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Figure 1: A user selects an object using a speech & gesture interface (MMI) in virtual reality. On the left, non-verbal deixis is
determined via ray-casting. On the right, non-verbal deixis is determined via the technique introduced in this work.

ABSTRACT

This work introduces an interaction technique to determine the user’s
non-verbal deixis in Virtual Reality (VR) applications. We tailored
it for multimodal speech & gesture interfaces (MMIs). Here, non-
verbal deixis is often determined by the use of ray-casting due to
its simplicity and intuitiveness. However, ray-casting’s rigidness
and dichotomous nature pose limitations concerning the MMI’s
flexibility and efficiency. In contrast, our technique considers a
more comprehensive set of directional cues to determine non-verbal
deixis and provides probabilistic output to tackle these limitations.
‘We present a machine-learning-based reference implementation of
our technique in VR and the results of a first performance bench-
mark. Future work includes an in-depth user study evaluating our
technique’s user experience in an MMI.

Index Terms: Human-centered computing—Interaction
paradigms; Human-centered computing— Virtual reality; Comput-
ing methodologies—Machine learning

1 INTRODUCTION

Multimodal Interfaces (MMIs) that are based on the users’ natural
communication skills support the potential simultaneous use of at
least two input modalities [11]. Speech and gestures are a powerful
combination in Virtual Reality (VR) [8], especially for tasks where
users have to refer to virtual objects (see Fig. 1 for an example).
Speech excels at providing semantically rich information like visual
appearances, while gestures can express extensive references to
positions (deixis), shapes (iconics), or movements (kinemimics).
Given this complementarity, such MMIs offer at least theoretically
effective and flexible interactions [12].

However, concrete design choices often restrict these advantages
in practice. Ray-casting is one noteworthy choice to determine
non-verbal deixis (see Fig. 1, left), e.g., as done by [18,19]. It is
an interaction technique where users have to point directly at the
target object with a tracked object, e.g., a VR controller, so that the
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ray it emits intersects with the visual representation of the target
accurately. Despite its simplicity and intuitiveness [2], it poses
limitations regarding the MMIs’ flexibility and effectiveness:

(Lpiex) Ray-casting is a comparatively rigid interaction technique
since users can only use the provided ray in the intended manner to
point. It disregards additional non-verbal directional cues such as
body posture and viewing direction.

(Lgfrect) MMIs have the unique potential to handle and resolve
ambiguous and error-prone interactions by jointly analyzing inputs
from multiple modalities [4]. We can use speech to make gestures
more robust and effective [7]. In the example of Fig. 1, the MMI can
improve object inference by merging the verbally given information
“cherry” with the user’s nonverbal deixis. However, ray-casting is not
compatible with this approach, due to its dichotomous nature, i.e.,
whether an object intersects with the ray or not. It does not provide
any information about objects in the ray’s vicinity if it does not
intersect. The MMl is, in this case, essentially unimodal and relies
only on the user’s speech. Hand and tracking jitter exacerbates this
problem by making it difficult to accurately intersect a ray with an
object, especially if the target is small, occluded, and/or far away [2].

There are several more sophisticated selection techniques than ray-
casting. Expand, for example, uses a sphere-shaped selection volume
and additional refinement steps to facilitate object selection [1].
However, these techniques were developed for unimodal interfaces
and not for synergistic use with speech in MMIs. They do not
provide adequate solutions to the previously mentioned limitations.

In this work, we present an interaction technique designed for use
in speech & gesture MMIs in VR. It considers a more holistic set of
non-verbal directional cues to determine the user’s non-verbal deixis
and provides probabilistic output to overcome the limitations Lgjex
& Lggrect- We present the interaction technique’s concept, a machine-
learning-based reference implementation in VR, and benchmarking
results showcasing its feasibility.

2 INTERACTION TECHNIQUE

Our technique endows virtual objects with an awareness of whether
the user is currently referring to them based on her non-verbal deixis
(see Fig. 1, right). In contrast to ray-casting, this assessment consid-
ers a more holistic set of directional cues rather than just a single
ray. While conceptually all directional cues from head orientation
and viewing direction over the finger, hand, arm positions and ori-
entations to body posture shall be considered, this is limited by the
utilized tracking systems. The awareness estimates a confidence
value in [0, 1], indicating how likely the user’s non-verbal deixis



Figure 2: Example of the calculated input features for the right index
finger and a virtual football (see Sect. 3 for details).

