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ABSTRACT

Modern game engines provide a variety of high-end features and
sub-systems which have made them increasingly interesting for
AR/VR research. Here, it often is necessary to combine features
from different sources. This paper presents an approach based on
entity-event state decoupling and exchange. The approach targets
the combination of sub-systems from different sources which simu-
late functionally coherent aspects of the virtual objects like physics,
graphics, AI, or developer services like state editing. The approach
decouples specific internal representations using a semantic de-
scription layer for identifiers, data types, and potential relations be-
tween them. We illustrate the main concepts using examples from
the combination of the Unreal Engine 4, the Unity engine, and own
research software and illustrate performance related aspects as a
guideline for the choice of an appropriate transport layer.

Index Terms: D.2.13 [Software]: Software Engineering—
Reusable Software

1 INTRODUCTION

Various software solutions support the development of Real-Time
Interactive Systems (RIS) for Virtual and Augmented Reality
(VR/AR). Some solutions support dedicated functions like input
processing, graphics and audio rendering, or simulation of physics
and Artificial Intelligence (AI). Others provide complete soft-
ware frameworks which usually include a combination of before-
mentioned functions. For example, many of today’s game engines
matured to provide excellent features and state of the art simula-
tion subsystems for many VR/AR research projects. Lately, VR
also has become popular as an option for computer games. Hence,
many engines directly support VR devices like head-mounted dis-
plays (HMDs) and efforts have been made to enable their use in
CAVEs [14, 19, 24].

Employing game engines in VR research has been advocated for
some time [17] and the undeniable benefits of these engines ren-
der them interesting for HCI and VR researchers. However, there
is no one-size-fits-all, specifically in innovative research projects.
The major target of game engines are computer games or game-
related VR setups not comparable to research setups. For example,
research projects often include extended input device integration
(e.g., for full-body tracking), output rendering channels and devices
(e.g., for haptic rendering), or specific simulation software driving
the application’s main functionality (e.g., for large data set visu-
alization). Maybe sooner or later some of these functions will also
become commercially interesting and will be integrated into the en-
gines as a full supported feature. Until this happens, however, there
always will be a requirement to combine features from different
(software) sources.
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Today’s game and VR engines have become quite complex
pieces of technology which has been a major motivation for RIS
research. The resources needed to develop all necessary features by
one-self while still providing state-of-the-art quality are basically
out-of-reach for individuals or small teams. This can be asserted
for industry and research labs alike. Hence, integration of existing
software into one’s own target system has become a mandatory and
reoccurring pattern in software engineering. This paper proposes a
software integration concept for connecting different subsystems of
VR and game engines based on entity-event state decoupling and
exchange. The approach specifically proposes a semantic abstrac-
tion layer. In contrast to purpose-built plugins or tailored inter-
faces it provides a well defined interface fostering reusability and
exchangeability. We illustrate the main concepts using examples
from the combination of the Unreal Engine 4, the Unity engine, and
own research software and illustrate performance related aspects as
a guideline for the choice of an appropriate transport layer.

2 RELATED WORK

Game engines have been used in various application and research
scenarios, see, e.g., [17, 22, 14, 19, 24]. At this time, the most
commonly used engines are Unity [32], the Unreal Engine [9], and
the CryEngine [7] in different versions.

For example, the Unreal Engine has been used in the area of
interactive storytelling for some time [5], for applications involving
gesture interaction [6], was applied to haptic devices [28], and used
in the context of intelligent virtual environments [18]. It also was
used in applications for teaching engineering and construction [13],
virtual teaching [20], and smart prototyping [23]. The latter project
used Unity, too, however, the authors report that they found the
integration of C++ libraries to be easier with the Unreal Engine.

Unity was used in the context of serious games [26] and to ex-
plore the possibility to automatically generate VEs that are adapted
to the user’s physical environment [29]. Moreover, it was used to
integrate cognitive models in VR applications [27] as well as for in-
teractive storytelling involving a custom-built hardware device [11].

The indicated vast amount of application areas of game engines
in VR research complicates the choice of the optimal engine. This
is in line with our initial statement that reuse of code and frame-
work is of concern when choosing an engine. In this context,
methodologies for selecting engines have been proposed for seri-
ous games [25] and virtual environments in general [33].

The m+m (Movement + Meaning) framework [2] provides a sim-
ilar approach to the one presented in this paper. However, m+m
mainly targets real-time interactive systems focused on movement
data. It supports the Unreal Engine as well as Unity as output en-
gines and can connect to different sensors, e.g., Microsoft Kinect
and Leap Motion. As opposed to the m+m framework, the proposed
approach is not focused on movement data but on the utilization of
game engine subsystems in general.

