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Figure 1:We generate realistic virtual humans from real persons throughmulti-view stereo scanning. The resulting characters
are ready to be animated through a skeletal rig and facial blendshapes, and are compatible with standard graphics and VR
engines. The whole reconstruction process requires only minimal user input and takes less than ten minutes.

ABSTRACT
In this paper we present a complete pipeline to create ready-to-
animate virtual humans by fitting a template character to a point
set obtained by scanning a real person using multi-view stereo re-
construction. Our virtual humans are built upon a holistic character
model and feature a detailed skeleton, fingers, eyes, teeth, and a rich
set of facial blendshapes. Furthermore, due to the careful selection
of techniques and technology, our reconstructed humans are quite
realistic in terms of both geometry and texture. Since we repre-
sent our models as single-layer triangle meshes and animate them
through standard skeleton-based skinning and facial blendshapes,
our characters can be used in standard VR engines out of the box.
By optimizing for computation time and minimizing manual inter-
vention, our reconstruction pipeline is capable of processing whole
characters in less than ten minutes.
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• Computing methodologies → Mesh geometry models; Ap-
pearance and texture representations;
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1 INTRODUCTION
Today, virtual characters are widely used for applications ranging
from computer games, special effects in movies, virtual try-on, to
medical surgery planning and virtual assistance. Virtual characters
are especially important for Virtual Reality (VR) for both virtual
agents simulated by artificial intelligence as well as avatars, the
digital alter-egos of the users in the virtual worlds. Immersive em-
bodied scenarios provide ample possibilities to study psychophysi-
cal effects caused by modifying avatar appearance and hence, e.g.,
altering self-perception or body ownership [Banakou and Slater
2014; González-Franco et al. 2010; Latoschik et al. 2017, 2016; Lugrin
et al. 2015; Peck et al. 2013; Roth et al. 2016; Slater et al. 2010] are
therefore a common and interesting topic in VR research.

Today, 3D-scanning of real humans is a prominent technique
to generate virtual humans. Striving for realism and human-like
appearance requires geometrically accurate meshes and detailed
textures, and the application of the resulting models in interactive
scenarios requires them to be animated: Their full-body posture,
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hand posture, eye gaze, and facial expressions have to be control-
lable through suitable skeletal rigs and blendshapes, respectively.
To be widely employable, the resulting character models should
be compatible with standard game engines or VR frameworks, and
the overall avatar creation should ideally be fast enough to be per-
formed during rapid prototyping or empirical studies.

However, despite the increasing availability of scanning tech-
nologies and the large body of research on 3D-scanning and mesh
reconstruction in both computer vision and computer graphics,
creating believable and ready-to-animate virtual humans in a short
amount of time is still a challenging problem. Existing approaches
reconstruct static full-body “selfies” [Li et al. 2013] without ani-
mation controls, or full-body models without controls for hands
or facial expressions [Bogo et al. 2015, 2014], or head models for
facial puppetry without a full-body [Cao et al. 2014a; Weise et al.
2011]. Approaches for the fast generation of characters with all
required animation controls are mostly lacking. In addition, many
approaches focus on geometry reconstruction only, and neglect the
generation of high quality textures from scanner input.

In this paper we present a complete character generation pipeline
that is able to digitally clone a real person into a realistic high-
quality virtual human, which can then be used for animation and
visualization in any standard graphics or VR engine. The whole
reconstruction process requires only a minimum amount of user
interaction and takes less than ten minutes on a desktop PC.

For 3D-scanning we employ a custom-built camera rig with 40
cameras for the body and 8 cameras for the face, and compute
dense point clouds through multi-view stereo reconstruction. In
order to robustly deal with noise and missing data, and to avoid
character rigging in a post-process, we fit a generic human body
model to the user’s scanner data. In particular, we build upon the
template model from Autodesk’s Character Generator, which is
already equipped with a detailed skeleton and skinning weights,
a rich set of blendshapes, as well as eyes and teeth. This template
model is further enriched by statistical data on human body shapes,
which yields a prior for the template fitting process. By fitting
the template geometry to the scanner data and transferring eyes,
teeth, skeleton, and blendshapes to the morphed template, our
reconstructed models are ready to be animated.

By construction, all our reconstructed characters share the tes-
sellation of the template model. Hence they are in dense one-to-one
correspondence, which allows to transfer properties between mod-
els. As one application example, we exploit this fact by scanning
subjects with and without clothing, and then storing the clothes,
i.e., the difference between the two models. This allows us to easily
and seamlessly transfer clothing from one character to another.
This largely reduces potential confounds caused by different cloths
of different avatars used, e.g., in perception studies. To keep our
models simple and compatible to any standard rendering engine,
and to enable highly efficient character animation, we represent our
characters by a single-layer mesh and employ standard skinning
and blendshapes for body and face animation, respectively.

