
A Latency and Latency Jitter Simulation Framework with OSVR

Jan-Philipp Stauffert∗

University of Würzburg

Florian Niebling†

University of Würzburg

Marc Erich Latoschik‡

University of Würzburg

ABSTRACT

Latency is a pressing problem in Virtual Reality (VR) applications.
Low latencies are required for VR to reduce perceptual artifacts and
cyber sickness. Latency jitter, i.e. variance in the pattern of latency,
prevent coping mechanisms as users can’t adapt.

Low latency is a fundamental timeliness requirement to reduce
the potential risks of cyber sickness and to increase effectiveness,
efficiency, and user experience of Virtual Reality Systems. The ef-
fects of uniform latency degradation based on mean or worst-case
values are well researched. In contrast, the effects of latency jit-
ter, the distribution pattern of latency changes over time has largely
been ignored so far, although today’s consumer VR systems are ex-
tremely vulnerable in this respect.

In this paper, we propose to create a model of latency and latency
jitter with empirical distributions as well as a method of using those
models to inject latency. The process of creating a latency model is
demonstrated with an example of gathering and converting latency
samples from an example application. We show how to simulate la-
tency and motivate to use it in middleware to allow for less intrusive
latency effect evaluations.

Index Terms: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; D.4.8 [Operating Systems]:
Performance—Measurements; H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

Virtual Reality applications often consist of multiple components
to handle input processing, simulations, artificial intelligence, or
rendering etc. Non-functional software quality requirements like
modularity, maintainability, and reusability can have an unforesee-
able impact on the temporal behavior of software, especially for a
Real-Time Interactive System (RIS), i.e., in Virtual, Augmented,
and Mixed Reality (VR, AR, and MR) and computer games. Due
to the complexity of many RIS applications, they are often split
into different parts to foster cohesion and decoupling. To exploit
today’s multi-core and multi-CPU architectures and to avoid un-
necessary blocking, these parts often will be executed concurrently
or they will be completely distributed [2, 12].

Each computation in each application part takes time with the
orchestration and synchronisation adding additional overhead. The
computations cause a latency between input data entering the sys-
tem and output data based on them exiting the system.

In theory, the created latency can be determined deterministically
by inspecting the system and the control paths taken. In practice,
today’s hard- and software is too complex to determine how its la-
tency behaves. It is agreed upon that more latency, i.e. a bigger
time discrepancy between input and the resulting output, lead to a
decreased performance operating a system and especially in VR to

∗e-mail:jan-philipp.stauffert@uni-wuerzburg.de
†e-mail:florian.niebling@uni-wuerzburg.de
‡e-mail:marc.latoschik@uni-wuerzburg.de

Figure 1: Example scene to create latency measurements. Spheres
are spawned every second and collide with each other as well as with
the environment.

decreased immersion and acceptance due to an increase in cyber
sickness [10, 18].

While time invariant latency is well researched, this paper fo-
cuses to create a model for latency jitter. Latency jitter describes la-
tency that changes over time, here with the focus on latency spikes.
Latency jitter leaves the user unable to adapt as it is constantly
changing.

To provide a tool for further research of latency spikes, this pa-
per proposes to use the here introduced latency models as a basis
to simulate latency. This simulated latency can be inserted into se-
lected parts of an application to enable detailed observations.

The contribution of the work presented here are as follow:

• Description of how to create a model for latencies from mea-
sured data

• Description how to use a latency model to simulate latency

This paper is structured into first discussing related research, fol-
lowed by the description of our method to model and simulate la-
tency and latency jitter. We will then introduce a latency injection
system that allows for the introduction of latency and latency jitter
based upon our model without changes to the VR application. In
the end there is a discussion of the findings with a conclusion and
ideas for future work extending the research presented here.