The #FIVE framework [4], although it is targeted at the develop-
ment of collaborative, interactive virtual environments (and not on
general interfacing of different game engines), bears resemblance
with the presented work, since it integrates with the Unity Engine
via a DLL file and allows to attach other modules via its API.
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There are other approaches to interface game engines, like
intercept-based techniques targeting rendering subsystems, as pre-
sented by [36], or like the AnyHaptics framework [28] (dedicated
to the area of haptics) and the Physics Abstraction Layer [3] (ded-
icated to the area of physics). As opposed to these, the presented
approach targets the general utilization of subsystems. It requires
to implement a plugin to interface with the subsystems of the game
engine in question. Since this is possible with most current game
engines it is not considered a limitation. This way, it enables ac-
cess to more aspects of the subsystem and–since it uses the official
APIs–is easier to maintain.

Our implementation is based on an entity model and an event
system, two approaches that were found useful by others [30, 21].
More specifically, it relies on the Entity-Component-System (ECS)
pattern [1] as well as the actor model [12] to achieve a highly mod-
ular, extensible architecture. In addition, it features integrated se-
mantics at a core layer, which thus is connected to the subsystems
of the used game engine. This way, it provides a step towards the
integration of semantics into computer games, as advocated by [31].

One of the presented examples is the PEARS framework [8],
which employs the presented approach to take advantage of the
physics simulation and rendering systems of the Unity Engine. An-
other example application utilizes the VR capabilities of the Unreal
Engine [9] and is based on Bolt’s famous “Put-That-There”.

3 CONCEPT

There are different vocabularies for describing elements of a Real-
Time Interactive System (RIS). This becomes especially apparent in
comparing the terms “physics engine” and “game engine,” the first
usually being a part of the second. In order to avoid misunderstand-
ings, we specify the main terms that will be used in the remainder
of this paper below. We largely adopt the terms introduced by the
ECS pattern:

Entity describes an object or concept relevant to the simulation. It
can be of physical, virtual, or conceptual nature. Entities are
composed of components.

Component refers to a certain aspect of an entity. This can be a
single data property (e.g., position) or more complex charac-
teristic (e.g., the representation of a rigid body). Components
can share data properties.

Event identifies an incident that is restricted to a single point in
time during the simulation. This includes the occurrence of
value updates as well as more meaningful incidents (e.g., a
collision).

System (also subsystem) denotes a piece of software that is ded-
icated to a particular purpose (e.g., physics simulation) and
usually part of an engine or implemented in a dedicated soft-
ware library. Despite their distinct purpose, systems often are
closely coupled to achieve higher performance. Alongside ap-
plication specific code, systems receive and handle events.

Engine denominates a software framework that is used by game
designers to create virtual environments. Engines are com-
posed of systems.

3.1 Fundamental Observations
A connection to one or more subsystems of one or more game en-
gines can either be achieved by creating plugins for the system(s)
of the respective engine or by creating a network connection that
is used to transfer information between the engine and the appli-
cation. The first approach involves less communication overhead,
whereas the networked variant allows to combine the computing
power of multiple machines and different systems. This aspect will
be disregarded and concerned as the transport layer (cf. Figure 1),

since both approaches are conceptually equivalent: in any case in-
formation about the current simulation state is shared between the
utilized systems and the application.

Instead, the main concern is the representation of the simulation
state as well as of changes to it. Since it is extremely unlikely that
two engines and/or software libraries share the same representation,
a conversion process between the representations is required.

The representation of the simulation state includes both the uti-
lized data structures and the underlying paradigm. For example, a
rotation can be defined by a matrix that is stored in column-major
format. The matrix can represent an entity’s local rotation (relative
to its parent node in the scene graph used by the rendering subsys-
tem) or the rotation in world coordinates (in a flat data structure
used by the physics subsystem). In addition, access to these prop-
erties depends on the initial developer’s choice of identifiers.

This leads to the fact that each project needs to specify a layer
between the developed application and the game engine(s) in use.
Moreover, when the used engine or one of its subsystems shall be
replaced by that of another engine (or a newer version of the cur-
rently used one), this connection has to be established again.

We propose a configurable layer that facilitates the arbitrary
combination of subsystems and software libraries. It consists of
a thin layer that is integrated into the application and the used game
engine(s). Obviously, such a layer is prone to changes of the en-
gines’ API. However, this is unavoidably true for every applica-
tion and abstraction layer. The beneficial aspect of such a layer is
that only the very specific part for the changed subsystem has to be
adapted, leaving existing applications untouched.