Overall, our contributions enable the generation of realistic and
fully animatable virtual humans in just a couple of minutes, which
makes them accessible to a wide range of VR experiments, where
they can be used as avatars or conversational agents.

2 RELATEDWORK
Due to the increasing availability of 3D-scanning solutions and the
growing demand for virtual human models, there is a huge body
of literature on scanning, reconstructing, and animating virtual
characters. Due to space constraints we restrict to the approaches
most relevant to ours, beginning with techniques for reconstructing
full body models, followed by face capturing methods, and finally
discussing approaches for reconstructing animatable VR characters.

2.1 Full-Body Reconstruction
Several methods employ affordable RGBD sensors (e.g., Kinect) for
scanning and reconstructing human bodies [Feng et al. 2014; Li
et al. 2013; Sturm et al. 2013; Tong et al. 2012]. However, due to the
coarse and noisy data delivered by these sensors, their character
reconstructions are bound to a rather low quality. Since our goal is
reconstructing realistic high quality virtual humans, we instead base
our framework on a multi-camera rig that can capture a subject in
a fraction of a second. Using multi-view stereo we then reconstruct
a dense point cloud from the camera data.

This point cloud could then be fed into a surface reconstruction
method, followed by an auto-rigging process for embedding a con-
trol skeleton and defining skinning weights [Baran and Popović
2007; Feng et al. 2015]. However, the surface reconstruction might
fail to faithfully capture delicate features (e.g., fingers), causing the
auto-rigging to fail. We therefore use a fully-rigged template model
that we fit to the scanner data using non-rigid registration.

Fitting a template model to a large amount of training data allows
to build a statistical model, which can act as prior when fitting the
template to scanner data. The SCAPE model [Anguelov et al. 2005]
is one of the first, most prominent, and most frequently employed
human body models. It has been extended in many ways [Bogo et al.
2014; Hirshberg et al. 2012; Pishchulin et al. 2017; Sigal et al. 2007;
Straka et al. 2012], which have been applied in different scenarios
ranging from breathing animation [Tsoli et al. 2014], over soft-
tissue animation [Loper et al. 2014], to estimation of shape and
posture from either a single image [Guan et al. 2009] or from RGBD
sequences [Bogo et al. 2015; Weiss et al. 2011].

Many other statistical human body models have been proposed
[Allen et al. 2003, 2006; Hasler et al. 2009; Loper et al. 2015; Wuhrer
et al. 2014], which can be roughly classified as triangle-based or
vertex-based methods, depending on how they model posture artic-
ulation and fine-scale deformation. Triangle-based methods have
to solve a linear Poisson system to compute the deformed vertex
positions, and are therefore incompatible to standard graphics en-
gines. In contrast, models based on per-vertex linear blend skinning,
such as, e.g., SMPL [Loper et al. 2015] or S-SCAPE [Pishchulin et al.
2017], can readily be used in such engines. We therefore also base
our model on vertex-based linear blend skinning. However, in com-
parison to SMPL and S-SCAPE our model has a higher geometric
resolution and provides fine-scale details, such as fingers, eyes, and
teeth. Furthermore, it is equipped with a more detailed skeleton
and allows for hand and face animation.

In order to place the skeleton within the model shape, SMPL
learns a joint regressor from a large amount of data, which then
represents joint positions as a linear function of the model’s shape.
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Since our skeleton is more detailed than that of SMPL and the train-
ing data is not available, we cannot use their regressor. Instead, we
follow Feng et al. [2015] and represent the joint positions as gener-
alized barycentric combinations of the template’s vertex positions,
which also is a linear function.

While the above methods work well for reconstructing the geom-
etry of human bodies, they mostly neglect the texture reconstruc-
tion, which however is crucial for VR applications. In contrast, we
reconstruct a high-quality texture from the reconstructed geometry
and the individual camera images of our scanner.

2.2 Face Reconstruction
There is a lot of work dedicated to face reconstruction from images,
video, RGBD data, laser scans, or multi-view stereo. The pioneer-
ing work of Blanz and Vetter [1999] first proposed a PCA-based
statistical face model for reconstructing face models from 3D scan-
ner data or 2D photographs. Similar to body reconstruction, most
approaches employ a statistical model as a regularizing prior.

