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Measurements of physiological parameters provide an objective, often non-intrusive, and
(at least semi-)automatic evaluation and utilization of user behavior. In addition, specific
hardware devices of Virtual Reality (VR) often ship with built-in sensors, i.e. eye-tracking
and movements sensors. Hence, the combination of physiological measurements and VR
applications seems promising. Several approaches have investigated the applicability and
benefits of this combination for various fields of applications. However, the range of
possible application fields, coupled with potentially useful and beneficial physiological
parameters, types of sensor, target variables and factors, and analysis approaches and
techniques is manifold. This article provides a systematic overview and an extensive state-
of-the-art review of the usage of physiological measurements in VR. We identified 1,119
works that make use of physiological measurements in VR. Within these, we identified 32
approaches that focus on the classification of characteristics of experience, common in VR
applications. The first part of this review categorizes the 1,119 works by field of application,
i.e. therapy, training, entertainment, and communication and interaction, as well as by the
specific target factors and variables measured by the physiological parameters. An
additional category summarizes general VR approaches applicable to all specific fields
of application since they target typical VR qualities. In the second part of this review, we
analyze the target factors and variables regarding the respective methods used for an
automatic analysis and, potentially, classification. For example, we highlight which
measurement setups have been proven to be sensitive enough to distinguish different
levels of arousal, valence, anxiety, stress, or cognitive workload in the virtual realm. This
work may prove useful for all researchers wanting to use physiological data in VR and who
want to have a good overview of prior approaches taken, their benefits and potential
drawbacks.

Keywords: virtual reality, use cases, sesnsors, tools, biosignals, psychophyisology, HMD (Head-Mounted Display),
systematic review

1 INTRODUCTION

Virtual Reality (VR) provides the potential to expose people to a large variety of situations. One
advantage it has over the exposure to real situations is that the creator of the virtual environment can
easily and reliably control the stimuli that are presented to an immersed person (Vince, 2004).
Usually, the presented stimuli are not arbitrary but intentionally chosen to evoke a certain experience
in the user, e.g. anxiety, relaxation, stress, or presence. Researchers require tools that help them to
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determine whether the virtual environment fulfills its purpose
and how users respond to certain stimuli. Evaluation methods are
an essential part of the development and research of VR.

Evaluation techniques can be divided into implicit and explicit
methods (Moon and Lee, 2016; Marín-Morales et al., 2020).
Explicit methods require the user to explicitly and actively
express the own experience. Hence, they can also be called
subjective methods. Examples include interviews, thinking-
aloud and questionnaires. In the evaluation of VR,
questionnaires are the most prominent explicit method. They
are very versatile and designed for the quantification of various
characteristics of experience. Some assess VR specific
phenomena, e.g. presence (Slater et al., 1994; Witmer and
Singer, 1998), simulator sickness (Kennedy et al., 1993), or the
illusion of virtual body-ownership (Roth and Latoschik, 2020).
Other questionnaires capture more generic characteristics of
experience, but are still useful in many VR scenarios, e.g.
workload (Hart and Staveland, 1988) or affective reactions
(Watson et al., 1988; Bradley and Lang, 1994).

Traditionally, questionnaires and other explicit methods also
bring with them some disadvantages. There is a variety of self-
report biases that can manipulate the way people respond to
questions. A common example is the social desirability bias. It
refers to the idea that subjects tend to choose a response that they
expect to meet social expectations instead of one that reflects their
true experience (Corbetta, 2003; Grimm, 2010). Other common
examples for response biases are the midpoint bias where people
tend to choose neutral answers (Morii et al., 2017) or extreme
responding where people tend to choose the extreme choices on a
rating scale (Robins et al., 2009). In general, there is a variety of
characteristics and circumstances that can negatively influence
the human capacity to evaluate oneself. For a detailed description
of erroneous self-assessment of humans, refer to Dunning et al.
(2004). Another point that can limit the validity of questionnaires
is that one never knows if the questions were understood by
participants (Rowley, 2014). The complexity of the information
and the language skills of the respondents can influence how
questions are interpreted and thus how answers turn out (Redline
et al., 2003; Richard and Toffoli, 2009). Another problem is that
explicit methods often separate the evaluation from the
underlying stimulus. Thus, they rely on a correct
recapitulation of experience. People might not be able to
remember how exactly they were feeling when they were
interacting with a software (Cairns and Cox, 2008). This is
especially relevant for VR, as leaving the virtual environment
can lead to a change in the evaluation of the experience (Schwind
et al., 2019). In addition, some mental processes are not even
accessible to consciousness and are therefore not recorded by
explicit methods (Barsade et al., 2009).

Implicit evaluation methods avoid a lot of those drawbacks. In
contrast to the explicit measures, they do not require the user to
actively participate in the evaluation. Rather, they analyze the user
behavior based on the response to a certain stimulus or event.
This can be done either by direct observation or by analysis of
physiological data. These implicit methods can also be referred to
as objective methods as they do not rely on the ability of subjects
to assess their own condition. Implicit evaluation that is based on

physiological data has the advantage that it can assess both,
automatic and deliberate processes. With automatic processes,
we refer to organic activations that are unconsciously controlled
by the autonomous nervous system, e.g. bronchial dilation or the
activation of the sweat secretion (Jänig, 2008; Laight, 2013). These
activations cannot be observed from the outside. With measures
like electrodermal activity, electrocardiography, or
electroencephalography, however, we can assess them. This
allows quantification of how current stimuli are processed by
the nervous system (Jänig, 2008; Laight, 2013). Deliberate
processes, on the other hand, do not depend on unconscious
activations of the autonomous nervous system. Nevertheless,
physiological measures can help to understand these processes.
Electromyography, for example, measures the strength of
contraction of skeletal muscles (De Luca, 2006). Thus, this
signal can also depend on arbitrary control by the human being.

Physiological measurements offer decisive advantages. They
can be taken during exposure, they do not depend on memory,
they can capture sub-conscious states, data can be collected fairly
unobtrusively, and they yield quantitative data that can be
leveraged for machine-learning approaches. A depiction of the
discussed structure of evaluation methods can be found in
Figure 1. An overview of the physiological measures that are
considered in this work can be found in Table 1. It also contains
abbreviations for the measurements that are used from now on.

The availability of easy-to-use wearable sensors is spurring the
use of physiological data. EEG headsets such as the EPOC+1 or
the Muse 2,2 wrist and chest worn trackers from POLAR,3 fitbit,4

and Apple5; as well as the EMPATICA E46 all make it easier to
collect physiological data. In addition, VR headsets already come
with built-in sensors that can be used for behavior analysis. Data
from gyroscopes and accelerometers, included in VR-headsets
and controllers, provide direct information about movement
patterns. Moreover, eye-tracking devices from tobii7 or Pupil
Labs8 can be used to easily extend VR-headsets so they deliver
even more data, e.g. pupil dilation or blinking rate.

Due to the aforementioned advantages in combination with
the availability of easy-to-use sensors and low-cost head-
mounted displays (HMD) (Castelvecchi, 2016), the number of
research approaches that combine physiological data with VR has
increased considerably in recent years. In their meta-review about
emotion recognition in VR with physiological data, Marín-
Morales et al. (2020) even report an exponential growth of
this field. Researchers who want to use physiological measures
for their own VR application, however, are faced with a very
rapidly growing field that offers a wide range of possibilities. As
previously implied, there are a variety of signals that can be
collected with a variety of sensors. While it is clear that a presence

1https://www.emotiv.com/epoc/
2https://choosemuse.com/de/muse-2/
3https://www.polar.com/
4https://www.fitbit.com/global/de/home
5https://www.apple.com/watch/
6https://www.empatica.com/research/e4/
7https://www.tobii.com
8https://pupil-labs.com
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questionnaire is used to assess presence, such a 1-to-1 linkage of
measure and experience is not possible for physiological
measures. Their usage in VR applications is therefore anything
but trivial. A structured reappraisal of the field is necessary.

This systematic review consists of two parts that address the
following issues:

In the first part of this article, we examine the different use
cases of physiological measurements in VR. We collect a broad
selection of works that use physiological measures to assess the
state of the user in the virtual realm. Then we categorize the works
into specific fields of application and explain the functionality of
the physiological measurements within those fields. As a
synthesis of this part, we describe a list of the main purposes
of using physiological data in VR. This serves as a broad, state of
the art overview of how physiological measures can be used in the
field of VR.

However, knowing what this data can be used for is only half
the battle. We still need to know how to work with this data, in
order to gain knowledge about a user’s experience. Hence, in the
second part of this paper, we will discuss concrete ways to collect
and interpret physiological data in VR. Works that tell us a lot
about how to get data and what can be deduced from it are
classification approaches. To be precise, this includes approaches,
that classify different levels of certain characteristics of
experience. The works from this domain usually adopt the
characteristics of experiences as their independent variable.
Subjects in those studies were exposed to stimuli known to
elicit a certain experience, such as anxiety. These studies then
examined the extent to which the change in experience was
reflected in physiological measurements. Thus, the works focus
on the physiological measures themselves and their ability to

quantify a particular experience. This review of classifiers,
therefore, provides a clear overview of signals, sensors, tools
and algorithms, that have been sensitive enough to distinguish
different levels of the targeted experience in a VR setup. They
show concrete procedures on how to extract the information that
is hidden in the physiological data.

2 METHODS

On the basis of the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) statement (Liberati et al.,
2009), we searched and assessed literature to find papers that
make use of physiological data in VR.We always searched for one
specific signal in combination with VR, so the search terms
consisted of two parts that are connected with an AND. Thus,
the individual search terms can be summarized in one big query
that can be described like this: (“Virtual Reality” OR “Virtual
Environment” OR “VR” OR “HMD”) AND (Pupillometry OR
“Pupil* Size” OR “Pupil* Diameter” OR “Pupil* Dilation” OR
“Pupil” OR “Eye Tracking” OR “Eye-Tracking” OR “Eye-Tracker*”
OR “Gaze Estimation” OR “Gaze Tracking” OR “Gaze-Tracking”
OR “Eye Movement” OR “EDA” OR “Electrodermal Activity” OR
“Skin Conductance” OR “Galvanic Skin Response” OR “GSR” OR
“Skin Potential Response” OR “SPR” OR “Skin Conductance
Response” OR “SCR” OR “EMG” OR “Electromyography” OR
“Muscle Activity” OR “Respiration” OR “Breathing” OR “Heart
Rate” OR “Pulse” OR “Skin Temperature” OR “Thermal Imaging”
OR “Surface Temperature” OR “Blood Pressure” OR “Blood
Volume Pressure” OR “EEG” OR “Electroencephalography”).
The terms had to be included in the title, abstract, or

FIGURE 1 | Categorization of evaluation methods. The overview should not be considered comprehensive, but mereley as an orientation.
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keywords of an article. Queried databases were ACM Digital
Library, Web of Science, PubMed, APA PsycInfo, PsynDex,
and IEEE Xplore. The date of the search was October
15, 2020.

We gathered the results and inserted them into a database
together with some extra papers that were known to be relevant
for the topic. We removed duplicates and then started with the
screening process. Papers were excluded if they were from
completely different domains (VR, for example, can not only
stand for “Virtual Reality”), if new sensors or algorithms were
only introduced (but not actually used), if they only dealt with
augmented reality, or if they were just presenting the idea of using
physiological data and VR (but not actually did it). Furthermore,
we excluded poster presentations, abstracts, reviews, and works
that were not written in English. That means, left after this
screening process were all works that present a use case in
which the sought-after physiological measures were used
together with a VR application. We usually screened papers

on basis of title and abstract. About 10% required inspection
of the full text to determine if they met the criteria. If the full
text of those works was not available they were also excluded.
We used the papers that were left after this process for the
first part of this work. During the screening process, we
began to note certain repetitive fields of application and
compiled a list of categories and sub-categories of field of
application. We then tagged the papers with these categories
according to their field of application. We also noted the
purpose for which the physiological data was used, also with
the help of tags.

As already explained in the introduction (Section 1), in the
further course of the review we focused on classification
approaches. During the aforementioned tagging process, we
identified papers that deal with some kind of classification.
Those papers were then examined for their eligibility to be
included in the second part of the review. The criterion for
the inclusion of a paper here was that it is a work that

TABLE 1 | Physiological measures that are commonly used in VR applications.

Measures Components and features Description General use

Electrocardiogram (ECG)
Photoplethysmogram (PPG) Blood
Pressure (BP)

Heart Rate (HR), Heart Rate Variability
(HRV), Blood Volume Pulse (BVP), Low-
Frequency power, High-Frequency power

Measurement of the cardiovascular
activity through electrical (ECG), optical
(PPG), or pressure (BP) sensors.

Used primarily in medicine to monitor heart
health. It can indicate defects in the heart
function, e.g. in case of heart attacks or
cardiac arrhythmia, and is thus often used
as a diagnostic tool (Vanderlei et al., 2009;
Alian and Shelley, 2014).

Electrodermal Activity (EDA)/Galvanic
Skin Response (GSR)

Skin Conductance Level (SCL), Skin
Potential Response (SPR), Mean, Standard
Deviation, Peaks

Measuring electrical properties of the
skin, which are most commonly
influenced by sweat secretion.

Commonly used to detect changes in
sympathetic activity caused by emotional
and cognitive processing. Therefore it is
often applied to gauge stress responses
and emotional reactions (Benedek and
Kaernbach, 2010; Braithwaite et al., 2013).

Skin Temperature (SKT) Mean, Minimum, Maximum, Measuring the surface temperature on
certain areas of the skin.

Usually used to detect illness. When
realized through thermal cameras, it can
serve as a non-contact assessment of
autonomous nervous activity (Kataoka
et al., 1998).

Respiration (RESP) Respiration Rate, Tidal Volume, O2

Consumption, Mean, Standard Deviation,
Peaks

Measurement of the breathing activity. An important vital sign that is very good at
predicting serious clinical events and
identifying patients at risk. It is also often
used to measure physiological load
(Masaoka and Homma, 1997; AL-Khalidi
et al., 2011).