Although the approach allows to combine subsystems arbitrarily,
that combination remains to be chosen reasonably. For instance,
separating a cloth simulation system from a rendering system, pos-
sibly even by using a network transport layer, will inevitably lead to
performance reduction. Moreover, the approach cannot compensate
for inexistent features in engines, but at best ignore an application’s
request for such features (if the developer does not decide to imple-
ment them manually). Consequently, even though subsystems can
be exchanged easily, their initial feature set has to be sufficient to
make such a replacement reasonable. In the end, the intention of
the approach is to facilitate the flexible utilization of game engine
subsystems in research projects.

3.2 Architecture
There are two main concepts underlying the proposed approach:

1. The simulation state is synchronized via an ECS pattern-based
representation in the abstraction layer, resulting in a star net-
work like topology (cf. Figure 1).

2. Communication between subsystems and the application is
performed on an event basis, reducing the amount of con-
cepts involved in the synchronization process to a minimum
(cf. Figure 2).

State Representation
The ECS pattern fits the task of sharing a representation between
different engines best, since it decomposes entities into components
that can be accessed by the respective subsystem. It does not force
any hierarchy (e.g., scene graph representation) on the developer
and thus provides freedom to choose an appropriate representation.

We additionally apply a semantic extension to the pattern as sug-
gested by [35], allowing to specify identifiers and types outside
the application, thus facilitating reuse. The semantic extension,
amongst other things, adds human readable type information to ev-
ery value that is synchronized via the abstraction layer. This way,
selecting converters, dispatching value updates, selecting compo-
nents, etc. is immensely simplified, since values keep the associated
meaning even when passed through multiple functions.
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Figure 1: Schematic overview of the proposed approach. Parts that include additional code, i.e. layers for each subsystem in the engine, the
transport layer, as well as the central abstraction layer which synchronizes the application state, are shown elevated.

For engines that apply the ECS pattern, like Unity, the amount
of code to be written for each subsystem of an engine is very small
(cf. [34]), since only the translation of the incoming events into
the local state representation has to be implemented. This process
is quite straightforward, as the direct identification of components
in entities is possible. Engines and libraries that do not apply the
pattern require an additional lookup and integration process, that
includes finding the respective property in the local state represen-
tation (see section Entity-Component Registry below).

Conversion between Representations
One specific feature of the proposed approach is the centralized
conversion of representation formats in the abstraction layer (cf.
Figure 3). In the initially mentioned example this means that a ro-
tation matrix in the application is automatically converted into a
quaternion representation (for game engines that adopt this repre-
sentation) without being noticed by the developer. For example,
the common right handed matrix representation of OpenGL based
applications is internally transformed into a left handed quaternion
representation for Unity in our implementation.

This conversion process is supported by a centralized definition
of types. The conversion operates on data types combined with se-
mantic information, such that it is possible to differentiate between
a floating point number that, e.g., identifies a radius and one that
identifies an angle. This is important in case the scaling between
two systems is different, since the radius would have to be scaled
but the angle would not.

A further benefit of the annotated types is the opportunity to con-
nect symbol based AI subsystems to the engine. Otherwise, their
integration would require considerable effort. Such AI subsystems
could involve a reasoning module that detects an entity’s type by
its composition of components and an action planning module that
subsequently detects possible action sequences that would not be
detectable without the knowledge about this inferred type.

Entity-Component Registry
An important aspect is the presence of value-change triggers re-
garding component modifications as well as lookup functionality
for entities and components. Without these features the necessity of
synchronizing the complete simulation state on a frame-by-frame

+ Entity ID
+ Component ID

ComponentEvent

+ ConstructorParam[*]

InstantiateEvent

+ Property ID
+ Value

UpdateEvent RemovalEvent

+ Event ID

Event

+ InvolvedEntities[*]

SpecificEvent

Figure 2: Hierarchy of event types used by the proposed approach.

basis would arise. The state representation inside the abstraction
layer is designed to provide these features, wherefore the propaga-
tion of changes and events can easily be achieved. On the contrary,
notification of value changes is provided only by few game engines,
requiring the implementation of an entity-component registry. This
registry contains references to the set of synchronized entities and
components that is continuously iterated to check for value changes.
Moreover, it is used for mapping identifiers of entities and compo-
nents between the abstraction layer and the internal representation.

