Space Tentacles - Integrating Multimodal Input into a VR Adventure Game
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Activate [pointing]
that generator

Figure 1: The user is immersed in a futuristic environment (left) where she has to solve puzzles to progress the storyline of an
adventure game. She has the choice to interact with the environment either by direct.manipulation or by multimodal, combined
speech and gesture input, e.g., to ask for guidance or to tell the system to perform certain tasks, e.g., to activate a generator (right).

ABSTRACT

Multimodal interfaces for Virtual Reality (VR), e.g., based on speech
and gesture input/output (I/O), often exhibit complex system archi-
tectures. Tight couplings between the required I/O processing stages
and the underlying scene representation and the simulator system’s
flow-of-control tend to result in high development and maintainabil-
ity costs. This paper presents a maintainable solution for realizing
such interfaces by means of a cherry-picking approach. A reusable
multimodal I/O processing platform is combined with the simulation
and rendering capabilities of the Unity game engine, allowing to ex-
ploit the game engine’s superior API usability and tool support. The
approach is illustrated based on the development of a multimodal
VR adventure game called Space Tentacles.

Index Terms: Human-centered computing—Interaction
paradigms—; Software and its <engineering—Software
architectures—; Computing methodologies— Virtual reality—

1 INTRODUCTION

Multimodal Interfaces (MMI) and their potential benefits [8] appear
promising for VR [3]. However, their VR-related pros and cons
are rarely investigated so far. Today, several tools support imple-
mentation of the various stages of multimodal interfaces. Still, the
integration of all required I/O sub-systems into a complete multi-
modal VR interface typically results in complex system architectures.
Tight couplings between the I/O processing stages and the underly-
ing scene representation and the simulator system’s flow-of-control
tend to result in high development and maintainability costs [1].
VR platforms that support the realization of MMIs have to fulfill
a large variety of functional requirements, ranging from stereoscopic
rendering and physics simulation to the combined analysis of com-
plex multimodal input, like speech and gestures. As a consequence,
platforms that support all this functionality at once are rare [1].
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Commercial platforms; like Unity Uor Unreal 2, are widely used to
develop VR applications. They excel in API usability and specific
VR- or games-related functionality but do not support sub-systems
for MMIs. Typical ad-hoc implementations that aim to integrate
MMIS, i.e., platforms that focus on the analysis of multimodal in-
put, into VR-platforms, however, suffer from severe maintainability
pitfalls [1].

Contribution: We showcase a maintainable approach for realizing
multimodal VR interfaces using commercial game engines by the
example of the Space Tentacles adventure game (see Fig. 1 for a
description of the game). This approach applies cherry-picking [9],
a software integration concept for combining desired functionality
from multiple platforms based on a semantic description layer. This
layer is implemented by means of the software techniques Code
from Semantics and Semantic Grounding [1]. We combine the func-
tionality of the Simulator X platform [4] for analyzing speech and
gesture input with the simulation and rendering capabilities of the
Unity game engine. Both software techniques allow to foster mod-
ifiability as well as reusability. They improve the maintainability
of the overall solution, i.e., of the platform-compound. The im-
provement is further supplemented by a special consideration of the
platform-compound’s usability for application developers.

2 RELATED WORK

Benefits of multimodal interaction in other domains, like Augmented
Reality [5], have been shown. This is expected for VR as well [8]
despite formal evaluations being sparse. Both Virtuelle Werkstatt
[3] and Iconic [2] are examples for complex VR applications with
multimodal interfaces. They have been developed with research VR
platforms supporting the realization of MMIs. But both platforms
are not available anymore [1].

Employing game engines in VR research has been advocated for
some time [6]. Ad-hoc implementations integrate different SDKs for
speech and gesture recognition in commercial platforms to develop
multimodal VR interfaces.Yet, this approach is not always straight
forward and prone to errors [7].

3 SYSTEM DESIGN

Space Tentacle is implemented by cherry-picking functionality from
two platforms as illustrated in Fig. 2: Game mechanics (logic) as
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Figure 2: Space Tentacle’s architecture is a platform-compound, con-
sisting of Unity and Simulator X. Extensions to the cherry-picking
approach from [9] are marked red. Examples of externally defined
concepts that are relevant for representations and APls as well as
their integration into both platforms is colored blue. See text for details.

well as the virtual environment (rendering, physics) are realized
in Unity. The combined analysis of speech and gesture input is
implemented with the open source platform Simulator X. Context
information, like which objects are near to each other or at which
object the user is pointing at, is calculated in Unity using colliders.
Application state synchronization is implemented by means of a
TCP transport layer as proposed by [9]. The necessary matching
of application state elements (entities), however, is refined beyond
the utilization of entity and component IDs. We base this matching
on semantic descriptions that are externally defined using the'Code
from Semantics technique (see lower red box). These definitions
signify concepts that are relevant for APIs, like-properties and be-
havior of (virtual) environment elements as well as of the system
itself. They provide a common ground for communication and are
automatically transformed into first-class citizens of the target pro-
gramming languages in order to realize the Semantic Grounding
technique in each platform (see upper red boxes). Two exemplary
definitions of relevant concepts for Space Tentacles are the noun
generator, which denotes an entity, and the verb (to) activate,
which denotes a behavioral aspect of the application, named ac-
tion. The externalization furthermore permits to define relations
between these behavioral aspects and state elements, i.e., the fact
that a generator can be activated (not illustrated).

The transformation of these definitions for Unity are realized us-
ing dedicated data structure, i.e., GroundedSymbols. They comprise
references, i.e., IRIs, that facilitate lookups and allow to exploit
available reasoning algorithms running on the external definition at
runtime. GroundedSymbols are used twofold within Space Tenta-
cles: As values of GameObject properties, like Generator, and as
identifiers for properties themselves, like activated.

Simulator X already adopts the required software techniques.
Moreover, it utilizes additional semantics based software tech-
niques [1], e.g., to uniformly represent application behavior. This
uniformity is highly beneficial for multimodal input processing.
User input has to be analyzed with respect to the current context, i.e.,
the application state, in order to derive a command, i.e., an action
the application can execute. The verb of the utterance “Activate
[pointing] that generator”, for example, is mapped to the action
activate. Subsequent processing accesses the application state to

perform a semantic consistency check, i.e., to check if the user really
points at a generator that is not already activated. These informa-
tions are computed within Unity and synchronized to Simulator X’s
application state facilitated by the common grounding.

4 RESULTS

The presented system design refines the cherry-picking approach by
applying the software techniques Code from Semantics and Semantic
Grounding. This fosters reusability due to the platform independent
external definition of identifiers, used for representing and accessing
application state and -behavior. As a consequence, the error prone
use of manual IDs or entity names is omitted. The also external defi-
nition of relations between state- and behavioral aspects is beneficial
for the combined analysis of multimodal input and facilitates modifi-
cations. Taken together, these aspects improve maintainability. They
are supplemented by a dedicated Unity editor script that graphically
realizes the specification of what to bidirectionally synchronize.

5 CONCLUSION

This paper presents a maintainable solution for realizing multimodal
VR interfaces using a.commercial game engine by means of the
cherry-picking approach. The Space Tentacles adventure game
serves as complex application example. This game as well as the
Unity-Simulator X platform-compound will be the testbed for future
work: (1) We aim to further reduce the development and maintain-
ability effort of multimodal VR applications by refining the Code
from Semantics technique and by improving its tool support. (2) We
will make use of this reduced effort to efficiently research the initial
suitability prediction of MMI for VR, which is still unanswered.
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