Electromyogram (EMG) Mean, Standard Deviation, Minimum,
Maximum

Measuring the strength of the
contraction of skeletal muscles, based
on electrical signals.

Primarily used for studying human
movement, the diagnosis of neuromuscular
diseases, and for the active control of
artificial limbs (Pullman et al., 2000; De
Luca, 2006).

Eye-Tracking (ET) Gaze, Fixations, Saccades, Pupil Dilation,
Blink rate

Measuring eye movement and pupil
properties, usually with cameras
pointing towards the eyes.

Usually used as an estimation on which
object the gaze falls on. This knowledge is
often used in marketing research, usability
tests, and human-computer interaction.
Changes in pupil diameter can indicate
cognitive processing (Singh and Singh,
2012; Sirois and Brisson, 2014).

Electroencephalogram (EEG) Frequency Bands (Alpha, Beta, Gamma,
Delta, and Theta), Mean Bandpower, Event
Related Potential, Mean Amplitude

Measuring the electrical activity of the
brain on the scalp.

Used in medicine for the diagnosis of
neurological diseases such as epilepsy and
seizures. In human-computer interaction, it
is commonly used for brain-computer
interfaces (Lai et al., 2018; Lotte et al.,
2018).
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presents a classification based on physiological data which
was captured during exposure to immersive VR (CAVE-
based or HMD-based). In order to be included, the work
also had to distinguish different levels of current experience
(e.g. high vs. low stress) and not different groups of people
(e.g. children with and without ADHD). Excluded were
classifiers that aim at the recognition of user input, an
adaption of the system, or the recognition of the used
technology. Also excluded were works that just look for
correlations between signals and certain events,

classification approaches that are based on desktop VR or
non-physiological data.

3 RESULTS

An overview of the specific phases of the search for literature and
the results can be seen in Figure 2. In total, the literature research
yielded 4,943 different works. After the first screening process,
1,408 works were left over. They all show examples of how

FIGURE 2 | Process and Results of the Literature Review. Diagram is adapted from Liberati et al. (2009).
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physiological data can be used in immersive VR to assess the state
of the user. Figure 3 shows the distribution of the papers over the
years since 1995.

From this point forward, we chose to continue with works
from 2013 and later. Thus, we shifted the focus to current
trends. The numbers show that most of the papers were
published during the last years (see Figure 3). The year 2013
was the first year for which we found more than 50 papers. This
left 1,119 of the 1,408 papers that were published in 2013 or
later. During the screening process, described in Section 2, we
identified five major fields of application to which most works
can be assigned to. These domains are therapy and
rehabilitation, training and education, entertainment,
functional VR properties and general VR properties. In the
first part of the discussion section, we use this domain division
to give a broad overview of the usage of physiological measures
in VR (see Section 4.1).

After screening and checking for eligibility, 32 works that
deal with the classification of experience in VR were left for
further qualitative analysis. Each of the 32 works use
physiological measures as dependent variables. As
independent variables they manipulate the intensity of a
target characteristic of experience. Thus, the works show the
extent to which the physiological measures were able to reflect
the manipulation of the independent variable. In our results, the
most commonly assessed characteristic of experience was
arousal, used in nine works, followed by valence and anxiety,
both used in six works. Five works classify stress, and four,
cognitive workload. The following characteristics of experience
were measured in only one work: Visual fatigue, moments of
insight, cybersickness, and understanding. An overview of the
32 works can be found in Table 2. This overview shows which
characteristics of experience the works assessed, which
measures and sensors they used for their approach, and
which classification algorithms were chosen for the

interpretation of the data. Table 3 provides a separate
overview of the sensors that were used in the 32 works. In
Table 4 we list different tools that were used in various
classification approaches to record, synchronize, and process
the physiological data. In the second part of the discussion, we
deal with the listed characteristics of experience individually and
summarize the corresponding approaches with a focus on
signals and sensors (see Section 4.2).

4 DISCUSSION

As already indicated in Section 3 the discussion of this work is
divided into two parts.

4.1 Part 1: Fields of Application for
Physiological Data in Virtual Reality
In the first part, we give a categorized overview of the copious
use cases of physiological measures in VR. This overview is
based on the 1,119 works and the fields of application that we
identified during the screening process. This section is
structured according to those fields. We highlight which
works belong to which fields and how physiological
measures are used. We summarize this overview by listing
meta purposes for which physiological data are used in VR.
This overview cannot cover all the works that are out there.
What we describe are the types of work that have occurred
most frequently. After all, this is an abstraction of the field.
With only a few exceptions, all the examples we list here are
HMD-based approaches.

4.1.1 Therapy and Rehabilitation
Therapy and rehabilitation applications are frequent fields of
application for physiological measurements. Here, we talk about

FIGURE 3 | Division of the 1,408 papers, that remained after screening, according to published year.
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TABLE 2 | Overview of classification approaches based on physiological data collected in full-immersive VR. If not stated otherwise, the values presented in the Results
column usually refer to the accuracy that was achieved in a cross validation or on an extra test-set. These values serve only as a rough guide to the success of themethod
and are not comparable 1-to-1.

Study Classification of Measures and sensors Subjects Data acquisition Algorithm No.
Classes

Results

Siravenha et al.
(2019)

Cognitive Workload EEG - 19 electrode headset
(BrainMaster)

36 Mining task in an
excavator simulator and
driving simulator

MLPN 2 80.69%
(test-set)

Xu et al. (2019) Valence EEG - 3 textile dry electrodes
(custom)

19 4 different affective
scenes

SVM 2 81.30%
(test-set)

Orlosky et al. (2019) Understanding (of
words)

ET - Integrated camera (Pupil Labs) 16 Virtual word-recall task SVM 2 75.60% (full cv)

Salkevicius et al.
(2019)

Anxiety PPG - Wristband (Empatica) EDA -
Wristband (Empatica) SKT -
Wristband (Empatica)

30 Speech in front of a real
and a virtual audience

SVM 4 86.30% (10× 10-
fold cv)

Bălan et al. (2020) Anxiety EEG - Cap with 16 dry electrodes
(Brain Products)

8 Virtual and in vivo
exposure to different
heights

DNN 2 89.50%
(test-set)

PPG - Finger photo diode (Shimmer)
EDA - Finger electrodes (Shimmer)

kNN 4 52.75%
(test-set)

Jeong et al. (2019) Cybersickness EEG - 14 channel headset (Emotiv) 24 Various 360° videos
(violently moving, tranquil,
or scary)

DNN 2 98.82 (3-fold-cv)

Cho et al. (2017) Stress PPG - 1 finger photo diode (Biopac) 12 Videos (relaxing and
dynamic) + arithmetic
tasks

K-ELM 5 ≈95% (loocv)
EDA - 2 finger electrodes (Biopac)
SKT - 1 finger sensor (Biopac)

Tremmel et al.
(2019)

Cognitive Workload EEG - Cap with 8 wet electrodes
(Ladybird)

15 N-back task with colored
balls

LDA 2 81.1% (4-fold cv)
3 63.9% (4-fold cv)

Collins et al. (2019) Cognitive Workload PPG - Wristband (Empatica) 24 4D cube puzzles RF 3 91.75% (10-
fold cv)

Collins et al. (2019) Moment of insight
(Aha! moment)

EDA - Wristband (Empatica) 24 4D cube puzzles RF 2 98.81% (10-
fold cv)

Kakkos et al.
(2019)

Cognitive Workload EEG - Cap with 64 Ag/AgCl
electrodes (antneuro)

33 Flight simulator task with
three different difficulties

LDA 3 89.00% (100×
10-fold cv)

Ishaque et al.
(2020)

Stress ECG - 2 thorax electrodes 14 Virtual Roller coaster +
Stroop task, relaxation
game

GB 2 85.00% (5-
fold cv)EDA - 2 finger electrodes

RESP- 2 abdomen electrodes
Ham et al. (2017) Stress PPG - 1 finger photo diode (Biopac) 6 Static relaxing video LDA 3 ≈79.00% (10-

fold cv)(beach), dynamic scary
video (patrolling guard)

Tartarisco et al.
(2015)

Stress ECG - Chest band (PBS) 20 Stressfull work scenarios
for a nurse

SOM 4 ≈83.00% (loocv)
RESP - Chest band (PBS)
Motion - Chest band (PBS)

Ding Y. et al. (2020) Arousal EEG - 4-channel headband
(interaxon)

18 Relaxation scene (nature),
stone dodging game

CNN 2 86.03% (3-
fold cv)

Hofmann et al.
(2018)

Arousal EEG - Cap with 30 Ag/AgCL
electrodes (Brain Products)

45 Virtual roller coaster,
Breaks

LSTM 2 75.70% (10-
fold cv)

Mavridou et al.
(2018b)

Arousal PPG - two sensors integrated in
HMD (emteq)

11 Affective short videos SVM 2 0.69 (Area under
ROC curve)

ECG - Chest band (custom)
Shumailov and
Gunes (2017)

Arousal, Valence EMG - 8-channel armband (Thalmic
Labs)

7 A variety of VR games SVM 2 0.91
(F1)(Arousal)

2 0.85
(F1)(Valence)

Teo and Chia
(2018)

Arousal/Excitement EEG - 4-channel headband
(interaxon)

24 Virtual roller coaster,
Breaks

DNN 2 96.32% (10x10-
fold cv)

Zheng et al. (2020) Arousal, Valence ET - Integrated camera (Pupil Labs) 10 Emotional 360° videos SVM 4 57.05%
Marín-Morales
et al. (2018)

Arousal, Valence EEG - 9 electrode head strip (Biopac) 60 Different architectural
environments

SVM 2 75.00% (loocv)
(Arousal)ECG - 2 electrodes (placed on rib

and collarbone)(Biopac) 2 71.21% (loocv)
(Valence)

Bilgin et al. (2019) Arousal EEG - 4-channel headband
(interaxon)

10 Calm environment (nature)
and virtual roller coaster

SVM 2 66.88% (10-
fold cv)

Suhaimi et al.
(2020)

Arousal, Valence EEG - 4 channel headband
(interaxon)

31 Emotional 360° videos RF 4 82.49% (10-
fold cv)

(Continued on following page)
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approaches that try to reduce or completely negate the effects or
causes of diseases and accidents.

4.1.1.1 Exposure Therapie
A very common type of therapy that leverages physiological data in
virtual reality is exposure therapy. Heart rate, skin conductivity, or
the respiration rate are often used to quantify anxiety reactions to
stimuli that can be related to a phobia. Common examples for this
are public speaking situations (Kothgassner et al., 2016; Kahlon
et al., 2019), standing on elevated places (Gonzalez et al., 2016;
Ramdhani et al., 2019), confrontations with spiders (Hildebrandt
et al., 2016; Mertens et al., 2019), being locked up in a confined
space (Shiban et al., 2016b; Tsai et al., 2018), or reliving a war-
scenario (Almeida et al., 2016; Maples-Keller et al., 2019).

Physiological measures can also be used to evaluate the
progress of the therapy. Shiban et al. (2017) created a virtual
exposure application for the treatment of aviophobia. Heart rate
and skin conductance were measured as indicators for the fear
elicited by a virtual airplane flight. The exposure session consisted
of three flights, while a follow-up test session, one week later,
contained two flights. By analyzing the psychophysiological data
throughout the five flights, the researchers were able to show that
patients continuously got used to the fear stimulus.

Another way in which the physiological data can be utilized is
for an automatic adaption of the exposure therapy system. Bălan

et al. (2020) used a deep learning approach for the creation of a
fear-level classifier based on heart rate, GSR, and EEG data. This
classifier was then used as part of a virtual acrophobia therapy in
which the immersed person stands on the roof of a building.
Based on a target anxiety level and the output of the fear classifier
the system can steer the height of the building and thus the
intensity of the exposure. A similar approach comes from
Herumurti et al. (2019) in the form of an exercise system for
people with public speaking anxiety. Here, the behavior of a
virtual audience depends on the heart rate of the user, i.e. the
audience pays attention, pays no attention, or mocks the speaker.

What is also often done in research with exposure
therapy applications is the comparison of different stimuli,
systems, or groups of people. Physiological signals often
represent a reference value that enhances such approaches.
Comparisons have been made between traditional and virtual
exposure therapy (Levy et al., 2016), fear-inducing stimuli in
VR and AR (Li et al., 2017; Yeh et al., 2018), or just between
phobic and healthy subjects (Breuninger et al., 2017;
Kishimoto and Ding, 2019; Freire et al., 2020; Malta et al.,
2020).

4.1.1.2 Relaxation Applications
Many approaches work with the idea to use a virtual environment
to let people escape from their current situation and immerse

TABLE 2 | (Continued) Overview of classification approaches based on physiological data collected in full-immersive VR. If not stated otherwise, the values presented in
the Results column usually refer to the accuracy that was achieved in a cross validation or on an extra test-set. These values serve only as a rough guide to the success of
the method and are not comparable 1-to-1.