2 RELATED WORK

Simulator sickness is a problem of VR applications where users are
experiencing symptoms such as nausea [11]. While some users are
more sensible, there are certain factors that make simulator sick-
ness worse for most users. Visual delay was found as a major con-
tributing factor already in early simulators [8]. Latency also influ-
ences the performance of test subjects both if time variant latency
is added [10] or for latency spikes [18]. The assumption is con-
sequently that latency spikes influence simulator sickness with a
similar impact as the better researched time invariant latency.

The performance of VR applications is usually assessed by mea-
suring motion-to-photon latency which tracks the time between an
input on a certain input channel and the time it takes to show its

P
R
E
P
R
IN
T

Figure 2: Latency measurements of the physics simulation in our test
scene, scaled to show the mean latency with most of the samples
and above a region with sparser sample density.

effect on a display. Approaches to measure this latency are sine fit-
ting [17], light sensing [5] and automated frame counting [9]. In
this paper, the focus is on latency that is contributed by the VR
framework and its internal software processes with their interac-
tions, a subset of motion-to-photon latency. While there are many
optimization techniques for the rendering stage like frameless ren-
dering [3], latency at the application stage is yet less researched.

Latency has been injected into virtual environments to evaluate
its effect on task performance, presence, and other factors. Most of
these experiments delay tracker input data by a controllable amount
of time units — frames or multiples of the tracker sampling rate —
by employing a ring buffer or other FIFO data structures either in-
side the tracker itself, its software driver, or the VR application.
Experiments are then performed with different, yet constant per ex-
periment, amounts of latency artificially injected into the system.

Ellis et. al. tested distinguishability of changes in latency for
hand [7] as well as for head [6] movements. They employ cus-
tom tracker drivers to ensure a low base latency and to provide the
ability to add custom latency to their input devices. Building on this
work, Mania et. al. test sensivity to head tracking latency in virtual
environments [13]. Meehan et. al. studied the effects of latency on
presence in stressful virtual environments [14]. To do user studies
with different latency settings, they adapted their VRPN client im-
plementation to delay tracker input data by a fixed amount of time to
add constant end-to-end latency to their system, enabling controlled
experiments with 50ms and 90ms of latency respectively. Other
studies that control latency, e. g. performed by Allison et. al. [1],
or more recent work on latency control by Papadakis et. al. [15] as
well as by Waltemate et. al. [19], also only allow for the insertion of
constant latency by delaying tracker input data using ring buffers.

Time invariant latency, however, ignores that latency in applica-
tions changes over time. The effects of latency jitter are far less
researched as discussed above. To describe the effects that can be
observed, a model of time variant latency is needed. Additionally,
there needs to be a way to introduce time invariant latency to then
allow more research of the effects on the systems and for the users.

3 METHOD

Distinguishing the work presented here from past research outlined
in the previous section, we are presenting a method to inject latency
jitter (instead of constant latency) into VR applications, based upon
a model created from measurements of existing VR systems, with-
out the need to change the VR application itself.

Our approach is split into two parts:

• Modelling latency by deriving an empirical distribution from
measurements

Figure 3: Latency measurements of the physics simulation in our test
scene, scaled to show all values with bigger point size to make the
outliers visible.

• Using a latency model and a latency injector, based upon es-
tablished VR middleware, to simulate latency

We discuss latency modelling at the example of timing the
physics calculation of a test scene created with the Unreal Engine 4.

Afterwards, latency simulation based on a latency model is dis-
cussed at the example of creating an OSVR plugin to delay tracking
data without needing to alter the affected application.

3.1 Latency Model creation

The latency model described here is based on latency measurements
at the application stage. We explain our approach with example
measurements taken with a test scene made with the Unreal En-
gine 4. This offers measurements relateable to real world VR sce-
narios.

The measurements are divided into outlier groups to separate ex-
pected latencies close to the mean value from the less often oc-
curing latency spikes. Latency spikes are further categorised by
recursively applying the outlier detection algorithm as described by
Stauffert et al. [16]. For each category of detected outliers, two em-
pirical distributions are derived. One describes the duration of the
latency spike. The other describes how much time passes between
latency spikes.