Many approaches use an RGBD sensor to reconstruct face mod-
els [Cao et al. 2014b; Liang et al. 2014] and/or to animate them based
on captured performance data [Bouaziz et al. 2013; Hsieh et al. 2015;
Thies et al. 2015]. However, their face reconstructions suffer from
low quality in geometry and texture, due to the inherent limita-
tions of current RGBD sensors. High quality face reconstructions
can be achieved through multi-camera rigs and multi-view stereo
reconstruction [Achenbach et al. 2015; Beeler et al. 2010; Ghosh
et al. 2011]. However, these approaches aim at a static high quality
reconstruction and do not provide ready-to-animate models. Other
works use video input to generate dynamic face models, which are
subsequently animated based on the video stream [Garrido et al.
2016; Shi et al. 2014; Thies et al. 2016; Wu et al. 2016]. Ichim et
al. [2015] proposed a method for creating a textured 3D face rig
from picture and video input taken on a cell-phone. Since we aim
at high quality geometry and texture, but also at short acquisition
time, we employ multi-view face scanning based on [Achenbach
et al. 2015]. We take the deformed template model, which was pre-
viously fit to the full-body scan, and refine its face region by fitting
it to the point cloud resulting from the face scan.

Dynamic facial animations are crucial for VR characters, e.g.
for speech animation or emotional facial expressions. With the
industry standard being linear blendshape models [Lewis et al.
2014], the character generation pipeline also has to construct the
required set of FACS blendshapes [Ekman and Friesen 1978]. For
high quality productionwithout time constraints, these blendshapes
are often created manually by artists or reconstructed by scanning
real actors performing these expressions [Alexander et al. 2009].
A faster process is enabled by example-based facial rigging [Li
et al. 2010], which generates personalized facial blendshapes from a
small set of example expressions. Since we want to keep acquisition
and processing time low, we scan the actor in neutral expression
only, and generate the full set of FACS blendshapes by adjusting
the template’s generic blendshapes to the deformed model using
deformation transfer [Sumner and Popović 2004]. If acquisition and
processing time is not that critical, reconstructing a few additional
expressions and using example-based facial rigging would be a
good compromise.

2.3 Avatar Reconstruction
While there are many approaches for reconstructing human body
shapes or human faces or human hands, only few previous works
aim at reconstructing a complete virtual human featuring animat-
able body, face, and hands.

Malleson et al. [2017] present a single snapshot system for rapid
acquisition of animatable, full-body avatars based on an RGBD
sensors. While the total processing time is in the order of seconds,
the body is a stylized astronaut character that roughly fits the body
dimensions only. Albeit face shape and texture are also considered,
the results are of rather low quality and lack facial details, as only
a low-dimensional face space is considered for fitting.

Feng et al. [2017] present a system for generating virtual charac-
ters by scanning a human subject. Their model is equipped with a
full-body skeleton rig and is capable of facial expressions and fin-
ger movements. In direct comparison, their reconstruction process
takes about twice as long as ours and requires more manual effort.
Blendshapes are generated by explicitly scanning the actor in five
different expressions, restricting the model to a few, but nicely per-
sonalized blendshapes. In contrast, our method reconstructs the full
set of FACS blendshapes from a single face scan in neutral pose, and
thus is compatible with standard animation packages. On the down-
side, our blendshapes are more generic and not as actor-specific.
The biggest drawback of Feng’s method is that by construction
each model has a different tessellation, which prevents statistical
analysis and detail/cloth transfer between models. In contrast, all
our models share the tessellation of the initial template mesh.

3 INPUT DATA
Our 3D-scanning setup is based on multi-view stereo reconstruc-
tion using a single-shot multi-camera rig, since this minimizes
acquisition time to a fraction of a second, while at the same time
providing high quality results in terms of geometry and texture.
We built a full-body scanner and a separate face scanner, consist-
ing of 40 and 8 DSLR cameras, respectively, as shown in Figure 2.
The cameras of each scanner are triggered simultaneously and the
resulting pictures are subsequently downloaded from the cameras.
We decided for a separate face scanner, in contrast to augmenting
the full-body scanner with more cameras aiming at the face region,
since otherwise the face cameras had to be manually adjusted to
the individual subjects’ heights.