Study Classification of Measures and sensors Subjects Data acquisition Algorithm No.
Classes

Results

Hu et al. (2018) Anxiety EEG - Cap with 30 scalp electrodes
(Neuroscan)

60 Standing on the ground,
standing on a plank

CNN 4 88.77% (10-
fold cv)

EOG - 2 scalp electrodes
(Neuroscan)

Kaur et al. (2019) Anxiety EEG - Cap with 58 electrodes (Brain
Products)

10 Body leaning task on
elevated ground

kNN 2 0.85 (F1) (5-
fold cv)

EOG - 6 scalp electrodes (Brain
Products)

Wang et al. (2018) Anxiety EEG - Cap with 30 Ag/AgCl
electrodes (Neuroscan)

76 Standing on the ground,
standing on a plank in
high altitude

SVM 3 96.20% (5-
fold cv)

EOG - 4 Ag/AgCl scalp electrodes
(Neuroscan)

Wang Y. et al.
(2019)

Visual fatigue ET - Integrated camera (7invensun) 105 Watching VR videos SVM 2 90.79% (cv)
3 79.47% (cv)
4 74.25% (cv)

Robitaille and
McGuffin (2019)

Stress ECG - Chest band (Polar) 12 Hitting moving targets in a
calm or uncanny
environment

DT 2 81.10% (10×
2 cv)Motion - Hand controllers

and Motion Trackers
Tremmel (2020) Cognitive Workload EEG - Cap with 8 wet electrodes

(Ladybird)
15 N-back task with colored

balls
ANN 3 84.30% (5-

fold cv)
Motion - VR headset and controller

Mavridou et al.
(2018a)

Valence EMG - 8 electrodes integrated in
HMD (emteq)

34 Affective video content SVM 3 82.50% (loocv)

Balan et al. (2019) Anxiety EEG - Cap with 16 dry electrodes
(Brain Products)

4 Virtual and in vivo
exposure to different
heights

DNN 2 72.90%
(test-set)

PPG - Finger photo diode (Shimmer) 4 41.89%
(test-set)EDA - Finger electrodes (Shimmer)

MLPN, Multilayer Percpetron Network; SVM, Support Vector Machine; DNN, Deep Neural Network; kNN, k-nearest Neighbor; K-ELM, Kernel-Based Extreme Learning Machine; LDA,
Linear Discriminant Analysis; RF, Random Forest; GB, Gradient Boost; SOM, Self-Organizing Map; CNN, Convolutional Neural Network; LSTM, Long Short-Term Memory; DT, Decision
Tree; ANN, Artificial Neural Network; cv, cross validation; loocv, leave-one-out cross validation.
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themselves in a more relaxing environment. Physiological stress
indicators can help to assess the efficacy of these environments.
Common examples for this include scenes with a forest (Yu et al.,
2018; Browning et al., 2019; Wang X. et al., 2019; De Asis et al.,
2020), a beach (Ahmaniemi et al., 2017; Anderson et al., 2017),
mountains (Ahmaniemi et al., 2017; Zhu et al., 2019) or an
underwater scenario (Soyka et al., 2016; Liszio et al., 2018;
Fernandez et al., 2019). Other works go one step further and
manipulate the virtual environment, based on the physiological
status of the immersed person. So-called biofeedback applications
are very common in the realm of relaxation applications and aim
to make the users aware of their inner processes. The way this
feedback looks can be very different. Blum et al. (2019) chose a
virtual beach scene at sunset with palms, lamps, and a campfire.

Their system calculates a real-time feedback parameter based on
the heart rate variability as an indicator for relaxation. This
parameter determines the cloud coverage in the sky and if the
campfire and lamps are lit or not. Fominykh et al. (2018) present a
similar virtual beach where the sea waves become higher and the
clouds become darker when the heart rate of the user rises.
Patibanda et al. (2017) present the serious game Life Tree
which aims to teach a stress reducing breathing technique.
The game revolves around a tree, that is bare at the start. By
exhaling, the player can blow leaves towards the tree. The color of
the leaves become green if the player breathes rhythmically and
brown if not. Also, the color of the tree itself changes as the player
practices correct breathing. Parenthoen et al. (2015) realized
biofeedback with the help of EEG data by animating ocean

TABLE 3 | Sensors used in the identified classification approaches.

Manufacturer Product Measures Type More information Description

BrainMaster Freedom 24D
Series

EEG Headset https://brainmaster.com/product/freedom-24-
series/

Wireless EEG headset, 21 sensors

Tianyuan Xu, Ruixiang Yin,
Lin Shu, Xiangmin Xu

Custom Frontal
EEG

HMD-integrated Xu et al. (2019) 3 textile dry forehead electrodes,
mounted inside the HMD

Pupil Labs Binocular
Add-on

ET HMD-integrated https://pupil-labs.com/products/vr-ar/ Bionocular eye-tracking camera for
a HMD

Empatica E4 PPG Wristband https://www.empatica.com/research/e4/ Wrist-worn device for real-time
physiological data acquisitionEDA

SKT
Brain Products actiCap EEG Electrode cap https://www.brainproducts.com/products_by_

type.php?tid�3
Various EEG caps with various
channels and electrodes

Shimmer Shimmer3 GSR+ PPG Wristband +
Finger sensors

http://www.shimmersensing.com//products/
gsr-optical-pulse-development-kit

Wrist placed unit that can be
connected to finger-sensors via
wires

EDA

tobii TOBII VR ET HMD-integrated https://vr.tobii.com Bionocular eye-tracking camera for
a HMD

Emotiv Epoc+ EEG Headset https://www.emotiv.com/epoc/ 14-channel EEG headset
Guger Technologies g.GAMMACAP EEG Electrode cap https://www.gtec.at/product/ggammasys/ 16-channel electrode cap
G. Tartarisco et al. PBS ECG Chest band Tartarisco et al. (2015) Ergonomic chest band that

integrates three sensorsRespiration
Motion

interaxon Muse 2 EEG Headset https://choosemuse.com/muse-2/ Wireless headband with 4 channels
PPG
Motion
Respiration

emteq FACETEQ facial-EMG HMD-integrated https://www.emteqlabs.com/science/ Dry sensors, integrated into a VR
headsetPPG

Motion
Thalmic Labs Mayo EMG Armband Discontinued Wearable armband for EMG

measurement
Biopac B-Alert X-Series EEG Head strip https://www.biopac.com/product/b-alert-

wireless-eeg-system/
9 or 20 channel wearable head strip
that supports EEG and ECGECG

7invensun Technology aGlass DKII ET HMD-integrated https://www.7invensun.com/xrydxl Bionocular eye-tracking camera for
a HMD

Polar Polar H10 ECG Chest band https://www.polar.com/us-en/products/
accessories/h10_heart_rate_sensor

Wearable chest band for heart rate
tracking

Biopac PPG 100C PPG Amplifier https://www.biopac.com/product/pulse-
plethysmogram-amplifier/

Records blood volume pressure
with a finger diode or an ear clip

Biopac EDA 100C EDA Amplifier https://www.biopac.com/product/eda-
electrodermal-activity-amplifier/#product-tabs

Measures skin conductance with
Ag/AgCl electrodes or electrode
leads

antneuro Waveguard toch EEG Electrode cap https://www.ant-neuro.com/products/
waveguard_touch

Cap for 8, 32, or 64 Ag/AgCl dry
electrodes

Neuroscan Quik-Cap EEG Electrode cap https://compumedicsneuroscan.com/
products/caps/quik-cap/

Cap available with 32, 64, or 128
channels
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waves according to surface cerebral electromagnetic waves of the
immersed person. Most of these works aim at transferring the
users from their stressful everyday life into a meditative state.
Refer to Döllinger et al. (2021) for a systematic review of
such works.

Relaxation applications can not only be used to escape the
stress of everyday life but also as a distraction from painful
medical procedures and conditions. This was applied in
different contexts, e.g. during intravenous cannulation of
cancer patients (Wong et al., 2020), preparation for knee
surgery (Robertson et al., 2017), stay on an intensive care unit
(Ong et al., 2020), or a dental extraction procedure (Koticha et al.,
2019). Physiological stress indicators are commonly used to

compare the effects of the virtual distraction to control groups
(Ding et al., 2019; Hoxhallari et al., 2019; Rao et al., 2019).

4.1.1.3 Physical Therapy
VR stroke therapies often aim for the rehabilitation of impaired
extremities. Here, virtual environments are commonly used to
enhance motivation with gamification (Ma et al., 2018; Solanki
and Lahiri, 2020) or to offer additional feedback, e.g. with a virtual
mirror (Patel et al., 2015; Patel et al., 2017). In the domain of
motor-rehabilitation, EMG-data can be of particular importance.
It can be used to demonstrate the basic effectiveness of the system
by showing that users of the application really activate targeted
muscles (Park et al., 2016; Drolet et al., 2020). This is of special

TABLE 4 | Various tools that were used in the identified classification approaches for the recording, synchronization, and processing of physiological data.

Tool Reference Type Description Example VR
Application

SSI Framework Wagner et al. (2013) Standalone
framework

Synchronized processing of sensor data from multiple input
devices and customizable machine learning pipeline. Supports
recording, logging, annotating, processing, and pattern
recognition.

Rangelova et al.
(2019)Website: https://hcai.eu/projects/ssi/

Pypsy GitHub: https://github.com/brennon/
Pypsy

Python library Python library for processing and analyzing EDA data. Saha et al. (2018)

EVE Framework Grübel et al. (2016) Unity 3D plug-in Unity based framework that facilitates the creation of custom VR
experiments. Specific focus on sensor integration and data
storage.

Weibel et al. (2018)
GitHub: https://github.com/cog-
ethz/EVE

PhysioVR Muñoz et al. (2016) Unity 3D plug-in Framework for the integration of physiological signals measured
through wearable devices in mobile VR applications

Quintero et al. (2019)
GitHub: https://github.com/PhysioTools/
PhysioVR

NeuroRehabLab Website: https://neurorehabilitation.m-iti.
org/tools/en/

Tool collection Website of the NeuroRehabLab research groupwith a collection
of tools that help with the recording and processing of
physiological data, e.g. demo project for connecting Emotiv
Epoc with Unity.

Mo-DBRS Topalovic et al. (2020) Abstract
platform

Platform that facilitates recording and synchronization of various
physiological measurements and VR. Contains API for Unity,
Python, and Matlab.

GitHub: https://github.com/suthanalab/
Mo-DBRS

Lab Stream
Layer

GitHub: https://github.com/sccn/
labstreaminglayer

Abstract
platform

System that can handle networking, synchronization, access,
and recording of measurements from various sources. Works
with multiple platforms and languages.

Bălan et al. (2020)

VERA Project Delvigne et al. (2020) Unity 3D project Software that aims at facilitating attention related research in VR.
The software also facilitates the recording of physiological
signals.

GitHub: https://github.com/VDelv/VERA

EEGLAB Website: https://sccn.ucsd.edu/eeglab/
index.php

Matlab toolbox Toolbox for processing continuous and event-related EEG data
(component analysis, artifact rejection, . . .)

Liu et al. (2014)

PREP Pipeline Bigdely-Shamlo et al. (2015) Matlab toolbox EEG processing pipeline that focuses on the identification of
bad channels and the calculation of a robust average reference.
It relies on the EEGLAB toolbox.

Hofmann et al.
(2018)GitHub: https://github.com/VisLab/EEG-

Clean-Tools
Kurios Tarvainen et al. (2014) Standalone

application
Heart rate variability analysis software. Supports various input
formats and processing algorithms.

Blum et al. (2019)
Website: https://www.kubios.com

EDA Explorer Taylor et al. (2015) Python library Collection of different scripts for processing EDA data. Collins et al. (2019)
Website: https://eda-explorer.media.
mit.edu

BioSPPy Carreiras et al. (2015) Python library Bundle of various signal processing and pattern recognition
methods for physiological signals.

Salkevicius et al.
(2019)https://github.com/PIA-Group/BioSPPy

HeartPy Van Gent et al. (2018) Python library Toolbox for analyzing and processing heart rate data.
Specialized towards noisy data.

Salkevicius et al.
(2019)GitHub: https://github.com/

paulvangentcom/heartrate_analysis_
python

BCI2000 Website: https://www.bci2000.org/
mediawiki/index.php/Main_Page

Standalone
application

Software for handling, recording, and analyzing EEG data. Tremmel and
Krusienski (2019)

MNE-Python Gramfort et al. (2013) Python library Python package for analyzing and visualizing neurophysiological
data.

Delvigne et al. (2020)
Website: https://mne.tools/stable/index.
html
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TABLE 5 |Overview of the works from the field of therapy and rehabilitation that were discussed inSection 4.1.1. TheMeasures column refers to the physiological measures
used in the work. The entries of the Independent Variables column often do not cover everything that was considered in the work. Entries in the Purposes column refer to
the categories listed in Section 4.1.6.