Figure 4 shows the process of deriving a model with graphs
demonstrating how example measurements are transformed at ev-
ery step. The following sections will further explain the steps un-
dertaken.

3.1.1 Measurements

The basis for the latency model are latency measurements. Here,
we demonstrate how to measure them, and what appearance latency
measurements have.

We created a scene with the Unreal Engine 4, where a physics
enabled sphere is spawned every frame. The balls collide with the
sparse environment and with themself, and get despawned once
they fall through holes in the environment. An overview of the
scene is given in figure 1.

The engine allows to create objects that are updated at different
times during the game loop. Utilising this, we register two func-
tions of an object. One gets invoked before the physics calculation,
the other after the physics system has updated. With the two invo-
cations, the elapsed time in between is measured which is taken to
create a latency profile for the engine execution.

With this setting, a big part of the computational time of the ap-
plication to survey is measured. Measurement, however, can be
conducted for far smaller parts such as the duration of AI computa-
tion for only one object in a scene or one small algorithm.

P
R
E
P
R
IN
T

Figure 4: Steps to create a latency model: Latency samples are gathered in the application. Outliers are extracted and sorted into different
categories. The distributions for the duration and interarrival times or latencies are expressed by their inverted cdf.

P
R
E
P
R
IN
T

Figure 2 shows a scatter plot of the latencies measured for each
frame. Note that most samples gather around a mean with less sam-
ples above the mean latency. Figure 3 shows all samples including
the extreme outliers. The mean is 2.93ms, variance 0.2ms2, min
1.6ms, max 60.6ms.

3.1.2 Outlier detection

The measurements are separated into outlier categories. For this,
we recursively use the modified z score test to determine outliers
as proposed for latency data by Stauffert et al. [16]. They calculate
the z-score for each sample to determine if it is an outlier. Once,
all outliers are found in the dataset, the algorithm is applied to sep-
arate the outliers from the outliers of the outliers. This is repeated
recursively until no outliers can be found anymore.

The z-score over all samples xi is calculated with

Zi =
0.6745(xi − x̃)

MAD

MAD = median(|xi − x̃|)

(1)

Samples with a Z-score larger than 3.5 are detected as outliers.
For the example data, after the fourth application of the algorithm,
no more outliers can be found.

3.1.3 Distribution derivation

An empirical distribution is derived for each outlier category and
the samples around the mean. The distributions are described by
their cumulative density function (cdf). For convenient genera-
tion of samples from the distribution, the cdf needs to get inverted.
The quantile function represents the inverse cumulative distribution
function and is faster to compute than first generating the cdf and
then inverting it. The quantile function is sampled to avoid the need
to save all latency samples but be able to represent the distribution
with a small amount of values. Using more samples when sampling
the quantile function leads to a more precice representation of the
observed distribution.

The result from sampling the quantile function is an array of
latency values. To draw a random value that is distributed by the
empirical distribution, a random uniformly distributed number is
drawn. The random number needs to be between 0 and the number
of samples used for sampling the quantile function. This random
number is used to index into the array.

The latency model proposed here consists of empirical distribu-
tions for each outlier category for both the latency duration and the
time in between the observed latency spikes.

3.2 Latency Injection

This section describes how to use a latency model as described
above to simulate latency. The discussion is lead with an exam-
ple of an OSVR plugin where additional latency is simulated for
processing tracking data. While the example helps to describe the
process, the approach isn’t limited to an implementation in a mid-
dleware, but can be used to simulate latency in parts of the appli-
cation itself. We will describe the benefits there are in simulating
latency in a middleware like OSVR, before presenting our latency
simulation approach.

3.2.1 Placement in middleware

OSVR provides a middleware supporting many devices, presenting
a uniform API to applications abstracting away differences. Intro-
ducing latency simulation in this layer allows for little intrusion
of the application code. This enables the evaluation of different
amounts of latency jitter in existing VR systems. The existing soft-
ware does not need to get modified in the process.