All of the described aspects (ECS-based state representation,
converters, and the entity component registry) are specific to each
respective system. For this reason, a software package that is de-
signed for a certain system and complies with the software inter-
faces of the abstraction layer needs to implemented for each system
once and can then be shared between—and possibly extended by—
developers. We created two prototypes of such packages for Unity
and the Unreal Engine 4 and implemented corresponding demo ap-
plications, which are presented in section 4.

3.3 Entity Lifecycle
The lifecycle of an entity at large consists of three phases (instanti-
ation, update, and removal), which are described below.

Instantiation
The creation of entities is initiated via an instantiation event, which
contains an entity ID and a component ID for later matching pro-
cesses (cf. Figure 2). Configuration is performed inside the ab-
straction layer, based on descriptions of entities (i.e. sets of com-
ponent descriptions and initial values). In this context, a subsystem
is only given the information it needs for the entity’s creation. For
example, a rendering subsystem is informed about the model to be
loaded, but it does not receive any information about its physical
properties. In this way, the synchronization overhead is minimized
and no irrelevant data has to be stored by an engine.

The mentioned component descriptions implement a simple soft-
ware interface that is provided by the abstraction layer (cf. [34]).
These descriptions, the converters, as well as an actor that ap-
plies converters and sends events via the transport layer, form the
Connectors in Figure 1. Such connectors are part of the before-
mentioned package that is created once for each system and shared
between developers.

During the creation of an entity, the components specified by the
descriptions are queried from the engine. More specifically, an en-
gine is requested to create its internal representation of the entity,

Abstraction Layer

Subsystem A Converter State 
Representation

Figure 3: Overview of the conversion process: converters specified
in the abstraction layer (cf. Listing 2) transform the local state repre-
sentation in to the subsystem’s format.
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which at least contains the requested component(s) but may con-
sist of more elements if needed by the engine (for example, every
gameobject in unity has a transform component, even though it may
not require a position to be functional). A mapping between the sent
IDs and the internal representation is established via the previously
mentioned registry. Finally, this mapping is communicated to the
abstraction layer. Note that this permits connections to entities and
components that already exist in the simulation of the engine. Ul-
timately, fully set up virtual environments can be augmented with
additional functionality.

Component Updates

If a property change is detected (see Entity-Component Registry
in section 3.2), this is communicated via the transport layer. Inside
the abstraction layer the correct converter (cf. section 3.2) is used to
transform data from the subsystem’s representation into the central
one. The data then is converted into the internal format of each
subsystem that registered for updates of the respective component
and an update event is dispatched.

Although the central representation can be chosen arbitrarily
(since converters can be exchanged), it is advisable to choose a rep-
resentation that results in as few conversions as possible. More
specifically, choosing the representation used by the system that
emits the most updates regarding a specific component (e.g., the
physics engine with respect to position updates) makes sense, since
this eliminates the need for converting the incoming update events.

Note that the major part of a system’s internal representation is
not involved in the update (nor in the instantiation) process. For
example, it makes sense to store meshes and sounds in external
files, send identifiers (i.e. file names) to the respective system and
let it load that file, as opposed to creating an internal representation
that is then converted and sent to the graphics and sound systems.

In most cases, this system’s representation (the loaded model or
sound) will never be changed, except for removal or replacement
operations of the whole asset. If, however, such an asset would be
required to be modified at runtime (e.g., a point cloud that is modi-
fied by one system and then visualized by another), a converter sup-
porting a common representation and (if networking is involved) a
representation-specific serialization process would have to be added
to the abstraction and the transport layer.

The most common, intermediate case is to parametrize the sys-
tems’ data and update these parameters. In the simplest case this
would result in a single update (e.g., position) but also multi-
parameter updates are conceivable. For instance, updated param-
eters of a shader can be communicated to the respective system, as
opposed to sending an updated version of the shader code (which,
due to the textual nature of shader code, would easily be possible,
too). Since converters and subsystem connection is engine specific,
such custom optimizations can be implemented without affecting
other parts of an application.

Removal

Removal of entities and/or components is straightforward, since it
only requires the notification of all subsystems (via an event, cf.
Figure 2) to remove the respective components. Even though it
is more common to remove complete entities, the removal of sin-
gle components (i.e. removing functionality) is easily possible, too,
since communication is performed on a per system-basis (as op-
posed to engine-basis). On request, systems remove (or disable)
a component from their internal representation and optionally sig-
nal the successful execution to the abstraction layer, which in turn
updates its representation.

Disabling and (re-)enabling components would be possible by
adding two more event types. Most of this functionality has to be
implemented inside the respective system or engine if it is not sup-
ported from the beginning.