Study Scenario Independent variables Measures Purposes

Kahlon et al. (2019) Public speaking task Before vs. during exposure PPG Process analysis
Kothgassner et al.
(2016)

Public speaking task Real audience vs. virtual audience vs. empty
virtual hall

ECG Process analysis, stimuli
comparisonCortisol

Secretion
Gonzalez et al. (2016) Moving task on virtual platforms Four different height levels PPG, Motion Stimuli comparison
Ramdhani et al. (2019) Virtual ride in an open elevator Different heights, pre-exposure vs. post-

exposure
ECG,
Resp, EDA

Process analysis, stimuli
comparison

Hildebrandt et al.
(2016)

Exposure to virtual spiders + collapsing
floor + eerie sound

Cognitive flexibility of participants EDA Group comparison, correlation

Mertens et al. (2019) Sitting on a virtual desk over which a spider
walks

Spider fearful vs. no fearful participants EDA, EMG Group comparison, progress

Shiban et al. (2016b) Sitting inside a virtual wooden box Healthy vs. claustrophobic participants, visual
cue vs. conceptual information vs. both

EDA,
Resp, ECG

Group comparison, stimuli
comparison

PPG
Tsai et al. (2018) Trapped in a virtual elevator during an

emergency
Virtual Reality vs. Augmented Reality ECG Stimuli comparison

Maples-Keller et al.
(2019)

Taking the perspective of a service member
encountering a war scenario

Pre vs. Post PTSD exposure treatment, high vs.
low responders

EMG,
ECG, EDA

Progress, group comparison

Almeida et al. (2016) Neutral and combat-related scenes Veterans with PTSD vs. without PTSD, combat
vs. classroom environment

ECG Stimuli comparison, group
comparison

Shiban et al. (2017) Virtual airplane flight with subjects with
aviophobia

With vs. without diaphragmatic breathing, first
exposure vs. second exposure

ECG, EDA Stimuli comparison, progress

Herumurti et al. (2019) Public speaking task with a virtual audience
that reacts to heart rate

PPG Adaption

Levy et al. (2016) Exposure to heights in a virtual skyscraper
with acrophobic subjects

With vs. without physical presence of therapist PPG Progress, stimuli comparison

Li et al. (2017) Doing a Stroop task in a virtual room with a
sudden fire outbreak

Virtual Reality vs. Augmented Reality ECG, EDA Stimuli comparison, process
analysis

Breuninger et al. (2017) Sudden explosion in an underground
garage

Healthy participants vs. patients with
agoraphobia

ECG, EDA Group comparison, process
analysis

Kishimoto and Ding
(2019)

Public speaking task with different types of
audience

Virtual audience with ambiguous vs. negative
feedback, healthy subjects vs. social anxiety
patients

PPG Group comparison, stimuli
comparison

Freire et al. (2020) Ride in a virtual, crowded bus Healthy subjects vs. subjects with agoraphobia ECG, EDA,
Resp

Group comparison, process
analysis

Malta et al. (2020) Being under attack in a virtual war zone Veterans with PTSD vs. without PTSD ECG Group comparison, progress
Wang X. et al. (2019) Forest based resting environment Seven different forest types BP, PPG Stimuli comparison
Yu et al. (2018) 3D videos of a crowded urban place and a

forest environment
Forest vs. urban environment PPG, BP Stimuli comparison,

Cortisol
Secretion

process analysis

Browning et al. (2019) 3D forest video Real nature vs. VR nature video vs. indoor
setting

EDA Stimuli comparison

De Asis et al. (2020) Visiting vacation spots in different settings Before vs. during vs. after exposure, students
with low vs. moderate vs. high stress

EDA, PPG Group comparison

Ahmaniemi et al.
(2017)

Visiting vacation spots in different settings
during work

VR exposure vs. audio only ECG, EDA,
PPG, BP

Stimuli comparison, process
analysis

Anderson et al. (2017) Viewing different scenes after doing
arithmetic test

Indoor vs. rural vs. beach scene ECG, EDA Stimuli comparison

Zhu et al. (2019) Visiting vacation spots with different
background music

Before vs. after exposure EEG Process analysis, correlation

Fernandez et al. (2019) Underwater world with light flickering and
sound pulsation

PPG, EEG Feedback

Soyka et al. (2016) Underwater world with a rhythmic moving
jellyfish as a breathing guide

Baseline vs. underwater + jellyfish vs. only
jellyfish

PPG, Resp Stimuli comparison, correlation

Liszio et al. (2018) Visiting a relaxing underwater world after
stressful task

Desktop vs. HMD vs. no relaxation ECG Stimuli comparison, process
analysisCortisol

Secretion
Blum et al. (2019) Virtual beach that adapts to HRV of

participants
VR vs. real relaxation session ECG Stimuli comparison, feedback

Fominykh et al. (2018) Beach scene that adapts to the heart rate of
the participant

PPG Feedback

(Continued on following page)
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interest when impairments do not allow visible movement of the
target-limb (Patel et al., 2015). Another strategy to combine VR
stroke therapy and EMG signals is a feedback approach. Here, the

strength of the muscle activation is made available to the user
visually or audibly which can result in positive therapy effects, as
the user becomes aware of internal processes (Dash et al., 2019;

TABLE 5 | (Continued) Overview of the works from the field of therapy and rehabilitation that were discussed in Section 4.1.1. The Measures column refers to the
physiological measures used in the work. The entries of the Independent Variables column often do not cover everything that was considered in the work. Entries in the
Purposes column refer to the categories listed in Section 4.1.6.

Study Scenario Independent variables Measures Purposes

Patibanda et al. (2017) Virtual tree that changes its appearance
according to breathing technique

Resp Feedback

Parenthoen et al.
(2015)

Flying over an animated ocean where
waves are animated according to brain
waves

EEG Feedback

Robertson et al. (2017) Exposure to a virtual beach before knee
surgery

Standard hospital care vs. VR relaxation vs.
tablet-based relaxation

BP, ECG, EDA Stimuli comparison

Ong et al. (2020) Exposure to calm beach scene with guided
mediation during stay in an ICU

Individual relaxation sessions ECG,
Resp, BP

Progress

Koticha et al. (2019) VR distraction for children undergoing
extraction procedure

Dental extraction with vs. without VR PPG Stimuli comparison

Ding et al. (2019) VR distraction during dressing change Dressing change with vs. without VR PPG Stimuli comparison, process
analysis

Hoxhallari et al. (2019) Watching 3D nature video during
tumescent local anesthesia

Anesthesia procedure with vs. without VR PPG Stimuli comparison, process
analysis

Rao et al. (2019) Viewing a 3D cartoon during restorative
procedure

Baseline vs. during procedure vs. after
procedure

PPG Process analysis

Solanki and Lahiri
(2020)

Walking on a virtual road during treadmill
gait exercise

Healthy subjects vs. stroke subjects ECG Group comparison, process
analysis

Ma et al. (2018) Playing mini-games that require hand
movement for stroke rehabilitation

Pre vs. mid vs. post rehabilitation EMG Feedback

Patel et al. (2015,
2017)

Doing hand activation task in front of a
virtual mirror for stroke rehabilitation

Pre vs. post training, first day of training vs.
last day

EMG Progress

Park et al. (2016) Lower extremity activation with feedback
from a VR system for stroke rehabilitation

Slow vs. fast velocity VR training EMG Stimuli comparison

Vourvopoulos et al.
(2019)

Hand activation for stroke patients in a
virtual environment with different interaction
types

EEG vs. EMG based motor feedback, pre
intervention vs. during intervention vs. post
intervention

EEG, EMG Feedback, stimuli comparison,
correlation, group comparison

Drolet et al. (2020) Walking on a virtual walkway with changing
underground while training on a treadmill.

Change of walkway underground realized
through visual feedback vs. physical feedback
vs. both

EMG Stimuli comparison, process
analysis

Dash et al. (2019) VR basketball game that gives feedback
about the strength of grip

Healthy subjects vs. stroke subjects, multiple
exposures

EMG, EDA Feedback, progress, group
comparison

Calabro et al. (2017) Walking in different virtual en-vironments
during robot assisted gait training

Training with vs. without VR EEG Stimuli comparison, correlation

Ehgoetz Martens et al.
(2015)

Walking across a virtual plank Healthy subjects vs. subjects with Parkinson,
ground-level plank vs. elevated plank

EDA Stimuli comparison, group
comparison

Ehgoetz Martens et al.
(2016)

Standing on a virtual platform and walking
on a virtual plank

Parkinson patients with vs. without gait
impairment, walking vs. standing on a virtual
plank

EDA Stimuli comparison, group
comparison

Gamito et al. (2014) Exploring a virtual apartment with smoking
cues (e.g. cigarettes, tobacco)

Environment with vs. without smoking cues,
smokers vs. nonsmokers

ET Stimuli comparison, group
comparison

García-Rodríguez et al.
(2013)

Exposure of smokers to a virtual pub Smoking a cigarette in the pub vs. playing darts
in the pub vs. freely exploring the pub

ECG Stimuli comparison, process
analysis

Thompson-Lake et al.
(2015)

Sitting in a virtual roomwith smoking related
and non-smoking related cues

Smoking cues vs. non-smoking cues PPG Stimuli comparison

Yong-Guang et al.
(2018)

Video with METH-cues Subjects with vs. without METH dependence ECG Group comparison

Ding X. et al. (2020) Neutral environment and environ-ment with
avatars using METH

Subjects with vs. without METH dependence,
environment with vs. without METH cues

EDA, EEG Stimuli comparison, group
comparison

Wang Y.-G. et al.
(2019)

Watching 3D videos that show negative
consequences of METH

People with vs. without counter-conditioning
therapy

ECG Group comparison

Bruder and Peters
(2020)

Exploring a virtual casino, a sports betting
facility and a cafe

Environment with vs. without gambling cues EDA Stimuli comparison, process
analysis

Detez et al. (2019) Exploring a VR casino-bar with slot
machines

Wins vs. loses vs. near-misses on slot machine ECG Stimuli comparison, process
analysis
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Vourvopoulos et al., 2019). The use of psychophysiological data
in stroke-therapy is not necessarily restricted to EMG. Calabro
et al. (2017) created a virtual gait training for lower limb paralysis
and compared it to a non-VR version of the therapy. With the
help of EEG measurements, they showed that the VR version was
especially useful for activating brain areas that are responsible for
motor learning.

Also Parkinson’s disease requires motor-rehabilitation.
Researchers have used physiological data to assess the anxiety
experience of Parkinson patients with impaired gait under
different elevations or on a virtual plank (Ehgoetz Martens
et al., 2015; Ehgoetz Martens et al., 2016; Kaur et al., 2019).
This data has helped researchers and therapists to understand the
experience of the patients and to adapt the therapy accordingly.

4.1.1.4 Addiction Therapy
Another field of application where physiological measurements
prove useful is in the therapy of drug addictions. Gamito et al.
(2014) showed that virtual cues have the potential to elicit a
craving for nicotine in smokers. With the help of eye-tracking,
they demonstrated that smokers exhibit a significantly higher
number of eye fixations on cigarettes and tobacco packages. In a
similar studies, Thompson-Lake et al. (2015) and García-
Rodríguez et al. (2013) showed that virtual, smoking-related
cues can cause an increase in the heart rate of addicts. Yong-
Guang et al. (2018) and Ding X. et al. (2020) did the same for
methamphetamine users. They found evidence that meth-users
show significant differences in EEG, GSR, and heart rate
variability measurements when being exposed to drug-related
stimuli in a virtual environment. Based on this, Wang Y.-G. et al.
(2019) created a VR counter-conditioning procedure for
methamphetamine users. With this virtual therapy, they were
able to suppress cue-induced reactions in patients with meth-
dependence. The use of physiological data to study the effects of
addiction-related stimuli that are presented in VR has also been
applied for gambling (Bruder and Peters, 2020; Detez et al., 2019).

A summary of the works discussed in this section can be found
in Table 5.

4.1.2 Training and Education
A considerable amount of VR applications help people to learn
new skills, enhance existing ones, or facilitate knowledge in a
certain area. A major reason why physiological data comes in
handy in training and teaching applications is its potential to
indicate cognitive workload and the stress state of a human
subject.

4.1.2.1 Simulator Training
Training simulators from various domains include an estimation
of mental workload based on physiological data, e.g. surgery
training (Gao et al., 2019), virtual driving (Bozkir et al., 2019), or
flight simulation (Zhang S. et al., 2017). One way to use
knowledge about cognitive load is by adapting task difficulty.
Dey et al. (2019a) created a VR training task that requires the user
to select a target object, defined by a combination of shape and
color. The system uses the EEG alpha band signal to determine
how demanding the task is. Based on this information the system

can steer the difficulty of the task by altering the number and
properties of distractors. In this way, it can be ensured that the
task is neither too easy nor too difficult. In the application of
Faller et al. (2019) the user has to navigate a plane through rings.
The difficulty, i.e. the size of the rings, can be adjusted based on
EEG data. With this approach, they were able to keep trainees on
an arousal level that is ideal for learning.

In certain fields, physiological measures can even be used to
determine the difference between experts and novices. Clifford
et al. (2018) worked with a VR application for the training of
aerial firefighting. It is a multi-user system that requires
communication from the trainees. To cause additional stress
the system includes a scenario where the communication is
distorted. They evaluated the system with novice and
experienced firefighters. By analyzing the heart rate variability
of subjects, they were able to show that the communication
disorders were effective in eliciting stress throughout the
subjects. More interestingly, however, experts showed an
increased ability to maintain their heart rate variability,
compared to the inexperienced firefighters. This indicates
that they were better able to cope with the stress (Clifford
et al., 2020). Currie et al. (2019) worked with a similar
approach. Their virtual training environment is focused on a
high-fidelity surgical procedure. Eye-tracking was used to gain
information about the attention patterns of users. A study with
novice and expert operators showed that the expert group had
significantly greater dwell time and fixations on support displays
(screens with X-ray or vital signs). Melnyk et al. (2021) showed
how this knowledge can be used to support learning, as they
augmented surgical training by using expert gaze patterns to
guide the trainees.

In simpler cases, stress and workload indicators are used to
substantiate the basic effectiveness of virtual stimuli in training.
Physiological indicators can be used to show that implemented
scenarios are really able to elicit desired stress responses (Loreto
et al., 2018; Prachyabrued et al., 2019; Spangler et al., 2020).

4.1.2.2 Virtual Classrooms
Physiological measures can also benefit classical teacher-student
scenarios. Rahman et al. (2020) present a virtual education
environment in which the teacher is provided with a visual
representation of the gaze behavior of students. This allows
the teachers to identify distracted or confused students, which
can benefit the transfer of knowledge. Yoshimura et al. (2019)
developed a strategy to deal with inattentive listeners. They
constructed an educational virtual environment in which eye-
tracking is used to identify distracted students. The system can
then present visual cues, e.g. arrows or lines, that direct the
attention of the pupils towards critical objects that are currently
discussed. In the educational environment of (Khokhar et al.,
2019) the knowledge about inattentive students is provided to a
pedagogical agent. Sakamoto et al. (2020) tested pupil metrics for
their eligibility to gain information about the comprehension of
people. They recorded gaze behavior during a learning task in VR
and compared this to the subjective comprehension ratings of
subjects. In a similar example from Orlosky et al. (2019), they
used eye movement and pupil size data to build a support vector
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machine that predicts if a user understood a given term or not.
Even the experience of flow can be assessed with the help of
physiological indicators (Bian et al., 2016). Information about
attention and comprehension of students can be used to

optimize teaching scenarios. It is an illustrative example of
how physiological data can augment virtual learning spaces
and create possibilities that would be unthinkable in real-
life ones.