Many VR applications couple physics, logic and the renderer
very tightly to guarantee that for each frame, all systems have up-
dated their state. Introducing latency there is more prone to influ-
ence the whole application performance. Middleware like OSVR
runs parallel to and decoupled from the application. This allows to
introduce latency into selected tracking devices without affecting
others. Having only one device input modified promises to analyse
effects of latency in different modalities with more detail.

Compare figure 5 for an overview where a latency simulating
plugin is located within OSVR. OSVR contains plugins that han-
dle the connection to various tracking devices. The data is either
directly forwarded to an application or modified by another plugin,
called analysis plugin. Introducing latency in an analysis plugin
allows for targeted modification of tracking data by only delaying
data of one selected device. OSVR works like a dataflow environ-
ment, where data is gathered at the input devices, then processed
by plugins in a configurable order until it eventually gets delivered
to an application. The application doesn’t need to be changed as it
can’t distinguish whether its data stems directly from the hardware
plugin or was tampered with on the way.

3.2.2 Algorithm

We implemented a configured device plugin. This is a plugin that
can be used multiple times with different configurations to allow
binding to different other devices with individual latency behaviour.

The latency plugin simulates a component in the system that re-
ceives data, works with it and then forwards it. The delay between
receiving and forwarding a dataset dl consists of the expected delay
d̄l and a time ds indicating a spike in latency. If the simulator shall
only simulate latency spikes, the expected mean latency to simulate
d̄l is set to zero.

The simulator itself introduces latency by simply executing code.
Care has to be taken that the simulated latencies are significantly
larger than the values that are introduced by the execution of the
simulator. We will discuss this and similar problems at the end.

A sample code describing the execution is shown in listing 1:
Initially, a time for the first latency spike is determined. The simu-
lator then receives a dataset and decides dl .

First, it is initialised with d̄l . If the current time is larger than
the time, a latency spike was scheduled, a sample for the latency
spike length is drawn from the respective distribution. This length
is added to the delay time. Afterwards, the time of the next latency
spike is computed by adding a randomly drawn sample of the spike
interarrival distribution to the current time.

The simulator then delays further processing of the data by other
components by sleeping for the calculated time. Note that a sleep
only guarantees that the execution is not resumed before the given
amount of time has passed. It might take longer than requested until
execution is continued.

This method assumes that there is a buffer in place that stores
incoming tracking data until they get processed. This buffer might
hold only the most recent data and discard older data elements if
new ones arrive, or be implemented with a queue. If the simulated
working time exceeds the arrival time, the queue might fill up and
overflow.

3.3 Evaluation

For first evaluations, we created an OSVR hardware plugin that
continuously sends timestamps. These timestamps are received
in an OSVR client application and the difference of the received
timestamp to the time it is received is saved.

We gather the latency samples collected with the described
method with and without an additional latency injector plugin in
the pipeline. In total, we compare three different scenarios:

• Without latency injector

P
R
E
P
R
IN
T

Figure 5: Latency can be injected in the middleware, that administrates the hardware, without needing to change the application.

n e x t s p i k e = now () + i n t e r a r r i v a l d i s t r i b u t i o n . d r a w v a l u e () ;
w h i l e d a t a = r e c e i v e d a t a () {

workt ime = mean work t ime ;
i f now () + workt ime > n e x t s p i k e {

workt ime += s p i k e d i s t r i b u t i o n . d r a w v a l u e () ;
n e x t s p i k e = now () + i n t e r a r r i v a l d i s t r i b u t i o n . d r a w v a l u e () ;

}
s l e e p (workt ime) ;
f o r w a r d d a t a (d a t a) ;

}

Listing 1: Simple latency simulator

• With latency injector based on a latency distribution that never
causes spikes, i.e. reducing the latency injector to be a pass
through stage

• With latency injector based on a latency distribution simulat-
ing only spikes

We expect to find higher latency outliers with the latency injector in
place with more latency outliers when using a latency distribution.