The images of the 40 body cameras and of the 8 face cameras
are automatically passed to the commercial software Agisoft Pho-
toscan Pro, which computes two high-resolution point sets PB of
the body and PF of the face, as well as camera calibration data.
Face scans usually consist of about 1M points, body scans of about
3M points. Since the template mesh has a limited resolution of 21k
vertices, we uniformly sub-sample the two point sets to 40k and
80k points, respectively. This sampling resolution is chosen such
that the resulting point density is still about twice as high as the
vertex density of the template mesh. This speeds up the fitting pro-
cess significantly without noticeably sacrificing geometric fidelity.
When it is clear from the context we omit the index B and F , and
just write P = (p1, . . . , pN ). Note that each point pj is equipped
with a normal vector nj and RGB colors cj .
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Figure 2: Our custom-built full-body scanner (left) and face
scanner (right) are both based onmulti-view stereo and con-
sist of 40 and 8 DSLR cameras, respectively.

Since the bottom of the feet is not visible for the full-body scanner,
these regions cannot be captured properly. The missing points
below the feet can easily result in an erroneous fitting of the feet
regions. In contrast, the floor around the feet is usually scanned
quite well. We exploit this by detecting the floor plane and removing
its points from the point cloud PB . We then we uniformly sample
the detected floor plane underneath the feet region. This proved to
be effective to capture the real extent of the feet and keep the feet
on the floor during fitting without special treatment.

As a template model we picked a character from Autodesk’s
Character Generator [Autodesk 2014], because these characters are
already equipped with facial blendshapes, eyes and teeth, and a
skeleton with corresponding skinning weights. However, any other
template model with skeleton and blendshapes would work as
well. The template mesh consists of n ≈ 21k vertices with positions
X = (x1, . . . , xn ). A bar denotes vertex positions in the undeformed
state: X̄ = (x1, . . . , xn ).

In order to incorporate prior knowledge on human body shapes
into the reconstruction process, we integrate shapes from multiple
data bases by fitting our template character to their registered body
models. From the FAUST database [Bogo et al. 2014] we used 10

Figure 3: Nine landmarks are selected manually on the full-
body point set, whose (pre-selected) counterpart vertices on
the template model are shown here.

scans of different subjects standing in A-pose, and we included 111
scans from [Hasler et al. 2009]. Moreover, we added 82 synthetic
models with different shapes from Autodesk’s Character Generator.
After fitting our template model to these models, they all share the
same tessellation, allowing us to compute a ten-dimensional PCA
subspace based on vertex positions of posture-normalized charac-
ters in T-pose. This PCA will act as initialization and regularization
for the body fitting described in the next section.

4 BODY RECONSTRUCTION
After computing and post-processing the point cloud PB of the full-
body scan, the next step is to align and fit the template model to this
point set. As in most template fitting approaches, this fit is robustly
performed in several steps: In the initialization phase, we optimize
the alignment (scaling, rotation, translation), pose (skeleton joint
angles), and PCA parameters for the ten-dimensional shape space.
Afterwards, a fine-scale deformation fits the model to the data. Once
the geometry fit is done, we have to compute texture, correct joint
positions, and pose-normalize the model.

4.1 Initialization
Initially, the point set PB and the template are in different coor-
dinate systems and have different poses, since the template is in
T-pose and the body scan is performed in A-pose. To bootstrap the
template fitting procedure, we manually select nine landmarks L
on the point-set PB , whose corresponding vertices on the template
model have been pre-selected (see Figure 3). The landmarks have
been chosen to ensure that important body parts like head, hands,
and feet are fitted properly.

In the first step we optimize the alignment and pose of the tem-
plate model in order to minimize the squared distances between
these nine landmarks on the template model and their correspond-
ing landmarks in the point set. To this end, we alternatingly com-
pute (a) the optimal scaling, rotation, and translation [Horn 1987]
and (b) optimize the joint angles using inverse kinematics based on
linear blend skinning [Buss 2004]. This procedure is iterated until
the relative change of the squared distances falls below 0.05. This
initialization process is depicted in Figure 4, (a) and (b).

The landmark-based fit gives us a good estimate of scaling, ro-
tation, translation, and joint angles. We further optimize these
variables by additionally taking closest point correspondences into
account, which are computed by finding, for each point PB , its
closest point on the template. We prefer these scan-to-model corre-
spondences over model-to-scan correspondences, since they were
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(a) (b) (c) (d) (e)

Figure 4: We first optimize alignment (scaling, rotation, translation: (a)) and pose (joint angles: (b)) based on nine manually
selected landmarks. This fit is refined by incorporating closest point correspondences (c) and by alternating with PCA regu-
larization in T-pose (d). After this initialization, we perform a fine-scale deformation to the point set (e).

shown to yieldmore accurate fits [Achenbach et al. 2015]. As usually
done in ICP-based registrations, we prune unreliable correspon-
dences based on distances and normal deviations. We employ the
same alternating optimization as before to optimize alignment and
pose, this time minimizing squared distances of landmarks and of
correspondences (Figure 4(c)).