TABLE 6 | Overview of the works from the field of training and education that were discussed in Section 4.1.2. The Measures column refers to the physiological measures
used in the work. The entries of the Independent Variables column often do not cover everything that was considered in the work. Entries in the Purposes column refer to
the categories listed in Section 4.1.2.

Study Scenario Independent variables Measures Purposes

Gao et al. (2019) Virtual reality laparoscopic surgery simulator with a
secondary arithmetic task

Double task vs. single task, experienced vs.
inexperienced surgeons

ET Stimuli comparison,
group comparison

Zhang S. et al. (2017) Virtual flight simulator 3D vs. 2D simulation, task difficulty EEG Stimuli comparison
Bozkir et al. (2019) Virtual driving simulator Normal driving vs. situation with critically

crossing pedestrian
ET Classification

Dey et al. (2019a) Virtual object selection task with different levels of
difficulty that are adapted to information from EEG

Task difficulty EEG Adaption, stimuli
comparison

Faller et al. (2019) Navigate a plane through a course of rings, where the
difficulty can be adapted to feedback from EEG

EEG Feedback vs. sham feedback vs. no
feedback

ET, ECG Adaption, classification
stimuli comparisonEEG

Clifford et al. (2018),
Clifford et al. (2020)

Aerial firefighting simulation with special
communication requirements

Situations with. vs. without communication
disruptions, experts vs. novices

ECG Stimuli comparison,
group comparisonResp

Currie et al. (2019) Virtual coronary angiography procedure with a
secondary card game

Novice operators vs. expert operators ET, EDA,
motion, PPG

Group comparison

Melnyk et al. (2021) Virtual surgery training with secondary counting task Training with gaze feedback vs. training with
movement feedback

ET Feedback, stimuli
comparison

Prachyabrued et al.
(2019)

Playing as an emergency worker on a stressful
rescue mission

Emotional connection with virtual co-worker
vs. no emotional connection, baseline vs.
training

PPG, EDA Stimuli comparison

Spangler et al. (2020) Virtual shooting tasks with different levels of difficulty High vs. low difficulty tasks, number of
sessions

ECG, BP Stimuli comparison,
progress

Loreto et al. (2018) Virtual reality work-at-height simulation while climbing
a ladder in real-life

Simulation with vs. without vibration
feedback

EDA Stimuli comparison

Rahman et al. (2020) Virtual education environment based on a solar field +
visualization of gaze

Different gaze visualization techniques,
single user vs. multiuser VR

ET Feedback

Yoshimura et al. (2019) Virtual educational environment involving an oil rig +
pedagogical agent + visual cues for attention
restoration

Different kinds of virtual cues that mark the
current point of interest

ET Feedback

Khokhar et al. (2019) Virtual educational environment involving an oil rig +
pedagogical agent that is sensible towards attention
shifting

ET Feedback

Sakamoto et al. (2020) Virtual environment with comic-based educational
material + subjective rating of comprehension

ET Correlation

Bian et al. (2016) VR shooting game + subjective rating of flow ECG, Resp Correlation
EMG, EDA

Mishra and Folmer
(2018)

Virtual exercise game based on the collection of
objects

Pre vs. post exercise PPG Process analysis

Kivelä et al. (2019) Two different virtual exercise games BeatSaber vs. QuiVR PPG Stimuli comparison
Debska et al. (2019) Virtual obstacle course on an omni tread-mill and a

flight simulator where steerage works with body
movement

Omni treadmill vs. flight simulator PPG Stimuli comparison

Zeng et al. (2017) Playing arcade mini-games where loco-motion is
realized with an exercise bike.

Traditional vs. VR-based bike exercise BP Stimuli comparison

McDonough et al.
(2020)

Playing arcade mini-games where loco-motion is
realized by a exercise bike.

Traditional vs. VR-based vs. desktop-based
bike exercise

BP Stimuli comparison

Campbell and Fraser
(2019)

Virtual cycling game in which the speed depends on
the user’s heart rate which is also displayed in
the HUD

HMD vs. 2D screen, physical resistance,
true vs. falsified heart rate feedback

PPG Feedback, Adaption

Kirsch et al. (2019) Bow and arrow-based high intensity interval training
which can adapt to the user’s heart rate

Adaption of music vs. adaption of lighting
based on heart rate

PPG Adaption

Yoo et al. (2018) VR exercise game in which the player must throw
snowballs at waves of enemies and in which heart
rate is displayed

PPG Feedback

Kojić et al. (2019) VR rowing game with feedback about the respiration
rate

Different feedback methods vs. no feedback
vs. no VR

Resp Feedback, stimuli
comparison

Greinacher et al. (2020) Virtual rowing exercise with the aim to promote
breathing-movement-synchrony

Verbal vs. visual vs. tactile respiration
feedback

Resp Feedback, stimuli
comparison

Frontiers in Virtual Reality | www.frontiersin.org July 2021 | Volume 2 | Article 69456714

Halbig and Latoschik Physiological Measurements in VR

https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


4.1.2.3 Physical Training
Our discussion of training applications has thus far revolved
around mental training. However, there are also applications for
physical training in VR. Again, physiological data can be used to
emphasize the basic effectiveness of the application. Changes in
heart rate or oxygen consumption can show that virtual training
elicits physical exertion and give insights into the extent of it
(Mishra and Folmer, 2018; Xie et al., 2018; Debska et al., 2019;
Kivelä et al., 2019). This can also provide a reference value for the
comparison of real-life and virtual exercising. Works like Zeng
et al. (2017) and McDonough et al. (2020) compared a VR-based
bike exercise with a traditional one. Their assessment of exertion
with the help of BP measurements showed no significant
difference between the virtual and analog exercises.
Measurements of the subjectively perceived exertion, however,
showed that participants of a VR-based training felt significantly
less physiological fatigue.

As in other fields of application, physiological data can be used
to adapt the virtual environment. Campbell and Fraser (2019)
present an application where the trainee rides a stationary bike
while wearing an HMD. In the virtual environment, the user is
represented by a cyclist avatar. The goal of the training is to cover
asmuch distance as possible in the virtual world, however, the speed at
which the avatarmoves is determined by the heart rate of the user. This
way, the difficulty cannot be reduced by simply reducing the resistance
of the bike andunfit users have the opportunity to covermore distance.
In the exercise environment of Kirsch et al. (2019), the music-tempo is
adapted to the user’s heart rate which was perceived as motivating by
the trainees. Other works just take the physiological data and display it
to the users so they can keep track of their real-time physical exertion
(Yoo et al., 2018; Kojić et al., 2019; Greinacher et al., 2020).

A summary of the works discussed in this section can be found
in Table 6.

4.1.3 Entertainment
Another field of application comprises VR systems that are
primarily built for entertainment purposes, i.e. games and
videos. Often, researchers use physiological data to get
information about the arousal video or a game elicits
(Shumailov and Gunes, 2017; Ding et al., 2018; Mavridou
et al., 2018b; Ishaque et al., 2020). Physiological measures
can also be used as explicit game features. For example,
progress may be denied if a player is unable to adjust their
heart rate to a certain level (Houzangbe et al., 2019; Mosquera
et al., 2019). Additionally, the field of view in a horror game
can be adjusted depending on the heartbeat (Houzangbe et al.,
2018). Kocur et al. (2020) present a novel way to help novice
users in a shooter game by introducing a gaze-based aiming
assistant. If the user does not hit a target with his shot, the
assistant can guess what the actual target was, based on the
gaze. When the shot is close enough to the intended target it
hits nevertheless. Moreover, eye-tracking can be used to
optimize VR video streaming. Yang et al. (2019) used gaze-
tracking to analyze the user’s attention and leverage this
knowledge to reduce the bandwidth of video streaming by
reducing the quality of those parts of a scene that are not
focused.

A summary of the works discussed in this section can be found
in Table 7.

4.1.4 Functional Virtual Reality Properties
Within this section, we describe applications that make use of
common techniques of VR. These are applications that include
embodiment, agent interaction, or multiuser VR. We are talking
about functional properties that may or may not be part of the
system. These properties can also be part of the fields of
application that we discussed before, e.g. therapy and training.
Nevertheless, we have identified them as separate fields because
physiological measurements have their own functions in
applications that use embodiment, agent interaction, or
multiuser VR. Researchers who want to use those techniques
in their own applications can find separate information about the
role of the physiological measurements here.

4.1.4.1 Applications With Embodiment
A range of VR applications use avatars as a representation of the
user in the virtual realm (Lugrin et al., 2018; Lugrin et al., 2019b;
Wolf et al., 2020). VR has the potential to elicit the illusion of
owning a digital body which can be referred to as the Illusion of
Virtual Body Ownership (Lugrin et al., 2015; Roth et al., 2017).
This concept is an extension of the rubber-hand illusion
(Botvinick and Cohen, 1998), which has the consequence that
the feeling of ownership is often based on the synchrony of multi
sensory information, e.g. visuo-tactile or visuo-motor (Tsakiris
et al., 2006; Slater et al., 2008). Physiological data can provide
information about whether and to what extent the virtual body is
perceived as the own. One way to provide objective evidence for
the illusion of body ownership is to threaten the artificial body-
part while measuring the skin response to get information about
whether the person shows an anxiety reaction (Armel and
Ramachandran, 2003; Ehrsson et al., 2007). One of the most
common paradigms still used in more recent literature is to
threaten the virtual body (part) with a knife stab (González-
Franco et al., 2014; Ma and Hommel, 2015; Preuss and Ehrsson,
2019). Alchalabi et al. (2019) present an approach that uses EEG
data to estimate embodiment. They worked with a conflict
between visual feedback and motor control. That means
subjects had to perform a moving task on a treadmill that was
replicated by their virtual representation. However, the avatar
stopped walking prematurely while the subject was still moving in
real life. This modification in feedback was reflected in EEG data
and results showed a strong correlation between the subjective
level of embodiment and brain activation over the motor- and
pre-motor cortex. Relations between EEG patterns and the
illusion of body ownership were also shown in virtual
variations of the rubber-hand illusion (González-Franco et al.,
2014; Skola and Liarokapis, 2016). Furthermore, there is also
evidence that the feeling of ownership and agency over a virtual
body or limb can be reflected in skin temperature regulation
(Macauda et al., 2015; Tieri et al., 2017).

Other works connect embodiment and physiological measures
by investigating how the behavior or properties of an avatar can
change physiological responses. In their study, Czub and Kowal
(2019) introduced a visuo-respiratory conflict, i.e. the avatar that
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represented the subjects showed a different respiration rate than
its owner. They found out that the immersed subjects actually
adapted their respiration rate to their virtual representation. The
frequency of breathing increased when the breathing animation
of the avatar was played faster and vice versa. Kokkinara et al.
(2016) showed that activity of the virtual body, i.e. climbing a hill,
can increase the heart rate of subjects, even if they are sitting on a
chair in real life.

Another link between physiological measures and body-
ownership can be made when those measures are used as
input for the behavior of the avatar. Betka et al. (2020)
executed a study in which they measured the respiration rate
of the subjects and mapped it onto the avatar that was used as
their virtual representation. Results showed that congruency of
breathing behavior is an important factor for the sense of agency
and the sense of ownership over the virtual body.

4.1.4.2 Applications With Agent Interaction
In the last section, we focused on applications that use avatars to
embody users in the virtual environment. Now we move from the
virtual representation of the user to the virtual representation of
an artificial intelligence, so-called agents (Luck and Aylett, 2000).

Physiological data is often used to analyze and understand the
interaction between a human user and agents. The study of Gupta
et al. (2019), that was revised in Gupta et al. (2020), aimed to learn
about the trust between humans and agents. The primary task of
this study comprised a shape selection where subjects had to find
a target object that was defined by shape and color. An agent was
implemented that gave hints about the direction in which the
object could be found. There were two versions of the agent,
whereat one version always gave an accurate hint and the other
one did not. With the help of a secondary task, an additional
workload was induced. EEG, GSR, and heart rate variability were
captured throughout the experiment, as an objective indicator for
the cognitive workload of the subjects. In the EEG data, Gupta
et al. (2020) found a significant main effect for the accuracy of the
agent’s hints. That means subjects who received correct hints
showed less cognitive load. The authors interpret this as a sign of
trust towards the agent as the subjects did not seem to put any

additional effort into the shape selection task as soon as they got
the correct hints from the virtual assistant. In another example,
Krogmeier et al. (2019) investigated the effects of bumping into a
virtual character. In their study, they manipulated the haptic
feedback during the collision. They explored how this encounter
and the introduction of haptic feedback changed the
physiological arousal of the subjects gauged with EDA. In a
related study, Swidrak and Pochwatko (2019) showed a heart-
rate deceleration of people who are touched by a virtual human.
Another facet of human-agent interaction is the role of different
facial expressions and how they affect physiological responses
(Mueller et al., 2017; Ravaja et al., 2018; Kaminskas and
Sciglinskas, 2019).

Other works investigate different kinds of agents and use
physiological data as a reference for their comparison. Volante
et al. (2016) investigated different styles of virtual humans, i.e.
visually realistic vs. cartoon-like vs. sketch-like. The agents were
depicted as patients in a hospital which showed progressive
deterioration of their medical condition. With the help of
EDA data, they were able to quantify emotional responses
towards those avatars and analyze how these responses were
affected by the visual appearance. Other works compared gaze
behavior during contact with real people and agents (Syrjamaki
et al., 2020) or the responses to virtual crowds showing different
emotions (Volonte et al., 2020).