For comparing the two measurements, we use QQ-plots. QQ-
plots are used to compare two distributions with each other. Usu-
ally, this is done to see how well one distribution fits another. As
we already use the quantile function to model latency jitter, the plot
shows the quantiles of the measurements without latency on one
axis against the quantiles of the measurements with latency on the
other axis. A line above the bisector signals more latency spikes
with latency injected. See figure 6 for an example of one of these
plots.

We find that the mean latency is the same for all cases.

With the latency injector only working as a pass through for mes-
sages, there are more extreme spikes with the lower outlier cate-
gories exhibiting similar distributions to the run without the added
plugin.

Having the latency injector simulating only spikes, there are
more spikes visible in the QQ-plots for the outlier categories than
without the plugin. The means match and the first outlier category
distribution is similar.

This means, our latency simulator is able to simulate latency
spikes with little overhead, leaving the latencies around the mean
mostly unchanged.

4 DISCUSSION

We proposed a method to model latency and latency jitter with an
empirical distribution.

In the introduction, we stated that systems elicit non determin-
istic latency behaviour due to the complexity of today’s computers
and applications. Likewise, introducing additional latency into a

system can lead to different behaviour. For this discussion, we as-
sume that VR systems consist of different parts that run partly in
parallel and exchange state at synchronisation points. The timing
of these synchonisation points plays a crucial role of how latency
injection into an application is visible to the user.

Latency injected into an application could not change the appli-
cation at all. If it affects a part of an application that has suffi-
cient buffer time between the time its own execution has finished
and the time point it needs to synchronise, this free buffer time can
swallow the latency. Similarly, if a part with additional latency in-
jected urges another part to wait but this dependent part has suffi-
cient buffer time, the effect might vanish.

If the effect of added latency does not vanish in the interplay
of parts of the application, the effects can be visible in different
ways. They can be restricted to simple aspects of the application.
An example would be that only the controller inputs lag behind the
rest of the application. There could also be a ripple effect where
delay in one part of the application causes other parts to miss their
assigned time window leading the whole application performance
to suffer.

With time invariant latency, the effects are better observable as
there will be one pattern emerging as a result. The time variant la-
tency, as observed e.g. in the described example application and
modelled here, will exhibit complex effects and will create interfer-
ence patterns when interacting in a sophisticated system.

This means that after introducing latency, especially time invari-
ant latency, it is mandatory to measure again how the actual effects
are.

Using the proposed tools to research latency jitter will allow to
better understand the relationship of latency jitter to constant la-
tency. A dejitter buffer [4] as used for packet-switched networks
can reduce the jitter at the cost of added constant latency. If latency
jitter proves to be worse, this is a tool to alleviate it.

In the future, it will be desirable to measure application stage la-
tency without needing to alter the application but placing the com-
plete benchmarking code into a middleware. For this, it is neces-
sary to receive information from the application. Upon writing this

P
R
E
P
R
IN
T

paper, OSVR doesn’t support plugins that take input from the ap-
plication. There are only plugins that sit between tracking devices
and the application. There are no plugins for messages from the ap-
plication to a device like a force feedback device or an audio device
yet.

Once this is implemented, it will be possible to create plugins
that detect which message sent by the application belongs to which
tracking value. Then, the simulation latency can get determined by
the middleware, allowing application stage latency measurements
without the need to influence an application at all.

We proposed to use the quantile function for the inverse cumula-
tive density function, which can be directly derived from the sam-
ples. This, however, limits the simulation to only produce random
numbers that were observed before. Using a kernel density function
over the data provides a smoothed probability density function that
can be integrated to yield the cumulative density function, which in
turn can be inverted. This way around leads to a smoothing of the
observed distribution and can also generate values that are close to
the observed.

The example data used for the model creation was collected
from a specially designed application. As all other applications,
it exhibits its own latency pattern. With repeated spawning and
despawning of balls, the number of balls in the scene is constantly
changing. The available room is restricted to provoke many colli-
sions. This leads to the physics simulation working with a variable
number of entities that have different amounts of collisions each
frame. The measurements show a latency behaviour with repeated
spikes. We did, however, not analyse if the spikes are results of the
changing conditions like ball count and collision count from frame
to frame or if they have another source. The many objects in our
scene could also have lead to lead to the changing numbers being
too small in comparison to the overall number of collisions to not
be responsible for the variations.