After convergence of the alignment and pose optimization, we
add the PCA weights to the active variables and thereby optimize
the geometric shape in the ten-dimensional PCA space, again by
minimizing squared distances between landmarks and correspon-
dences. As our PCA model is pose-normalized in T-pose, the PCA-
fitting is performed in T-pose (see Figure 4(d)), and is alternated
with alignment and pose optimization. The shape change caused by
adjusting PCA parameters requires adjusting the skeleton’s joint
positions. To this end, we represent joint positions by mean value
coordinates [Ju et al. 2005] with respect to the vertex positions of
the template mesh. Joint positions are then a linear function of ver-
tex positions, and hence also a linear function of PCA parameters.
Two iterations of this procedure are usually sufficient for a good
initial fit of shape and pose.

4.2 Deformable Registration
With the point set and template model in good initial alignment we
perform a fine-scale non-rigid registration, following the approach
of [Achenbach et al. 2015]. To this end, we minimize the energy

Ebody(X) = λlmElm(X) + λfitEfit(X) + λregEreg
(
X, X̄

)
, (1)

where the three energy terms are explained below.
The landmark term Elm penalizes the squared distance between

the nine manually selected landmarks pl , l ∈ L, in the point set
and their counterpart vertices xl on the template model

Elm(X) = 1
|L|

∑
l ∈L

∥xl − pl ∥2 . (2)

The fitting term Efit penalizes the squared distance between
corresponding points xc and pc

Efit(X) = 1∑
c ∈C wc

∑
c ∈C

wc ∥xc − pc ∥2 , (3)

where C is the set of closest point correspondences and wc are
per-vertex weights as discussed below. The closest points xc are
expressed as barycentric combinations of the template vertices xi .

The regularization term Ereg penalizes the geometric distortion
from the undeformed model X̄ (the result of the initialization phase
of Section 4.1) to the deformed state X, measured by the squared
deviation of the per-edge Laplacians

Ereg
(
X, X̄

)
=

1∑
e Ae

∑
e ∈E

Ae
∆ex(e) − Re∆e x̄(e)

2
. (4)

Here, Ae is the area associated to edge e , and Re are per-edge rota-
tions to best-fit deformed and undeformed Laplacians (see [Achen-
bach et al. 2015] for details). We prefer the edge-based Laplacian
over the standard vertex-based Laplacian, since in our experiments
it converges slightly faster to very similar results.

The three coefficients λlm, λfit, and λreg are used to guide the
iterative fitting procedure, where the surface stiffness is controlled
by λreg. In the beginning, only the manually specified (hence quite
reliable) landmarks are taken into account, using λreg = 1, λlm = 1
and λfit = 0. We then gradually decrease λreg after each iteration
until λreg = 10−5. After these iterations, the template is sufficiently
well aligned to yield reliable closest point correspondences. We
therefore continue with λreg = 10−5 and λlm = 1, but addition-
ally set λfit = 1 to also consider Efit. Then, both λlm and λreg are
gradually decreased until λreg = 10−9.

During the fitting procedure we weight down parts of the tem-
plate using the per-vertex weightswc in Efit in order to prevent un-
reliably scanned regions from being fitted to strongly (see Figure 5).
We weight down the hands, since they are usually not scanned well,
and the face region to allow us to add more detail when combining
with the face scan in Section 5.

The nonlinear objective function (1) is minimized by solving
for vertex positions xi and per-edge rotations Re using alternating
optimization (a.k.a. block coordinate descent) [Achenbach et al.
2015; Bouaziz et al. 2014]. Figure 4(e) shows the final result of the
body fitting procedure.
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(a) (b) (c)

Figure 5: Per-vertex weights in the fitting energy allow to fit
only the face region (a) or only the body (b), and to down-
weight (typically poorly scanned) hands (c).

4.3 Texture Reconstruction
After the coarse scale initialization and the fine-scale non-rigid reg-
istration, the template has been accurately aligned and deformed to
fit the point cloud of the body scan. We pass the deformed template
model to Agisoft Photoscan Pro, which makes use of the existing
texture layout from Autodesk’s Character Generator and computes
a high-quality 4k×4k texture based on the 40 camera images and
their calibration data (see Figure 6(a)).