Move [pointing] that 
planet [pointing] there

Figure 4: Big Bang is a virtual reality application in which the user
can bring his own universe to life, by creating, modifying and deleting
planetary objects via a multimodal speech and gesture interface.

4 IMPLEMENTATION

All introduced software layers have been implemented demonstrat-
ing the general feasibility of the presented approach. The abstrac-
tion layer (L1) has been realized with the open source framework
Simulator X [16]. A transport layer building on network sock-
ets (L2) and two respective subsystem layers (L3)–one for the Un-
real Engine and one for Unity–have been developed. Furthermore,
two proof of concept applications have been implemented with this
architecture: Big Bang, a multimodal “genesis application” inspired
by Bolt’s Put-that-there, which utilizes the VR capabilities of the
Unreal Engine, as well as PEARS, a semantically enriched physics
simulation using Unity.

In the following sections the use case of the Big Bang appli-
cation serves as an example for the subsequently presented imple-
mentation of the layers L1–L3. Concerning L3 we focus on the
development done in Unreal, since the respective layer in Unity has
been implemented analogously.

Application

Big Bang is a virtual reality application in which the user creates,
modifies, and deletes planetary objects via a multimodal speech and
gesture interface (cf. Figure 4). The HTC Vive is used to create
a fully immersive experience. Typical interactions include the in-
stantiation of planetary objects (”Create a planet [pointing] there.”),
updating positions (”Move [pointing] that planet [pointing] there.”)
as well as their removal (”Destroy [pointing] that planet”).

Big Bang has been implemented with Simulator X for practical
reasons: Firstly, multimodal interfaces can easily be developed with
the engine’s integrated multimodal processing system miPro [10].
Secondly, this way the necessity to develop another subsystem layer
that connects the application to the abstraction layer is omitted.

Furthermore, Big Bang emphasizes the benefits of cherry-
picking RIS functionality. Combining miPro’s capabilities with
Unreal’s well-known advantages, e.g., high quality graphics, yields
a more immersive and enjoyable application.

L1: Abstraction Layer

The abstraction layer has been implemented as a part of Simula-
tor X. The engine adopts the ECS pattern and therefore subsystems
that control associated components can be attached to and removed
from it. Moreover, Simulator X incorporates semantic based soft-
ware techniques on a core level. In this way, a common ground for
data types and names is created, facilitating the synchronization of
different state representations.
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1 class IntegrationExample() extends SimXApplication {
2 def applicationConfiguration = Config withSubsystem
3 //UnityConnector(unityName, "127.0.0.1", 9000) and
4 UnrealConnector(unrealName, "127.0.0.1", 9000) and
5 MiPro(mmiName)
6

7 handle[MiProMessages.Create]{msg =>
8 Planet(msg.name, msg.transform).realize()}
9 handle[MiProMessages.Update]{msg =>

10 msg.entity.set(msg.transform)}
11 handle[MiProMessages.Removal]{msg =>
12 msg.entity.remove()}
13 }
14 case class Planet(name : String, transform : ConstMat4f)
15 extends EntityDescription(name,
16 UnrealAsset(
17 transformation = transform,
18 asset = "assets/unreal/planet.fbx"),
19 //Uncomment for Rendering in Unity
20 //UnityAsset(
21 //transformation = transform,
22 //asset = "assets/unity/planet.obj"),
23 Multimodal(selectable = true))

Listing 1: A simplified IntegrationExample based on the Big-
Bang application showcasing key aspects of the abstraction layer.

In our implementation of the abstraction layer a component is
a collection of state variables, which can be added, updated, and
removed. Access is performed via human readable symbols (like
transformation) that contain type information and are pro-
vided via the core level semantic layer. For observing state changes
callbacks that are invoked when a variable’s value is modified can
be registered. Concurrent access to the central application state is
achieved by message-based communication, which is implemented
based on the actor model [12]. The simulation state is represented
by the entirety of all entities present in an application.

The so called UnrealConnector has been implemented as an
actor that can be seamlessly integrated into the abstraction layer by
implementing the layer’s software interface for connectors. It un-
dertakes four primary tasks: it spawns a dedicated networking actor
that communicates via the transport layer with the Unreal Engine,
observes instantiations, observes component updates, and performs
removal of entities from the simulation.

A dedicated component description, called UnrealAsset,
which contains the relevant information for the Unreal engine
to render the entity, is provided with the UnrealConnector.
Only entities containing this component are monitored by the
UnrealConnector, reducing computational complexity.