While we proposed a latency injector that adds latency accord-
ing to a distribution, its own execution adds additional latency. The
described sleep to simulate a time of working yields the processor
to let other processes work in the mean time, which might or might
not be desirable for the application to test. Waking from sleep in-
volves a second context switch which is costly timewise and adds to
the latency. A busy loop can be used as an alternative. OSVR needs
to gather the measurement from another plugin to pipe it to the la-
tency inducing plugin to afterwards pipe it to either the application
or other plugins. This causes additional overhead and therefore la-
tency as described in the evaluation section.

The discussions so far demonstrate that it is possible to measure
and induce latency into a system. It is, however, difficult to argue
what the source of latency jitter in a measured dataset is as there are
too many influences. On the other side, it is difficult to forsee what
effects introducing latency has on the affected system and in turn
on the user.

5 CONCLUSION

VR applications get optimised for mean and worst case behaviour,
which we argue is not enough to capture latency behaviour as it
does not account for different patterns of latency outliers.

This paper proposes to create latency models using empirical dis-
tributions based on measured latencies. Such latency models can
then in turn be used to simulate latency behaviour at the application
stage, either in the application itself or in a middleware. Usage of
a latency simulator will allow to better study effects of latency and
latency jitter on the user.

6 FURTHER WORK

The example measurements illustrate the process of generating a
latency model. The measurements shown describe the time, the
physics engine runs for a test scene. The measurements seem to be

Figure 6: QQ-Plot of the spike duration of the fourth outlier category
of the test setting without and with latency simulated. With latency
simulated, there are more spikes visible.

similar to the measurements taken in Stauffert et al. [16], who only
measured the time for single message passing. It is yet to be shown
how similar latency patterns of a small algorithm are compared to a
more complex system.

Using the shown test scene, a variation of the scene in terms of
available space and amount of objects will create different load on
the physics system and a changed latency behaviour. Comparing
applications or application parts under different load in respect to
latency will uncover new insights for the system performance and
how latency changes under different conditions.

The artificially injected latency has to get further researched to
see if it elicits the desired effects. In any case, the evoked effects
need more research.

Every machine will elicit different latency behaviour especially,
different spike behaviour. It is up to future work to analyse how
comparable latency models based on latency measurements of dif-
ferent machines are.

With a latency inducing plugin in place, effects of latency for
different devices can be measured. Next steps include researching
of simulator sickness when latency is injected into a head mounted
display. Another is to measure performance and task load with mo-
tion controller drag and drop tasks.

REFERENCES

[1] R. S. Allison, L. R. Harris, M. Jenkin, U. Jasiobedzka, and J. E.

Zacher. Tolerance of temporal delay in virtual environments. In

Proceedings of the Virtual Reality 2001 Conference (VR’01), VR ’01,

pages 247–, Washington, DC, USA, 2001. IEEE Computer Society.

[2] T. Arcila, J. Allard, C. Ménier, E. Boyer, and B. Raffin. FlowVR:

A framework for distributed virtual reality applications. Journees de

lAFRV, 2006.

[3] G. Bishop, H. Fuchs, L. McMillan, and E. J. S. Zagier. Frameless ren-

dering: Double buffering considered harmful. In Proceedings of the

21st annual conference on Computer graphics and interactive tech-

niques, pages 175–176. ACM, 1994.

P
R
E
P
R
IN
T

[4] R. G. Cole and J. H. Rosenbluth. Voice over IP performance monitor-

ing. ACM SIGCOMM Computer Communication Review, 31(2):9–24,

2001.

[5] M. Di Luca. New method to measure end-to-end delay of virtual real-

ity. Presence, 19(6):569–584, 2010.