Since the camera images typically do not provide meaningful
texture information for eyes and teeth, we use a pre-selected image
mask to preserve the corresponding texture regions, i.e., to use eye
and teeth texture from the generic template texture.

Due to occlusions and delicate geometric structures, scanning
artifacts can easily occur for the fingers, which can result in an
inaccurate template fit and then to misaligned textures for the
fingers. We reconstruct a plausible hand texture by searching for
the best-matching hand texture in Autodesk’s Character Generator
and using this hand texture instead. We identify the best-matching
texture based on the Euclidean distance between RGB values of
the back of both hands, the Autodesk texture and the one of the
scanned subject (the latter is fitted reliable due to the manually
selected landmark on the hands). Here, it turned out beneficial to
distinguish between male and female hand textures. The found
hand texture area is then seamlessly merged into the reconstructed
full-body texture using Poisson image editing [Pérez et al. 2003].

Finally, the texture area below the armpits is typically corrupt
as these are not sufficiently visible from our cameras. We smoothly
fill these texture regions by harmonic color interpolation, which
we compute by solving a sparse linear Laplace system with suitable
Dirichlet color boundary constraints, similar in concept to Poisson
image editing [Pérez et al. 2003].

4.4 Pose Normalization
Due to the non-rigid shape deformation the template’s joints are
not at their correct positions anymore. We again adjust the joint
positions based on the precomputed mean value coordinates, this
time representing the joint positions as a linear function of ver-
tex positions (instead of PCA parameters). Employing mean value
coordinates for this mapping ensures that joints are placed at mean-
ingful positions even for strong shape deformations.

After mapping the skeleton to the deformed template (in scan
pose), we use it to undo the pose fitting, i.e., to put the model into
T-pose, as it is usually required by animation tools. In particular
for character animation via motion capturing this is an important
step, since these systems usually rely on a standardized T-pose as
initialization. To make sure that both feet of the resulting character
are standing exactly on the floor after pose-normalization, we first
rigidly translate the model to put the (pre-selected) sole vertices
onto the floor and then non-rigidly deform them onto the floor
plane, while allowing only the feet to slightly deform, regularized
by the Laplacian energy (4).

5 FACE RECONSTRUCTION
After fitting the template model to the full-body scan PB , we now
improve the geometry and texture of its facial region by fitting it to
the face scan PF and exploiting its eight close-up camera images.
We closely follow the face reconstruction approach of [Achenbach
et al. 2015], but adjust it to the combined body-and-face reconstruc-
tion setup and extend it by blendshape reconstruction.

5.1 Initialization
Since the face scan and the body scan are not aligned to each other,
the template model is not aligned to the face scan either.

Following [Achenbach et al. 2015], we automatically detect fa-
cial landmarks in the input camera images using [Asthana et al.
2013], which are then mapped to 3D points in PF using the camera
calibration data. We transform the template to the face scan by
finding optimal scale, rotation, and translation to minimize squared
distances between the detected 3D facial landmarks and their (pre-
selected) counterparts on the template model. Afterwards, we refine
scale, rotation, and translation by iteratively finding closest point
correspondences and computing the optimal similarity transforma-
tion in the usual ICP manner [Horn 1987]. Note that we transform
the whole full-body template, but based on landmarks and corre-
spondences of the face scan PF only.

5.2 Deformable Registration
After the initialization the template model and the facial point set
PF are sufficiently well aligned to start the fine-scale non-rigid
deformation. To this end we minimize the energy

Eface(X) = λlmElm(X) + λfitEfit(X)+
λregEreg

(
X, X̄

)
+ λmouthEmouth(X) .

(5)

Here Efit again represents closest point correspondences and is
weighted by λfit = 1. We again employ per-vertex weighting in the
fitting term Efit, such that only the face and ear vertices are dragged
toward the face scan (see Figure 5(a)).

Elm represents a landmark term, weighted by λlm = 1, and in-
cludes three types of landmarks: Besides the automatically detected
facial features, we manually pick two landmarks on each ear to
more precisely fit the ears. Furthermore, we manually pick seven
contour points for each eye in the frontal face picture and compute
landmarks for eye lid reconstruction (see [Achenbach et al. 2015]).

The regularization term Ereg is the same as for the body fitting.
It is initially weighted by λreg = 1 and is gradually decreased to
λreg = 10−9 during the iterative fitting procedure.
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We observed that during fitting it is not guaranteed that the
mouth stays closed, and therefore add an energy term preventing
contour points on the upper/lower lip to diverge

Emouth(X) = 1
M

M∑
i=1

∥x(u)i − x(l )i ∥2, (6)

where
{
x(u)i , x

(l )
i

}
are M = 11 pairs from upper and lower lip,

respectively, which are pre-selected on the template mesh. This
energy term is weighted by λmouth = 0.5.