Listing 1 showcases key aspects of the implemented abstraction
layer based on Big Bang. All involved systems and/or connectors
are defined in the applicationConfiguration (lines 2–5).
In this case these are the miPro subsystem of Simulator X and the
UnrealConnector. The composition of entities is described in
so called EntityDescriptions (lines 14–23), which are in-
stantiated at runtime (in lines 7–12). They consist of a set of
component descriptions, which specify the state variables that ul-
timately make up the entities. In case of the shown planet entity,
Multimodal describes properties that are relevant for multimodal
processing, e.g, if an entity is selectable by means of interaction
(line 25), while UnrealAsset determines the model to be loaded
and rendered by the Unreal Engine as well as its initial transfor-
mation (lines 16–18). Instead of using the Unreal engine, render-
ing can be performed with Unity by swapping the commented code
(lines 3 & 19–22) with the respective Unreal parts.

Lines 7–8 showcase the instantiation of a planet entity in
response to miPro successfully recognizing a user command.

1 new Converter(Position)(types.Transformation){
2 // convert from local to global type
3 override def convert(i: Mat4): Vec3 =
4 Vec3(i(3).x, i(3).y, -i(3).z)
5

6 // convert from global to local type
7 override def revert(i: Vec3): Mat4 =
8 Mat4(Mat4x3.translate(Vec3(i.x, i.y, -i.z)))
9 }

Listing 2: A code excerpt depicting a converter which automatically
transforms a right handed transformation matrix into a left handed
position vector.

Since Planet contains the UnrealAsset component, the
UnrealConnector is informed by means of the underlying ac-
tor system. The passed information is converted and conveyed to
the connection actor, which ultimately emits an instantiation event
to the Unreal Engine. After the planet entity’s representation is in-
stantiated in the abstraction layer, the UnrealConnector inter-
nally observes the state variables transformation and asset
by registering a callback function. The former is, for example, trig-
gered in response to the transformation update indicated in lines 9
and 10, subsequently converting new values and dispatching the up-
dates via an associated event. Similarly, when the planet entity is
deleted in lines 11–12, a removal event is emitted and eventually
processed by the Unreal Engine.

The conversion of information is a central aspect when exchang-
ing data between multiple engines. For example, Big Bang uses
a single transformation matrix to determine the position, scaling
and orientation of an entity in a right handed coordinate system,
whereas Unreal uses three dedicated vector/quaternion representa-
tions and a left handed coordinate system. Due to the integrated
semantics and type information our implementation permits the au-
tomatic application of converters. Listing 2 exemplifies such a con-
verter, which transforms respective data from one representation to
another each time the state is retrieved from or written to the ab-
straction layer.

L2: Transport Layer

To convey information from one engine to another, we chose a
client server architecture using network sockets, requiring a thin
connection layer in all involved systems (L1 & L3). Consequently,
engines can be run on different machines in a local network, on
the one hand increasing the overall computational power but on the
other hand increasing the event passing time. Eventually, this ap-
proach was chosen since it allows flexible combination of different
engines, even if these depend on different operating systems.

Due to the proof of concept nature of the implementation, some
simplifying decisions have been taken: The current implementation
utilizes the TCP protocol, obviating the need of network package
management. Moreover, JSON was chosen as the exchange format
because its functionality is capable of serializing and deserializing
basic data types and objects into human readable, string based mes-
sages, facilitating debugging processes.

This obviously leaves room for optimizations: JSON produces
overhead and is slower in terms of parsing than a binary format and
the UDP protocol allows for faster transmission speed and smaller
header sizes. The consequences of these design decisions regarding
the performance of the current implementation are indicated in sec-
tion 5. Note that a networking architecture might not be feasible in
all scenarios. A transportation layer implementation for passing in-
formation on one machine, building on ECS-based data structures,
e.g., [15], offers a faster and higher data throughput.
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Figure 5: Simplified excerpt of an Unreal blueprint showcasing the reaction to an incoming instantiation event.

L3: Subsystem Layer

In Unreal functionality can be implemented via C++ and so called
Blueprints, a visual scripting approach. Instead of writing code,
the developer can create nodes and connect them in a visual edi-
tor. For the Unreal subsystem layer a hybrid approach was chosen:
core functionality is implemented in C++, whereas the program’s
behavior is designed with blueprints.

The subsystem layer in Unreal is implemented in a dedicated
PlayerController, which is a low-level class representing the
human player. It was chosen for implementing the layer on ac-
count of Unreal’s authority system for accessing individual ele-
ments of the simulation and the PlayerController’s persis-
tence throughout the application (e.g., in multiple levels of a game).
In addition, a dedicated ConnectionController extending
the PlayerController was implemented.