[6] S. R. Ellis, M. J. Young, B. D. Adelstein, and S. M. Ehrlich. Dis-

crimination of changes in latency during head movement. In Pro-

ceedings of the HCI International ’99 (the 8th International Confer-

ence on Human-Computer Interaction) on Human-Computer Interac-

tion: Communication, Cooperation, and Application Design-Volume

2 - Volume 2, pages 1129–1133, Hillsdale, NJ, USA, 1999. L. Erlbaum

Associates Inc.

[7] S. R. Ellis, M. J. Young, B. D. Adelstein, and S. M. Ehrlich. Dis-

crimination of changes of latency during voluntary hand movement of

virtual objects. In Proceedings of the Human Factors and Ergonomics

Society Annual Meeting, volume 43, pages 1182–1186. SAGE Publi-

cations Sage CA: Los Angeles, CA, 1999.

[8] L. H. Frank, J. G. Casali, and W. W. Wierwille. Effects of visual

display and motion system delays on operator performance and un-

easiness in a driving simulator. Human Factors: The Journal of the

Human Factors and Ergonomics Society, 30(2):201–217, 1988.

[9] S. Friston and A. Steed. Measuring latency in virtual environ-

ments. Visualization and Computer Graphics, IEEE Transactions on,

20(4):616–625, 2014.

[10] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe. Quantifying and

Mitigating the Negative Effects of Local Latencies on Aiming in 3d

Shooter Games. pages 135–144. ACM Press, 2015.

[11] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal. Sim-

ulator sickness questionnaire: An enhanced method for quantifying

simulator sickness. The international journal of aviation psychology,

3(3):203–220, 1993.

[12] M. E. Latoschik and H. Tramberend. A scala-based actor-entity ar-

chitecture for intelligent interactive simulations. In Software Engi-

neering and Architectures for Realtime Interactive Systems (SEARIS),

2012 5th Workshop on, pages 9–17. IEEE, 2012.

[13] K. Mania, B. D. Adelstein, S. R. Ellis, and M. I. Hill. Perceptual sen-

sitivity to head tracking latency in virtual environments with varying

degrees of scene complexity. In Proceedings of the 1st Symposium on

Applied Perception in Graphics and Visualization, APGV ’04, pages

39–47, New York, NY, USA, 2004. ACM.

[14] M. Meehan, S. Razzaque, M. C. Whitton, and F. P. Brooks. Effect of

latency on presence in stressful virtual environments. In IEEE Virtual

Reality, 2003. Proceedings., pages 141–148, March 2003.

[15] G. Papadakis, K. Mania, and E. Koutroulis. A system to measure, con-

trol and minimize end-to-end head tracking latency in immersive sim-

ulations. In Proceedings of the 10th International Conference on Vir-

tual Reality Continuum and Its Applications in Industry, pages 581–

584. ACM, 2011.

[16] J.-P. Stauffert, F. Niebling, and M. E. Latoschik. Towards comparable

evaluation methods and measures for timing behavior of virtual real-

ity systems. In Proceedings of the 22nd ACM Conference on Virtual

Reality Software and Technology, pages 47–50. ACM, 2016.

[17] A. Steed. A Simple Method for Estimating the Latency of Interactive,

Real-time Graphics Simulations. In Proceedings of the 2008 ACM

Symposium on Virtual Reality Software and Technology, VRST ’08,

pages 123–129, New York, NY, USA, 2008. ACM.

[18] R. J. Teather, A. Pavlovych, W. Stuerzlinger, and S. I. MacKenzie. Ef-

fects of tracking technology, latency, and spatial jitter on object move-

ment. In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on,

pages 43–50. IEEE, 2009.

[19] T. Waltemate, I. Senna, F. Hülsmann, M. Rohde, S. Kopp, M. Ernst,

and M. Botsch. The impact of latency on perceptual judgments and

motor performance in closed-loop interaction in virtual reality. In Pro-

ceedings of the 22nd ACM Conference on Virtual Reality Software and

Technology, pages 27–35. ACM, 2016.

P
R
E
P
R
IN
T