Another category can be seen in studies that leverage agents to
simulate certain scenarios and use physiological data to test the
efficacy of these scenarios to elicit desired emotional responses. At
this point, there is a relatively large overlap with the previously
discussed exposure therapies (Section 4.1.1.1). Applications
aimed at the treatment of social anxiety often include the
exposition to a virtual audience that aims to generate a certain
atmosphere (Herumurti et al., 2019; Lugrin et al., 2019a; Streck
et al., 2019). Kothgassner et al. (2016) asked participants of their
study to speak in front of a real and a virtual audience. Heart rate,
heart rate variability, and saliva cortisol secretion were assessed.
For both groups, these stress indicators increased similarly, which
demonstrates the fundamental usefulness of such therapy
systems, as the physiological response to a virtual audience

TABLE 7 |Overview of the works from the field of entertainment that were discussed inSection 4.1.3. TheMeasures column refers to the physiological measures used in the
work. The entries of the Independent Variables column often do not cover everything that was considered in the work. Entries in the Purposes column refer to the
categories listed in Section 4.1.6.

Study Scenario Independent variables Measures Purposes

Ding et al. (2018) Watching clips from the movie The Jungle Book Traditional 2D film vs. VR film SKT, ECG,
Resp, PPG

Stimuli comparison

Mosquera et al.
(2019)

Puzzle game on a virtual spaceship that offers HR
feedback and requires control over the HR

PPG Feedback, adaption,
process analysis

Houzangbe et al.
(2019)

Puzzle game that requires control over the HR Subjects with different levels of HR control PPG Feedback, adaption,
classification

Xie et al. (2018) VR exercise games with procedural level design Easy vs. medium vs. hard physical difficulty ECG Stimuli comparison
Houzangbe et al.
(2018)

VR horror game in which field of view and sound is
adapted to the heart beat

Game with vs. without adaption mechanics PPG Feedback, adaption

Kocur et al. (2020) VR first-person shooter with a gaze-based aiming
assistant

No aiming assistance vs. standard
assistance vs. gaze-based assistance

ET Adaption

Yang et al. (2019) VR video streaming in which quality of the non-
focused parts is reduced

Different kinds of movies ET Adaption
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was comparable to a real one. Other studies investigated stress
reactions depending on the size (Mostajeran et al., 2020) or
displayed emotions (Barreda-Angeles et al., 2020) of the
audience. The potential of virtual audiences to elicit stress is
not only applicable to people with social anxiety. Research
approaches that investigate human behavior and experience
under stress can use a speech task in front of a virtual
audience as a stressor. This can be referred to as the Trier
Social Stress Test, which was often transferred to the virtual
realm (Delahaye et al., 2015; Shiban et al., 2016a; Kothgassner
et al., 2019; Zimmer et al., 2019; Kerous et al., 2020). Social
training applications that work with virtual audiences are also
available specifically for people with autism. Again, physiological
measurements help to understand the condition of the user and
thus to adjust the training (Kuriakose et al., 2013; Bekele et al.,
2016; Simões et al., 2018). Also physical training applications can
use physiological data to determine the effect of agents. Murray
et al. (2016) worked with a virtual aerobic exercise, i.e. rowing on
an ergometer. One cohort of their study had a virtual companion
that performed the exercise alongside the subject. In a related
study, Haller et al. (2019) investigated the effect of a clapping
virtual audience on the performance in a high-intensity interval
training. In both examples the effect of the agents was evaluated
with a comparison of the heart rate. It indicates changes in the
physical effort and can thus show whether the presence of agents
changes training behavior.

4.1.4.3 Applications With Multiuser Virtual Reality
In multiuser VR applications, two or more users can be present
and interact with each other at the same time (Schroeder, 2010).
This concept offers the possibility of exchanging physiological
data among those users. Dey et al. (2018) designed three different
collaborative virtual environments comprising puzzles that must
be solved together. They evaluated those environments in a user-
study, whereat one group got auditory and haptic feedback about
the heart rate of the partner. Results indicated that participants
who received the feedback felt the presence of the collaborator
more. There is even evidence that the heart rate feedback received
from a partner can cause an adaption in the own heart rate (Dey
et al., 2019b). In a similar approach, Salminen et al. (2019) used
an application that shares EEG and respiration information
among subjects in a virtual meditation exercise. The feedback
was depicted as a glowing aura that pulsates according to the
respiration rate and is visualized with different colors, depending
on brain activity. Users who had this kind of feedback perceived
more empathy towards the other user. Desnoyers-Stewart et al.
(2019) built an application that deliberately aims to achieve such
synchronization of physiological signals in order to establish a
connection between users. Another way in which multiuser VR
applications can benefit from physiological measures is in terms
of communication. Lou et al. (2020) present a hardware solution
that uses EMG sensors to track facial muscle activity. These
activities are then translated to a set of facial expressions that can
be displayed by an avatar. This offers the possibility of adding
nonverbal cues to interpersonal communication in VR.

A summary of the works discussed in this section can be found
in Table 8.

4.1.5 General Virtual Reality Properties
Our last field of application focuses on properties that are relevant
for every VR application as they are inherent to the medium itself.
These are cybersickness and presence. Here we are talking about
non-functional properties of a VR system, as they can occur to
varying degrees. These varying degrees of cybersickness and
presence are either actively manipulated or passively observed.
In both cases, consideration of physiological measurements can
provide interesting insights.

4.1.5.1 Presence
Presence describes the experience of a user to be situated in the
virtual instead of the real environmentWitmer and Singer (1998).
Hence, knowledge about the extent to which a virtual
environment can elicit the feeling of presence in a user is
relevant in most VR applications. Beyond the classic presence
questionnaires from Slater et al. (1994) or Witmer and Singer
(1998), there are also approaches that aim to determine presence
based on physiological data.

Athif et al. (2020) present a comprehensive study that relates
presence factors to physiological signals. They worked with a
VR forest scenario in which the player needs to collect
mushrooms that spawn randomly. This scenario was
implemented in six different gradations based on the four
factors of presence, described by Witmer and Singer (1998).
These are distraction, control, sensory, and realism. That means
the base version fulfilled the requirements for all these factors.
Four versions suppressed one factor each and one version
suppressed all the factors simultaneously. In the study,
participants were presented with each of the scenarios while
their physiological reactions were measured. Data showed that
EEG features indicated changes in presence particularly well,
while ECG and EDA features did not. Signals from temporal and
parietal regions of the brain showed correlations with the
suppression of the specific presence factors. In a similar
investigation Dey et al. (2020) implemented two versions of a
cart-ride through a virtual jungle. Their high presence version
was realized through higher visual fidelity, more control, and
object-specific sound. In this setup, they were able to show a
significant increase in the heart rate of people presented to the
high presence version, whereat EDA showed no systematic
changes. The study of Deniaud et al. (2015) showed
correlations between presence questionnaire scores, skin
conductance, and heart rate variability. Other studies again,
found the heart rate or EDA data to be weak indicators for
presence (Felnhofer et al., 2014; Felnhofer et al., 2015).
Szczurowski and Smith (2017) suggest to gauge presence
through a comparison of virtual and real stimuli.
Accordingly, a high presence is characterized in such a way
that the exposure to the virtual stimulus elicits similar
physiological responses as the exposure to the real stimulus.
As such, one could take any physiological measure to gauge
presence, as long as one has a comparative value from a real life
stimulus.

The exact relationship between specific physiological measures
and the experience of presence still seems ambiguous. This may
also be due to the fact that the concept of presence is understood
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TABLE 8 |Overview of the works from the field of functional VR properties that were discussed in Section 4.1.4. The Measures column refers to the physiological measures
used in the work. The entries of the Independent Variables column often do not cover everything that was considered in the work. Entries in the Purposes column refer to
the categories listed in Section 4.1.6.

Study Scenario Independent variables Measures Purposes

González-Franco et al.
(2014)

Sitting on a virtual table while being embodied
in a first-person perspective

Virtual knife attacking the hand vs. attacking the
table, actively moving hand vs. no movement

EEG Stimuli comparison,
correlation, process
analysis

Ma and Hommel (2015) Virtual rubber hand illusion with a knife attack
on virtual body parts

Synchronous vs. asynchronous vibro-tactile
simulation, embodiment through hand vs.
embodiment through rectangle

EDA Stimuli comparison

Preuss and Ehrsson
(2019)

Scenario in which body ownership is induced
with galvanic vestibular stimulation and a virtual
knife attack

Synchronous vs. asynchronous visuo-
vestibular stimulation

EDA Stimuli comparison

Alchalabi et al. (2019) Walking through a virtual corridor while being
on a treadmill in real life

Perform vs. watch vs. imagine walking,
synchronous vs. asynchronous movement

EEG Stimuli comparison,
correlation

Skola and Liarokapis
(2016)

Rubber hand illusion VR vs. AR vs. real life EEG Stimuli comparison,
correlation

Tieri et al. (2017) Sitting on a virtual table with embodiment of the
arms

Limb embodiment through a hand vs. hand,
detached from arm vs. wood block, observing
virtual limb vs. observing a ball

ECG, SKT Stimuli comparison,
correlation

Macauda et al. (2015) Watching a 3D video while being on a motion
platform and being embodied in first person
perspective

Visuo-vestibular synchronization vs. delay,
embodiment through mannequin vs. red pillow

SKT Stimuli comparison,
correlation

Czub and Kowal (2019) Sitting on a virtual bench while being embodied
in first person perspective with an avatar that
depicts breathing motion

Visuo-respiratory synchronization vs.no
synchronization

Resp Feedback, stimuli
comparison

Kokkinara et al. (2016) Embodying a virtual avatar that is climbing a hill
while sitting on a stool in real life

First person perspective vs. third person
perspective, sway animation vs. no sway
animation

ECG,
Resp, EDA

Stimuli comparison,
correlation, process
analysis

Betka et al. (2020) Watching an avatar with a flashing outline from
third person perspective

Synchrony vs. asynchrony between respiration
and flashing of avatar, active vs. passive
breathing

Resp Feedback, stimuli
comparison

Gupta et al. (2019), Gupta
et al. 2020)

Object search task with a virtual voice agent
that gives indications regarding the target

High vs. low difficulty search task, high vs. low
accuracy indications

EEG, EDA Stimuli comparison,
correlationPPG

Krogmeier et al. (2019) Scene in which numerous virtual agents walk
past or collide with the user

Different kinds of haptic feedback vs. no haptic
feedback when colliding with agents

EDA Stimuli comparison,
correlation

Swidrak and Pochwatko
(2019)

Playing a decisions-making game with a virtual
agent that touches the subject during the
procedure

Gender, stereotypical femininity /masculinity,
apparent social status of agent, touch with no
vs. acoustic vs. tactile feedback

ECG Stimuli comparison

Ravaja et al. (2018) Playing a prisoner’s dilemma game with a
virtual agent

Facial expression of the agent EMG, EEG Stimuli comparison
adaption, correlation

Mueller et al. (2017) Sitting on a virtual table, facing an agent when a
sudden noise burst appears

Violet vs. teal room, 95 vs. 80 db noise burst,
neutral vs. angry facial expression of the agent

EEG Process analysis, stimuli
comparison

Volante et al. (2016) VR training system to help nurses identify the
signs of rapid patient deterioration

Visually realistic vs. cartoon-like vs. sketch-like
patient

EDA Stimuli comparison

Syrjamaki et al. (2020) Face-to-face situation with a virtual avatar or a
real person

VR vs. face-to-face interaction, direct vs.
averted gaze

EDA, ECG Stimuli comparison

Volonte et al. (2020) Virtual market simulation in which the subject
has to get items from different vendors

Virtual crowd with positive vs. negative vs.
neutral vs. mixed emotional expressions

EDA Stimuli comparison

Streck et al. (2019) Different virtual environments that contain
virtual crowds, e.g. classroom, library, bar

EDA, ECG Feedback
ET

Herumurti et al. (2019) Public speaking task in front of a virtual
audience whose behavior is adjusted
depending on the heart rate.

PPG Adaption

Mostajeran et al. (2020) Giving a speech in front of a virtual audience
and performing arithmetic calculations (Trier
Social Stress Test)

Three vs. five vs. fifteen agents in virtual
audience vs. real audience with three people

Salivary
cortisol,
ECG, EDA

Stimuli comparison,
correlation

Barreda-Angeles et al.
(2020)

Public speaking task in front of a 360°-video
audience

Neutral vs. positive vs. negative reaction of the
virtual audience

ECG, EDA Stimuli comparison,
group comparison

Kothgassner et al. (2019) Giving a speech in front of a virtual audience
and performing arithmetic calculations with
prior social support

Real vs. avatar-based vs. agent-based vs. no
social support

PPG Stimuli-Comparison,
process analysis

Shiban et al. (2016a) Giving a speech in front of a virtual audience
and performing arithmetic calculations

Doing the task in real life vs. VR vs. VR with a
virtual competitor

Salivary
cortisol,
ECG, EDA

Stimuli comparison,
process analysis

(Continued on following page)
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and defined differently. Only recently, Latoschik and Wienrich
(2021) introduced a new theoretical model for VR experiences
which also shows a new perspective on presence. Just as the
understanding of presence evolves, so does the measurement of it.

4.1.5.2 Cybersickness
Cybersickness can be described as a set of adverse symptoms that
are induced by the visual stimuli of virtual and augmented reality
applications (Stauffert et al., 2020). Common symptoms include
headache, dizziness, nausea, disorientation, or fatigue (Kennedy
et al., 1993; LaViola, 2000). There are multiple theories on what
might be the causes of cybersickness, whereas the most common
revolve around sensory mismatches and postural instability
(Rebenitsch and Owen, 2016).