Note that at this stage we optimize the vertices of the head re-
gion only, while keeping all other vertices fixed by removing them
from the linear systems. Analogous to the body fitting step we
solve the nonlinear optimization using alternating optimization for
vertex positions and edge rotations. Note that we do not employ the
anisotropic bending model of [Achenbach et al. 2015], since the tem-
plate’s face region is too coarse to benefit from the (computationally
more expensive) anisotropic wrinkle reconstruction.

5.3 Facial Details and Blendshapes
Similar to [Ichim et al. 2015], we adjust the template’s teeth by
optimizing for anisotropic scaling, rotation, and translation, based
on the deformation of the mouth region from the undeformed
template to the deformed and fitted mesh. We also transform the
eyes by optimizing for isotropic scaling, rotation, and translation
for each eye individually, again based on the deformation of the
individual eye region from the undeformed to the deformed mesh.

Face animation requires a suitable set of blendshapes, which
represent the face in different expressions, typically consisting of
the FACS blendshapes [Ekman and Friesen 1978] and of visemes
for speech animation. Since we only scan the actor in neutral facial
expression, we have to “invent” a proper set of blendshapes. Since
facial expression are similar across different individuals, we transfer
all blendshapes from our generic template model to the fitted model
using deformation transfer [Sumner and Popović 2004], similar to
[Weise et al. 2011]. This transfers the deformation from the template
model (generic neutral 7→ generic expression) to the target model.

Note that our blendshapes are rather generic, since they transfer
the template’s expression to the scanned person. Feng et al. [2017]
instead scan additional expressions and use those as (highly per-
sonalized) blendshapes, but they do not generate additional ones.
A good compromise would be to add a small number of scanned
example expressions to the deformation transfer process, as done by
example-based facial rigging [Li et al. 2010]. This, however, increase
the acquisition time.

5.4 Texture Reconstruction
Analogous to the body fitting step, we generate a 4k×4k texture
from the eight camera images of the face scanning session using
Agisoft Photoscan. This yields an accurate high-quality texture,
but only for the face region, which we therefore extract using a
pre-selected image mask and then seamlessly copy it into the full-
body texture using Poisson image editing [Pérez et al. 2003] (see
Figure 6). As mentioned before, we keep the texture for eyes and
teeth from the original texture. The luminance of these regions are
adjusted, such that their mean luminance coincides with the mean

(a) (b)

(c) (d)

Figure 6: Textures computed from the camera images of the
body scan (a) and the face scan (b). Since the face region is
more accurately represented in the latter, it is extracted us-
ing a pre-computed image mask (c) and seamlessly copied
into the body texture through Poisson image editing (d).

luminance of the face. This adapts the texture of teeth and eyes to
the lighting conditions of the scan.

6 RESULTS
We tested our virtual human generation pipeline on a large set of
subjects, and our approach reliably produced convincing results for
all of them. A representative subset can be seen in Figure 1 and in
the accompanying video.

The use of multi-view stereo reconstruction allows us to recon-
struct both accurate geometries as well as high quality textures.
As can be seen in Figure 7, additionally incorporating our dedi-
cated face scanner significantly improves the visual quality of the
face region, since it was scanned at higher resolution. A compari-
son of a captured image from the body scanning session with the
personalized virtual human is depicted in Figure 8.

Our reconstructed characters can readily be animated in any
standard graphics or VR engine, since they feature a standard skele-
ton for full-body and hand animation as well as a standard set of
blendshapes for face animation. The accompanying video demon-
strates that our characters can efficiently be animated and rendered
in a real-time scenario. Figure 9 and the accompanying video show
one of our scanned characters used as a conversational virtual agent,
where face and body animation are crucial to enable the agent to
talk, perform gestures, and show facial expressions.
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Figure 7: Comparison of the face region reconstructed from
the full-body scan only (left) and by additionally incorporat-
ing the dedicated face scanning (right).

Figure 8: Comparison of a photo from the body scanning ses-
sion with a rendering from the generated virtual human.