This ConnectionController starts a socket on a prede-
fined port, waiting for the respective counterpart to establish a con-
nection and listening to the aforementioned three event types. Fig-
ure 5 illustrates Unreal’s reaction to an InstantiateEvent us-
ing Blueprints: The controller loads an actor class, which in Un-
real corresponds to an entity, with the transmitted asset and subse-
quently spawns the actor. Eventually, the actor is added to the entity
registration with the corresponding identifier.

On receiving an UpdateEvent the controller identifies the af-
fected actor by means of the transmitted entity id (cf. Figure 6).
Thereafter, the transmitted changes, e.g., position updates, are di-
rectly set due to the aforementioned conversion of the abstraction
layer. Lastly, when receiving a RemovalEvent the controller re-
moves the actor from Unreal’s simulation state.

4.1 Multi-System Examples
A simple example is shown in the top of Figure 7: Unity and Unreal
render the same scene (a ball jumping on a table) being connected

Figure 6: Simplified excerpt of an Unreal blueprint showcasing the
reaction to an incoming update event.

Figure 7: The scenes from the multi-system examples. Top: a sim-
ple scene synchronized between Unity and Unreal. Bottom: PEARS
combining the Unity renderer and physics as well as different custom-
made AI systems that support the physical simulation.

by the proposed approach. In this example, the physical simulation
is performed by Unity and results are passed to Unreal.

A more complex example is proviced by the PEARS frame-
work [8], in which the rendering and physics systems of the Unity
engine are used. The connection is established via TCP sockets and
uses JSON encoded messages to communicate between abstraction
layer and the involved systems. In addition to the used subsystems
of Unity, multiple AI modules are used to extend available capabil-
ities regarding the physics simulation. This includes thermodynam-
ics, electricity, and chemical properties.

An exemplary PEARS scene is shown in the bottom of Figure 7:
Common rigid body physics (falling domino blocks, rotating wind-
mill, etc.) is provided by the Unity physics subsystem, which in-
teracts with the additional AI physics subsystems of the PEARS
framework (e.g., airflow by the candle and a electrical circuit to be
closed when the red ball connects the battery with the lamp). The
details of this interaction have been published in [8].

As mentioned before, the implementation of the Unity con-
nection has been performed analogously to the Unreal connec-
tion, consisting of the three layers L1–L3. These include a
UnityConnector, and UnityAsset, as well as the subsystem
layer in Unity (which here is a MonoBehaviour that is attached
to the main camera). Due to the common representation in the ab-
straction layer, most parts of the implementation of the transport
layer could be re-used.
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Figure 8: Results from the Unity and Unreal benchmarks.

5 EVALUATION

In order to acquire metrics from the interconnection between two
systems and to quantify the implementation’s qualities, preliminary
benchmarks have been conducted.

5.1 Benchmarks
All benchmark runs were performed on a single machine (Intel
Core i7 4870HQ, AMD Radeon R9 M370X, 16GB Ram, Mac OS
10.12.3). The maximum framerate was set to 60Hz.

Our benchmarks aimed at measuring the time for executing a
single operation in the creation and update phases of the entity life-
cycle, excluding communication overhead. In order to do so, the
timespan between initiating an operation and receiving the associ-
ated acknowledgment message was measured. The latter was sent
after the receiver (Unity or the Unreal Engine) had integrated the
new information into its state representation. Since access to the
game state is only permitted at certain points in the respective en-
gine’s game loop (e.g., in the Update method of a Unity script), the
raw measurements include the time that passed before this point
was reached (i.e. until the previous frame was finished).

To estimate communication overhead, three variants of ping-type
measurements were performed: First, the ping command-line tool
was used to measure a base line of for pinging the local machine
(0.085 ms, SD 0.015). Second, a ping-type message was imple-
mented, to measure the plain processing time for serializing, send-
ing, deserializing, and processing, which is not dependent on the
opposite engines game loop. Processing this type of events consists
in plain (de-)serialization and message sending, without any fur-
ther computations. This was performed for Unity only, since our
Blueprint-dependent implementation for the Unreal Engine does
not support asynchronous message handling. The average process-
ing time was 0.46 ms (SD 0.35). Finally, to distinguish the serial-
ization and communication from actual processing of the transmit-
ted events, a third ping-type measurement was performed, where
the ping message was processed in above-described point in the en-
gine’s game loop (results are shown in column “Ping” of Figure 8).