Besides questionnaires and tests for postural instability, the
assessment of the physiological state of a VR user is one of the
common ways to measure cybersickness (Rebenitsch and Owen,
2016). In recent years researchers used several approaches to
assess physiological measures and find out how much they
correlate with cybersickness. Gavgani et al. (2017) used a
virtual roller-coaster ride that subjects were asked to ride on

three consecutive days. This roller-coaster ride was quite effective
at inducing cybersickness as only one of fourteen subjects
completed all rides while the others terminated theirs due to
nausea. However, it took the participants significantly more time
to abort the ride on the third day, compared to the first, which
speaks for a habituation. During the 15-min rides, heart rate,
respiration rate, and skin conductance were monitored and
participants had to give a subjective assessment of their felt
motion sickness. Results demonstrated that the nausea level of
subjects continuously increased over the course of the ride. The
measurement of the forehead skin conductance was the best
physiological correlate to the gradually increasing nausea. A
virtual roller-coaster ride was also leveraged in the study of
Cebeci et al. (2019). Here, pupil dilation, heart rate, blink
count, and saccades were analyzed. In this study, the average
heart rate and the saccade mean speed were the highest when
cybersickness symptoms occurred. Moreover, they found a
correlation between the blink count, nausea and oculomotor
discomfort (Kennedy et al., 1993). Approaches that use
physiological data to assess cybersickness mainly use this data
for the sake of comparison. This can serve to gain knowledge

TABLE 8 | (Continued) Overview of the works from the field of functional VR properties that were discussed in Section 4.1.4. The Measures column refers to the
physiological measures used in the work. The entries of the Independent Variables column often do not cover everything that was considered in the work. Entries in the
Purposes column refer to the categories listed in Section 4.1.6.

Study Scenario Independent variables Measures Purposes

Zimmer et al. (2019) Giving a speech in front of a virtual audience
and performing arithmetic calculations

Speak in front of a virtual vs. real vs. no
audience

Salivary
cortisol,
PPG, EDA

Stimuli comparison,
process analysis

Delahaye et al. (2015) Giving a speech in front of a virtual audience
and navigation through two labyrinths

Speech task vs. labyrinth task ECG Stimuli comparison,
process analysis,
correlation

Kerous et al. (2020) Doing a virtual Stroop task while being
observed by virtual agents as social stressors

Only social stressor vs. only Stroop vs.
combination of both

ECG, EDA Stimuli comparison

Bekele et al. (2016) Virtual agent based communication training for
people with autism

Agent with vs. without gaze sensitivity, different
sessions

ET, ECG, EDA Progress, adaption
stimuli comparisonSKT

Simões et al. (2018) Serious game for teaching people with autism
to get used to bus-taking routines, especially
the social situations

People with vs. without autism, different
sessions

EDA Group comparison,
progress

Kuriakose et al. (2013) Different encounters with virtual agents for
training proper reactions in specific social
situations for people with autism

Difficulty levels of the social situations PPG, SKT Stimuli comparison,
progress analysis,
correlation

Murray et al. (2016) Sitting in a virtual rowing boat with a virtual
agent while training with a rowing ergometer in
real life

Rowing vs. rowing in VR vs. rowing in VR with
agent support

ECG Stimuli comparison,
process analysis,
correlation

Haller et al. (2019) Playing a virtual bike racing game while training
on an ergometer in real-life

Exercise with vs. without supporting virtual
crowd

PPG Stimuli comparison

Dey et al. (2018) Solving virtual escape room puzzles together
with a partner

With vs. without audio-haptic heart rate
feedback of the partner

ECG Feedback

Dey et al. (2019b) Active (shooter) and passive (safari) multiuser
virtual environments

Decreased vs. unchanged vs. increased heart
rate feedback of the partner, active vs. passive
virtual environment

ECG Feedback, stimuli
comparison

Salminen et al. (2019) Virtual multiuser meditative environment with
feedback about the own and the partner’s EEG
and respiration signal

Mediation with vs. without partner, no vs.
respiration vs. EEG vs. combined feedback

EEG, Resp Feedback, correlation
stimuli comparison

Desnoyers-Stewart et al.
(2019)

Virtual multiuser underwater environment with
feedback about the individual and synchrony of
respiration

Resp Feedback

Lou et al. (2020) System, which can detect facial muscle
activation and transfer it to an avatar

EMG Feedback
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about the connection of unpleasant VR experiences and latency
jitter (Stauffert et al., 2018), navigation techniques (Líndal et al.,
2018), or the display type (Guna et al., 2019; Gersak et al., 2020;
Guna et al., 2020). Plouzeau et al. (2018) used cybersickness
indicators in an adaption mechanism for their VR application.
They introduced a navigation method that allows the user to
move and rotate in the virtual environment with the help of two
joysticks. The acceleration of the navigation is adapted according
to an objective indicator for simulator sickness, i.e. EDA. When
the EDA increases the acceleration decreases proportionally and
vice versa.

A summary of the works discussed in this section can be found
in Table 9.

4.1.6 High-Level Purposes
Throughout this section, we gave an overview of the usage of
physiological measures in VR to assess the state of the user. We
listed fields of application and concretely explained how
physiological measures are used in them. Across the fields of
application, physiological measures are used for recurring
purposes. To summarize this overview we turn to the meta-
level to highlight these recurring themes for the usage of
physiological data in VR. The categories are not mutually
exclusive and are not always clearly separable.

• Stimuli Comparison: Physiological measures can be used to
determine how the response to a virtual stimulus compares
to the response to another (virtual) stimulus. In these cases
the independent variable is the stimulus and the dependent
variable is the physiological measure. Examples include
works that compare responses to real life situations and
their virtual counterparts (Chang et al., 2019; Syrjamaki
et al., 2020). Others compare how different kinds of virtual
audiences impact stress responses (Barreda-Angeles et al.,
2020; Mostajeran et al., 2020).

• Group Comparison: Physiological measures can be used to
determine how the response to the same stimulus compares
between groups of people. In these studies the independent
variable is the user group and the dependent variable is the
physiological measure. Examples include works that
compare phobic with non-phobic subjects (Breuninger
et al., 2017; Kishimoto and Ding, 2019) or subjects with
and without autism (Simões et al., 2018).

• Process analysis: Physiological measures can be used to
determine how the response changes over the course of a
virtual simulation. In these cases the independent variable is
the time of measurement and the dependent variable is the
physiological measure. Thus, the effect of the appearance of
a certain stimulus can be determined, e.g. a knife attack

TABLE 9 | Overview of the works from the field of general VR properties that were discussed in Section 4.1.5. The Measures column refers to the physiological measures
used in the work. The entries of the Independent Variables column often do not cover everything that was considered in the work. Entries in the Purposes column refer to
the categories listed in Section 4.1.6.

Work Scenario Independent variables Measures Purposes

Athif et al. (2020) VR forest scenario in which the player needs to
collect mushrooms that spawn randomly

Suppression of four individual presence factors vs.
suppression of all factors vs. suppression of no factor

ECG, EDA Stimuli comparison
EEG

Dey et al. (2020) Virtual cart ride through a jungle High presence vs. low presence (manipulated
through visual fidelity, embodiment, reactivity and
control over the environment)

ECG, EDA Stimuli comparison
EEG

Deniaud et al.
(2015)

Following another car in a virtual driving simulator Visual realistic vs. unrealistic environment, good vs.
bad visibility of the road

ECG, EDA Stimuli comparison,
correlation

Felnhofer et al.
(2014)

Public speaking task in front of a virtual audience High anxious vs. low anxious subjects ECG Process analysis,
correlation, group
comparison

Felnhofer et al.
(2015)

Virtual park scenario that tries to elicit different
emotions

Park that is intended to elicit joy vs. anger vs.
boredom vs. sadness vs. anxiety

EDA Stimuli comparison,
correlation

da Costa et al.
(2018)

Car-driving scenario with different traffic
situations, tested with women with a fear of
driving

Different driving sessions ECG Progress, process
analysis, correlation

Gavgani et al.
(2017)

Virtual roller-coaster ride on three consecutive
days

Day of exposure, before vs. after exposure ECG,
EDA, SKT

Progress, process
analysis, correlation

Cebeci et al. (2019) Experiencing different virtual environments, i.e.
campfire, hospital, and roller-coaster scene

Different scenes PPG, ET Stimuli comparison,
correlation process
analysis

Stauffert et al.
(2018)

VR object search task With vs. without induced latency jitter PPG, EDA Stimuli comparison

Líndal et al. (2018) Getting from one place to another in a virtual city
using different traveling methods

Driving along vs. teleportation technique BP Process analysis, stimuli
comparison

Gersak et al. (2020) Virtual roller-coaster ride 2D TV vs. four different VR headsets EDA, SKT Stimuli comparison,
correlationPPG, Resp

Guna et al. (2019),
Guna et al. (2020)

3D video of a beach scene and a roller-coaster
ride

Neutral vs. action content, 2D TV vs. three different
VR headsets vs. mobile VR

EDA, SKT Stimuli comparison,
correlationPPG, Resp

Plouzeau et al.
(2018)

Navigating through a virtual forest, whereat
acceleration parameters can be adjusted to the
EDA of a subject

With vs. without adaption of acceleration EDA Adaption, stimuli
comparison
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(González-Franco et al., 2014) or a noise burst (Mueller
et al., 2017).

• Progress: Physiological measures can be used to determine a
change in response to the same stimulus throughout
multiple expositions. In these studies the independent
variable is the number of expositions or sessions and the
dependent variable is the physiological measure. This is
often done to quantify the progress of a therapy or training
(Lee et al., 2015; Shiban et al., 2017) but can, for example,
also be used to determine a habituation to cybersickness
inducing stimuli (Gavgani et al., 2017).

• Correlation: Physiological measures can be used to establish
a relationship between the measure and a second variable.
Usually, both measures are dependent variables of the
research setup. Typical examples assess the relationship
between physiological and subjective measurements, e.g.
of embodiment (Alchalabi et al., 2019) or cybersickness
(John, 2019).

• Classification: Physiological measures can be used to
differentiate users based on the response to a virtual
stimulus. The goal of these approaches is to determine if
the information in the physiological data is sufficient to
reflect the changes in the independent variable. Examples
can be the classification of specific groups of people, e.g.
healthy and addicted people (Ding X. et al., 2020) or people
under low and high stress (Ishaque et al., 2020).

• Feedback: Physiological measures can be presented to the
user or a second person to make latent and unconscious
processes visible. This is particularly common in relaxation
applications where the stress level can be visualized for the
user (Patibanda et al., 2017; Blum et al., 2019) but it can also
be used to inform the supervisor of a therapy or training
session about the user’s condition (Bayan et al., 2018; Streck
et al., 2019). This purpose differs from the previous ones in
that the physiological measurement is no longer intended to
indicate the manipulation of an independent variable.

• Adaption: Physiological measurements can be used to adapt
the system status to the state of the user. A typical example is
the adaption of training and therapy systems based on effort
and stress indicators (Campbell and Fraser, 2019; Bălan
et al., 2020). This is similar to the feedback purpose in that
the measurements here are used to make changes to the
system and not to allow comparisons. While feedback
approaches are really just focused on visualizing the
physiological data, here it is more about changing the
behavior of the application.

4.2 Part 2: Characteristics of Experience
and Their Measurement in Virtual Reality
In the second part of the discussion, we focus on the results of the
search for classification approaches depicted in Table 2. Here, we
discuss approaches that expose participants to a particular VR
stimulus that is known to trigger a particular characteristic of
experience. The focus of the studies is on how well this
manipulation is reflected by the physiological measurements.
We use those classification approaches to show which

measures, sensors, and algorithms have been used to gauge the
targeted characteristic of experience. A universal solution to
measure and interpret those specific experiences does not
exist, as this is usually context dependent. So what this work
cannot do is to give strict guidelines for whichmeasures should be
used for which case. The field is too diverse and the focus of the
work too broad.

A comparison of the accuracy of the specific approaches,
should be treated with caution as they are partly obtained
under different circumstances. Results show more of a rough
guide to how well the classification works and should not be
compared 1-to-1. All the classifiers reported here are, in principle,
successful in distinguishing different levels of an experience. This
means all examples show combinations of signals, sensors, and
algorithms that can work for the assessment of experience in VR.

Our review of classification approaches showed that in
immersive VR there are some main characteristics of
experience that are predominantly assessed with the help of
physiological data. These experiences are arousal, valence,
stress, anxiety, and cognitive workload. Those constructs are
similar and interrelated. Stress and anxiety can be seen as a
form of hyperarousal and cognitive workload itself can be seen as
a stress factor (Gaillard, 1993; Blanco et al., 2019). Nevertheless,
most of the works focus on one of the characteristics of experience
and they have different approaches to elicit and assess them. The
discussion is separated according to these characteristics of
experience. The reader should still keep in mind that the
constructs are related.

4.2.1 Arousal and Valence
Studies from this domain usually base their work on the
Circumplex Model of Affects (Russell and Mehrabian, 1977;
Posner et al., 2005). This model arranges human emotions in
a two-dimensional coordinate system. One axis of this coordinate
system represents arousal, i.e. the activation of the neural system,
and one axis represents valence, i.e. how positive or negative an
emotion is perceived. Hence, classifiers from this category usually
distinguished high and low levels of arousal or positive and
negative valence. Arousal inducing scenes often comprise a
virtual roller-coaster ride (Hofmann et al., 2018; Teo and
Chia, 2018; Bilgin et al., 2019) or dynamic mini-games
(Shumailov and Gunes, 2017; Ding Y. et al., 2020). Emotional
scenes are often used to manipulate the valence of people
(Shumailov and Gunes, 2017; Mavridou et al., 2018b; Zheng
et al., 2020). Such scenes can be taken from a database (Samson
et al., 2016) or be tested in a pre-study to see what emotions they
trigger (Zhang W. et al., 2017).

The most commonly used physiological measure for the
classification of arousal and valence is EEG. The trend here
seems to be towards the more comfortable wearable EEG
sensors, e.g. a EEG headset (Teo and Chia, 2018; Bilgin et al.,
2019; Ding Y. et al., 2020; Suhaimi et al., 2020) or textile
electrodes inside the HMD (Xu et al., 2019). Some works use
cardiovascular data next to the EEG information (Marín-Morales
et al., 2018; Mavridou et al., 2018b). Deviating from the EEG
approach, Zheng et al. (2020) leveraged pupillometry and
Shumailov and Gunes (2017) forearm EMG to classify arousal
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and valence. Both examples also worked with comfortable and
easy-to-setup sensors.