Our method also has some limitations: Texture artifacts may still
occur in regions that are not visible frommore than one camera, as is
the case for all photogrammetry approaches. The most critical areas
are the armpits and the hands, but also the crotch and the inner parts
of the arms can be problematic. These issues can be overcome by

Figure 9: Our virtual humans can be directly used as expres-
sive conversational agents, since they are able to gesture,
talk, and to show facial expressions and emotions.

using more cameras, which will lead to a better coverage for texture
data at the expense of longer computation times. Furthermore, we
do not remove the scene lighting during scanning from the albedo
textures, as done, e.g., in [Bogo et al. 2014].

6.1 Performance
On average the processing of a single character takes about ten
minutes from scan to a complete ready-to-animate avatar. See Ta-
ble 1 for detailed information about computation times of our sub-
processes, where the timings were taken on a desktop PC with
Intel© Xeon© CPU (6 × 3.5 GHz) and a Nvidia© GTX 980 GPU.

The computationally most expensive part of our template fitting
procedure is the computation of the closest point correspondences
in each fitting iteration. While this can be accelerated by using a
kD-tree or a similar space partitioning technique, we found that
a simple linear search implemented on the GPU provides a much
higher speed-up for the model complexities in our application. In
comparison to a CPU-based kD-tree, our straightforward GPU im-
plementation of a brute-force search is about 12 times faster. A
GPU-based implementation of a spatial hierarchy would probably
lead to an even higher speed-up, but would also require a consider-
ably more complex implementation.

Table 1: Time needed for the sub-processes of our pipeline.

Process Approx. time

Face scanning 1/10 s
Transfer images from face scanner 15 s
Full-body scanning 1/10 s
Transfer images from body scanner 80 s
Compute face point set PF 15 s
Compute body point set PB 75 s
Manual selection of landmarks 120 s
Automatic selection of facial features 60 s
Fit face geometry 20 s
Fit body geometry 35 s
Compute face texture 45 s
Compute and merge body texture 100 s
Compute facial blendshapes 5 s

Overall ∼ 10min
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Figure 10: After reconstructing Subject A with both mini-
mal clothing (top left) and clothing of interest (top right),
we transfer this clothing to another Subject B with minimal
clothing (bottom left) in order to get Subject Bwith the cloth-
ing from Subject A (bottom right).

6.2 Clothing Transfer
Due to their construction by fitting the same generic template
model to scanner data, all our models share the same tessellation
and hence are in one-to-one correspondence. This allows to transfer
arbitrary per-vertex or per-texel properties between models, which
we exploit for transferring clothing.

Similar to [Pons-Moll et al. 2017] we extract and store clothing
as the difference (in geometry and texture) between a character
wearing minimal clothing and the same character wearing a desired
set of clothes. This clothing can then be transferred to another char-
acter, as shown in Figure 10. In our pipeline we segment clothing
either manually or automatically by wearing a green suit.

Note that in contrast to [Pons-Moll et al. 2017] we still represent
our character models as single-layer meshes, i.e., we bake the cloth-
ing into the model’s geometry and texture. While this leads to less
realistic cloth animations, it preserves the computational efficiency
and compatibility with standard graphics engines.

While being a comparatively simple application, the ability to
control the clothing of virtual humans is crucial in experiments with
scanned virtual characters, as it allows to factor out perceptional
effects caused by different clothing styles of the scanned subjects.

7 CONCLUSION
In this paper we presented a fast and reliable pipeline to digitally
clone real persons into realistic virtual humans. For 3D-scanning
we employ a custom-built camera rig with 40 cameras for the body
and 8 cameras for the face, and compute dense point clouds through
multi-view stereo reconstruction. In order to robustly deal with
noise and missing data, we fit a generic human body model to the
user’s scanner data. By also transferring the skeleton, blendshapes,
and eyes of the generic template to the model, our reconstructed
virtual humans are ready-to-animate in standard game engines and
VR frameworks. Furthermore, we demonstrated how to easily and
seamlessly transfer clothing from one character to another, while
still being compatible to standard rendering engines.

Our character generation requires only a minimum amount of
user interaction and takes less than ten minutes on a desktop PC. It
is therefore fast enough to be performed at the beginning of each
session in a VR experimental study.

While our pipeline produced convincing results with all tested
subjects, some inherent limitations remain. Due to scanning sub-
jects in A-pose, some areas are not visible from enough cameras
and thus are not reconstructed well. While missing data can be
compensated by template data during geometry reconstruction,
these regions still suffer from texture artifacts.

As future work we plan on using the proposed pipeline to gen-
erate characters for experiments with virtual mirrors or preference
studies for personalized virtual agents. Another interesting direc-
tion for future work is the realistic modeling of clothing motion.
Moreover, we will work on further speeding up the whole pipeline
and making it fully automatic.
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