In the actual create-update benchmark run, 100 spheres were cre-
ated and position, rotation, and scale updates were sent to them.
Beside these spheres only one other object (a tree) was shown in
the scene, to create some (but few) constant load for the renderer.
The transport layer in both cases was the before-mentioned JSON-
over-TCP network connection. Results of the benchmark for the
connection to Unity and the Unreal Engine are shown in Figure 8.

With the Unity connection more than 90% of the events were
processed within 16 milliseconds (~1 frame for 60Hz update rate),
more than 99% within 32 ms. The system was capable of process-
ing more than 20.000 ping-type events per second and maintain-
ing these processing times. With the Unreal connection only 0.6%
of the events were processed within 16 milliseconds, 75% of the
events were processed within 32 ms and more than 99% within 64
ms. Despite the longer response time, the Unreal connection was
capable of processing more than 40.000 ping-type events per sec-
ond and maintaining the shown processing times. It has to be noted
that all measurements include two-way communication.

5.2 Discussion
First of all, the results from the Unity ping measurements indicate
that for Unity an overhead of about 0.68 ms is added to the expected
average ping time of 8.79 ms (~8.33 ms until end of frame plus
0.46 ms on average for asynchronous ping processing). The fact
that much more than 16 messages could be processed per frame in-
dicates that this additional time is rather an offset than processing
related. It is assumable, that this offset is caused by the first-in-first-
out processing of messages: messages that are received directly be-
fore a frame is finished (and thus can be processed instantly) are de-
layed until all other pending messages have been processed. Some
minor additional overhead is introduced by message handling oper-
ations.

Consequently, we assume that the times measured in the bench-
marks are composed of processing time for all messages, the time
for transport and (de-)serialization, and the average time until the
end of the current frame:

tmeasure = nmsg · tprocsingle + ttransp +
t f rame

2

Hence, the average processing time (excluding serialization and
transport) for Unity connection is approximated by

tprocsingle =
tmeasure − ttransp −0.5 · t f rame

nmsg
≈ tmeasure −8.79

100

This leads to an approximated average overhead of 13.9 µs and
12.9 µs for creation and update operations, respectively.

The results for the Unity connection as compared to the Unreal
Engine connection differ by a factor of about 3. The main reason for
this is the more sophisticated implementation of the Unity connec-
tion, which has undergone performance optimizations (e.g., concur-
rent processing of incoming events and shortened JSON keys).

After all, our results are encouraging: measurements for Unity
indicated that its performance is sufficient, e.g., to synchronize po-
sitions of 200 constantly moving entities at 60Hz. Regarding the
connection to the Unreal engine there is room for improvements.
Nevertheless, although not being within the one-frame limit, per-
formance was sufficient to use the it in the Big Bang application.

Reasons for the poorer performance of the connection to the
Unreal engine likely is the fact that processing messages was per-
formed in the main thread, as the Blueprint visual scripting was
(partly) used. The connection to the Unity engine ran a dedicated
thread for this task. This also explains why nearly no message was
processed by the Unreal connection within on frame, while this was
the case for 90% of the messages with the Unity connection.

In addition to these results, the aspects of software reuse, in-
cluding effort analysis for exchanging a rendering system using the
Unity connection have been evaluated in chapter 6.2 of [34].

6 CONCLUSION

In this paper we presented a software integration concept for con-
necting subsystems of different VR and game engines: A semantic
abstraction layer, based on the ECS pattern, decouples specific in-
ternal representations and provides a well defined, extensible in-
terface fostering reusability and exchangeability. Information is
communicated between engines via an event based transport layer.
A centralized conversion within the abstraction layer automatically
adjusts different representation formats. Our reference implemen-
tation connecting the Unreal Engine 4, the Unity engine, and Sim-
ulator X showcases the concept’s general feasibility.

While the ECS pattern turned out to be a suitable choice for mod-
eling the semantic abstraction layer, implementing automatic type
conversions, and representing a sharable simulation state, bench-
mark results indicate room for improvement of the transport layer’s
implementation.
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The proof of concept applications Big Bang and PEARS, how-
ever, show promising results emphasizing the usefulness of cherry-
picking RIS functionality in innovative research projects.

Future work will include optimization in terms of performance.
This revision will specifically include the replacement of the JSON
format in favor of a purpose-built binary format. We furthermore
plan a revision of the Unreal connection, which yielded relatively
poor benchmark results as compared to its Unity counterpart. And
finally, we are going to continue utilizing our implementation of
the presented abstraction layer to use state of the art game engine
features in future research projects.
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