The deep neural network for the two-level classification of
emotional arousal of Teo and Chia (2018) achieved an accuracy of
96.32% in a 10-fold cross validation. This result was achieved, just
with the data from the Muse 4-channel EEG headband. For a
binary valence classification Shumailov and Gunes (2017)
reported an F1 value of 0.85. This value was achieved with the
help of a support vector machine and EMG armband data,
captured while playing VR games. The highest value for
classifying arousal and valence at the same time (four classes)
comes from Suhaimi et al. (2020). Their random-forest classifier
achieved an accuracy of 82.49% in a 10-fold cross validation,
distinguishing four different emotions that are embedded in the
valence-arousal model.

When a researcher wants to assess arousal in a virtual
environment EEG signals appear to be the go-to indicators. In
addition, cardiovascular data also appears to be useful for this
purpose. Six out of the eight presented arousal classifiers
successfully used one or both of the signals to distinguish high
and low arousal in the virtual realm. The systematic review of
Marín-Morales et al. (2020) about the recognition of emotions in
VR generally confirms this impression. They list sixteen works
that assessed arousal in VR, whereat fifteen of them used EEG or
heart rate variability signals. However, the review of Marín-
Morales et al. (2020) also shows that nine of the sixteen works
used EDA data to estimate arousal, a signal that did not appear
among recent classification algorithms. One reason for this could
be that, among the works listed by Marín-Morales et al. (2020),
the older ones tended to leverage EDA for arousal assessment,
and this work here just considers literature from the last few
years. Nevertheless, this does not mean that EDA measurements
are not important for estimating arousal anymore. Only recently,
Granato et al. (2020) found the skin conductance level to be one
of the most informative features when it comes to the assessment
of arousal. Also worth mentioning is the work of Shumailov and
Gunes (2017) which showed that also forearm EMG is suitable for
the classification of arousal levels. They showed this in a setup
where subjects moved a lot as they were playing VR games, while
other approaches usually gather their data in a setup where
subjects must remain still. Due to movement artifacts, it is
questionable to what extent the other classifiers are
transferable to setups that include a lot of motion. As for the
sensors, various works showed that EEG data collected with easy-
to-use headsets is sufficient to distinguish arousal levels in VR
(Teo and Chia, 2018; Bilgin et al., 2019; Ding Y. et al., 2020).

The differentiation of positive and negative valence appears to
be similar to arousal. Our results showed that most frequently
EEG data was used for its assessment. Also notable is the attempt
to classify arousal based on facial expressions. Even if an HMD is
worn, this is possible through facial EMG (Mavridou et al.,
2018a).

4.2.2 Stress
Studies that work on the classification of stress often used some
kind of dynamic or unpredictable virtual environment to elicit the
desired responses, e.g. a roller-coaster ride (Ishaque et al., 2020)

or a guard, patrolling in a dark room (Ham et al., 2017). Stress is
usually regulated with an additional assignment, e.g. an
arithmetic task (Cho et al., 2017) or a Stroop task (Ishaque
et al., 2020).

Looking at the signals with which stress was attempted to be
classified, it is noticeable that each approach measures the
cardiovascular activity. Either with optical sensors on the
finger (Cho et al., 2017; Ham et al., 2017) or with electrical
sensors (Tartarisco et al., 2015; Robitaille and McGuffin, 2019;
Ishaque et al., 2020). Additional measures that were used by these
studies are EDA (Cho et al., 2017; Ishaque et al., 2020), skin
temperature (Cho et al., 2017), respiration Ishaque et al. (2020),
or motion activity (Tartarisco et al., 2015; Robitaille and
McGuffin, 2019).

The kernel-based extreme learning machine of Cho et al.
(2017) distinguishes five stress levels and it achieved an
accuracy of over 95% in a leave-one-out cross validation.
Their classifier was trained with PPG, EDA, and skin
temperature signals that were gathered relatively simple with
four finger electrodes. In an even simpler setup, with only one
finger-worn PPG sensor and a Linear Discriminant Analysis,
Ham et al. (2017) achieved an accuracy of approximately 80% for
three different classes. Tartarisco et al. (2015) took an approach
with a wearable chest band. They collected ECG, respiration, and
motion data and trained a neuro-fuzzy neural network that
achieved an accuracy of 83% for four different classes.

Traditionally, heart rate variability is regarded as one of the
most important indicators of stress (Melillo et al., 2011; Kim et al.,
2018). This coincides with our results as the most commonly used
signals for stress classification were PPG and ECG. This
impression is also confirmed when considering non-
classification approaches in VR. For example, if one looks at
the VR adaptations of the Trier Social Stress Test mentioned in
Section 4.1.4, one finds that in all the listed examples the heart
activity is measured. Two other signals frequently used in
research to indicate changes in stress level is EDA (Kurniawan
et al., 2013; Anusha et al., 2017; Bhoja et al., 2020) and skin
temperature (Vinkers et al., 2013; Herborn et al., 2015). Both
signals and heart rate variability were compared by Cho et al.
(2017) in VR. Results indicated that PPG and EDA provided
more information about the stress level of the immersed people
than the skin temperature, whereas PPG features were best suited
for the distinction of stress. The combination of EDA and
cardiovascular data seems to be a good compromise for
measuring stress in VR.

Our results also suggest that the better classification results
were achieved with the help of more obtrusive sensors like
multiple electrodes on the fingers or the body (Cho et al.,
2017; Ishaque et al., 2020). This is somewhat problematic as a
lot of VR scenarios require quite some movement interaction.
Individual electrodes distributed over the body could be
bothersome. Approaches with more comfortable chest bands
showed somewhat worse accuracy values, yet were able to
effectively classify different levels of stress (Tartarisco et al.,
2015; Robitaille and McGuffin, 2019). Future research could
aim on improving the quality of stress indicators in VR based
on unobtrusive sensors. In addition to chest bands, wrist-worn
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devices could be used given that they can deliver the important
cardiovascular and EDA signals. Indeed, the focus in these
scenarios is only on creating stress. Relaxation environments
that do the opposite could also provide data to train future
classifiers.

4.2.3 Cognitive Workload
As the name suggests, VR studies that work on the estimation of
cognitive workload often used mentally demanding tasks that
allow for a manipulation with different levels of difficulty. This
can be abstract assignments like the n-back task (Tremmel et al.,
2019; Tremmel, 2020) or a cube puzzle (Collins et al., 2019), but
also more concrete scenarios like a flight simulator with different
difficulties (Kakkos et al., 2019). It is in these scenarios that
cognitive workload differs from the other characteristics of
experiences listed here. While the other experiences can be
placed somewhere in the Circumplex Model of Affects and
therefore have an emotional character, the focus here is on a
mental effort that must be performed by the subjects. In contrast
to the stress simulations, here it is purely a matter of the cognitive
demands of the tasks and not on environmental factors that are
supposed to create additional stress.

Most frequently cognitive workload classifiers worked with an
EEG signal (Kakkos et al., 2019; Siravenha et al., 2019; Tremmel
et al., 2019; Tremmel, 2020). An exception to this is the work of
(Collins et al., 2019) who approached the classification of
workload in VR with PPG and EDA signals.

It is also (Collins et al., 2019) who reached the highest accuracy
among the cognitive workload classifiers that are listed here.
Based on information about the cardiovascular activity, collected
with a wristband, they created a random forest classifier that
predicts three different levels of cognitive workload with an
accuracy of 91.75%. Among the EEG based approaches,
Kakkos et al. (2019) report the highest accuracy. With data
from 64-scalp electrodes, they trained a linear discriminant
analysis classifier that reached an accuracy of 89% for a
prediction of three different workload levels.

Older studies established heart rate features as the most
reliable predictors of cognitive workload (Hancock et al., 1985;
Vogt et al., 2006). More recent works argue for EEG data as the
most promising signal for classifying workload (Christensen
et al., 2012; Hogervorst et al., 2014). This trend is also visible in
our results, as almost all of the classifiers for workload used
EEG. However, Collins et al. (2019) showed that a cognitive
workload classification in VR can also work with PPG signals.
So both, heart rate and EEG features seem to be usable for
workload classification in VR. A recent review on the usage of
physiological data to assess cognitive workload also shows that
cardiovascular and EEG data are two main measures for this
purpose (Charles and Nixon, 2019). Charles and Nixon (2019)
report that the second most used signal is the assessment of
cognitive workload are ocular measures, i.e. blink rate and
pupil size. Those measures did not appear at all in the
classifiers for workload that we found. Closing this gap
could be a task for future research, especially because of the
availability of sensors that allow capturing pupillometry data
inside an HMD.

Regarding the sensors, we found that all the EEG devices that
were used for a workload classification were quite cumbersome
(caps with multiple wet electrodes). The classification with more
comfortable devices like the Emotiv Epoc or the Muse headset is
still pending. When using pulse sensors, Collins et al. (2019)
already showed that the data from a convenient wristband can be
sufficient to distinguish workload levels, however, more examples
are needed to confirm this impression.

4.2.4 Anxiety
The classification of anxiety is closely related to the virtual
exposure therapies presented in Section 4.1.1. This becomes
particularly clear when one considers the scenarios in which
the data for the classifiers were gathered. The scenario is either the
exposure to different altitudes (Hu et al., 2018; Wang et al., 2018;
Bălan et al., 2020) or a speech in front of a crowd (Salkevicius
et al., 2019).

The studies of Hu et al. (2018) and Wang et al. (2018) work
with more cumbersome sensors, i.e. over 30 scalp electrodes, for
capturing EEG data. The convolutional neural network of Hu
et al. (2018) reached an accuracy of 88.77% in a 10-fold cross
validation when classifying four different levels of acrophobia.
The support vector machine of Wang et al. (2018) reached an
accuracy of 96.20% in a 5-fold cross validation, yet only
distinguished three levels of fear.

Salkevicius et al. (2019) present a VR anxiety classification
based on a wearable sensor. With the help of the Empatica E4
wristband sensor, they collected PPG, EDA, and skin temperature
data. They created a fusion-based support vector machine that
classifies four different levels of anxiety. In a 10× 10-fold cross
validation it reached an accuracy of 86.10%, which is comparable
to what Hu et al. (2018) achieved with a more elaborate 30
electrodes setup.

Anxiety is usually characterized by sympathetic activation.
Therefore, in the past many studies have found correlations
between anxiety levels and numerous features of
cardiovascular activity and EDA measurements (Kreibig,
2010). In VR applications, too, most researchers use heart rate
variability and EDA data to make anxiety measurable (Marín-
Morales et al., 2020). In our results, however, this combination
only appeared in the study of Salkevicius et al. (2019). From this
work, it can be concluded that heart rate variability, EDA, and
skin temperature data are in general suitable for distinguishing
different anxiety levels in VR. Moreover, it showed that the
fusion of these three signals can considerably increase the
quality of the prediction, which is particularly useful when
using a wristband that can conveniently deliver this data like
the Empatica E4.

Our results indicate the suitability of EEG data as a sensitive
measure for anxiety in VR. Each of the fear-related approaches,
except that of Salkevicius et al. (2019), used knowledge of the
brain activity for classification. Additionally, the combination
with cardiovascular measures seems to work fine (Balan et al.,
2019; Bălan et al., 2020). As with cognitive workload, the EEG
data here has beenmainly captured with comprehensive electrode
setups. Future work could seek for classification with the more
comfortable headsets. Future anxiety classification approaches
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could also include EMG signals from the orbicularis oculi muscle.
This measure can serve to identify startle responses (Maples-
Keller et al., 2019; Mertens et al., 2019).

4.2.5 Other Classifiers
We also found classification approaches for more seldom assessed
characteristics of experience. Orlosky et al. (2019) built a classifier
that predicts if a learner in a virtual environment understood a
given term or not. Based on data of eye movement and pupil size,
they report a classification accuracy of 75%. Understanding is also
a focus in the study of Collins et al. (2019). They use EDA
information to recognize a moment of insight (Aha! moment).
Also, the severity of cybersickness can be classified with
physiological data. Jeong et al. (2019) used an Emotiv Epoc+
EEG headset to capture data for implementing a neural network.
This network was able to detect if someone feels sick or not with
an accuracy of 98.82%. Just like cybersickness, the visual fatigue
caused by an HMD is quite specific to VR. Wang Y. et al. (2019)
built a classifier that could distinguish two levels of visual fatigue
with an accuracy of 90.79%.

4.3 Limitations
Although this review provides a fairly comprehensive overview of
the usage of physiological signals in VR, it is not without
limitations. Of course, there are a variety of application areas
for physiological data in VR that we have not addressed. Indeed,
we have only reported a fraction of the papers that were left after
the screening process. The scope of this review limits us to only a
superficial discussion of the specific field. To generate a deeper
understanding one would have to dedicate a separate review to
many of the topics. Moreover, we only focused on works that used
physiological measures to gauge the state of the user. However,
the measurements can also be used to make active system
commands, for example with the help of a brain-computer
interface. Additionally, our discussion of classification
approaches could only cover certain areas. We discussed the
characteristics of experience and the signals with which they were
assessed. We have not discussed the features of the specific
signals.

5 CONCLUSION

The use of physiological measures in VR is very wide and
versatile. In the first part of this review, we provided a

structured overview of the field. We showed how
physiological signals are used in therapy, training and
entertainment applications as well as the usage with
functional and general VR properties. We also highlighted
how the knowledge obtained through physiological data is
used. This ranges from the comparison of different stimuli
over the adaptation of the virtual environment to statistical
methods such as correlation. In the second part, we focused on
classification approaches that can show which characteristics of
experience can be assessed with which measures and sensors.
Approaches for the classification of arousal, valence, anxiety,
stress, and cognitive workload were most prominent. EEG and
cardiovascular data were most commonly used for the
assessment of those dimensions. In many areas, simple and
easy-to-use sensors were sufficient to distinguish different levels
of an experience.
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