this case, provides the highest expressive power of the
compared approaches. On the downside, relying on application-specific
identifiers and function names yields close coupling: often unantici-
pated changes of function or class signatures necessitate the adaption of
large parts of a program; even if the essential functionality is retained.

One solution to the problem of such close coupling is the use of a
centralized or external storage, e.g., a database. Access to content then
is decoupled via a specific query language like SQL. As compared to
general purpose programming languages, modification of data with
such query languages is rather limited and mostly restricted to access-
ing and updating a database’s contents. The used relational database
consisted of a single table with four columns, one for the identifier and
three for the floating point numbers of the vector to be stored. Basic
SQL statements like

UPDATE s q l D a t a SET x =? , y =? , z =? WHERE i d =?
INSERT INTO s q l D a t a ( id , x , y , z ) VALUES ( ? , ? , ? , ? )

were used to modify the database. To avoid costly I/O operations a
SQLite in-memory database was used. Column In-Memory Database in
Fig. 9 shows the results from our benchmark: the results are about five
times worse as compared to the hash map approach using concurrent
access and more than three times worse using serialized access (the
less common variant in RISs). Consequently, the database approach is
problematic regarding high performance applications.

Technique one fosters the use of an external ontology to structure
state representation beyond common mechanisms provided by program-
ming languages, e.g., using relations between concepts. The benefits of
semantic databases and direct access are combined by integration of a
(generated) semantic layer. Resulting performance is close to that of
the hash-map approach, see column Semantic Entity of Fig. 9.

Code from semantics counters query parsing overhead. It intro-
duces overhead only at compile time, the amount of which depends on
the size of the ontology in use.

Grounded actions rely on semantic grounding with similar over-
head costs. Apart from this, executing actions equals calling functions.

Semantic queries rely on a lookup in a central registry. However,
lookup overhead only occurs at first access, i.e. during bootstrapping
in typical RIS applications. Afterwards references to entities or their

properties are used for further operations. Additional performance
overhead is owed to the used subsystems, e.g., reference resolution
and reasoning in multimodal use-cases. It thus is not inherent to the
presented techniques but would arise in the same way in applications
that do not apply these techniques.

Decoupling by semantics introduces no additional fundamental
overhead compared to alternative implementations of threads of execu-
tion, since this technique solely defines an API scheme for reoccurring
requirements that utilizes the other techniques.

7 CONCLUSION

In this paper, we presented five semantics-based techniques for state
management in RIS applications to increase software quality, i.e. main-
tainability: semantic grounding, code from semantics, semantic queries,
grounded actions, and decoupling by semantics. The techniques im-
prove and extend the ECS pattern, which is widely used in current RIS
applications. They enhance the pattern’s capabilities of representing
and accessing the application state by introducing a uniform semantic
access on different levels and facilitate the creation of decoupled sub-
systems. An elaboration of performance characteristics, including a
comparison with alternative state representation approaches, validated
the feasibility of the presented techniques. Every aspect except the
top-level DSL is independent of a certain programming language. De-
velopers can thus already benefit from the presented ideas, possibly
implementing them in their own software.

A reference implementation is showcased by several code samples,
which are the results of a conducted API peer review process to improve
API usability. Its source code is available to the research community
to gather feedback and promote reuse [43]. Since the underlying tech-
niques foster decoupling, modularity is increased and existing features
can be (re-)used more easily, even by non-experts. The latter now
is confirmed in many topic-related courses and student projects, in
which participants successfully performed the highly complex task of
implementing multimodal (in that case speech- and gesture-based) VR
interfaces using the reference implementation (see Fig. 1).

In our ongoing research we evaluate additional performance aspects,
like the resolution of complex semantic entity references or planning
tasks. In terms of multimodal processing, we work on more diverse ap-
plications as well as on using the reference implementation to conduct
a comprehensive evaluation or comparison of alternative multimodal
processing techniques, like tATNs, unifications, and finite-state trans-
ducers. Finally, we will verify central non-functional software qualities
by encouraging more tool support and by applying additional evaluation
methods.
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