Figure 3: VR environment used for data recording.

is referring to, based on a predefined set of directional cues. This
approach aims to overcome the aforementioned limitations: the
user has much more freedom in choosing appropriate non-verbal
directional cues to indicate non-verbal deixis and is not limited to
accurately intersecting a single ray (Lgex). Sorting objects based
on these confidence values yields an n-best guess list of referred-to
objects that can be merged with the information derived from the
user’s speech to improve the interface’s effectiveness (Lgffect)-

3 REFERENCE IMPLEMENTATION

In the following, we provide a brief overview of our technique’s
reference implementation in VR. It is implemented in the game
engine Unity3D 2019.4.20f1 [15] with the Steam VR plugin [17]
and consists of the following aspects:

Tracking: We use an HTC Vive Pro Eye head-mounted display
to track the user’s head and eyes, Valve Index controller for hands
and fingers, and a belt with an attached HTC Vive tracker for the
torso. The Vive Eye and Facial Tracking SDK [3] provides access
to the HMD’s eye tracker. This configuration is capable of tracking
the following sub-set of non-verbal directional cues: position and
orientation of the user’s eyes, head, hands, fingers, and torso.

Calculating Input Features: Based on the tracked directional
cues, we calculate input features for each object in the virtual envi-
ronment. Fig. 2 illustrates these Eelculations using the right index
finger as an example. The ray F' (black solid arrow) represents
the user’s pointing direction based on the index finger’s position F
and its forward vector. Point S determines the closest point on the
object’s surface to the ray F, while point P represents the virtual
object’s pivot point. We calculate the shortest distance ds (orange
dashed line) from point S to ray F as well as the shortest distance
d,, (orange dotted line) from point P to ray F. Further, we calculate

the angle o, (blue dashed curve) between ray F and ray FS (black

dashed arrow) as well as the angle @, (blue dotted curve) between
— —>

ray F and ray FP (black dotted arrow). In total, these calculations

are performed for seven tracked directional cues, i.e., the user’s

Table 1: Comparison of different machine learning models.

Method F1-Score Precision Recall

FNN (ours) | 94.46% 91.26 % 97.88%
SvVC 93.91% 90.22% 97.91%
LR 93.14% 90.08% 96.42%

viewing direction, head, hands, index fingers, and torso. This results
in a set of 28 features per object: 14 distances D and 14 angles A.

Recording Data: We implemented a recording module that stores
all input features with a respective timestamp for each frame in a
local .csv file. It records a video using the Open Broadcast Soft-
ware [10], which captures the virtual environment from the user’s
perspective and the user’s speech.

We created a simple Unity VR scene of a room containing dif-
ferently shaped virtual objects placed on wall-mounted shelves (see
Fig. 3). The task was to instruct a virtual agent, i.e., a flying drone
situated in the virtual environment, to retrieve predefined objects
from the shelves. We disclosed that the experimenter controlled this
agent and thus can understand everything a human does. Participants
were instructed to interact as natural as possible and were free to use
speech and other non-verbal directive cues. In total, 11 participants
(five male and six female, all members of a human-computer interac-
tion chair with- ample VR experience) performed 20 tasks, each with
different target objects while our recording module captured video,
audio, and the calculated features resulting in a data set with 220
interactions. We sorted out 30 interactions due to technical issues or
participants relying solely on speech input with no visible head, eye,
and body movements, leaving 190 interactions in our final data set.

Labeling Data: We used the annotation tool ELAN [9] to label
the recorded videos manually. Time intervals with correct interac-
tions were labeled positive, while incorrect or no interactions were
labeled negative. These timestamps are fused with the recorded
features to generate a labeled dataset. The labeled dataset contains a
total of 77077 rows of data (15775 positive & 61302 negative).

Preprocessing: We balanced the labeled dataset by randomly
removing 45527 negative labeled rows of data. Further, we analyzed
the features in terms of their importance using scikit-learn [14]. The
result revealed that the features regarding the torso have the least
added value determining the user’s non-verbal deixis. We sorted
out the angles and distances of the torso, leaving 24 out of the 28
features. Thus, the preprocessed dataset contains 31550 rows of data
(15775 positive & 15775 negative) with 24 features each.

Training and Testing: We implemented a feed-forward neural
network with 24 nodes in the input layer, 16 nodes in the hidden
layer (two-thirds of the nodes in the input layer [5]), and one node in
the output layer using PyTorch [13]. The hidden layer uses the ReLU
activation function, while the output layer uses the sigmoid function
to transform the output values in [0, 1]. We used 80% of our dataset
to train the network for 35 epochs with a learning rate & = 0.001
and batch size 8 using the Adam optimizer [6]. Since the task is a
binary classification problem, we use the Binary Cross-Entropy loss
function. The trained network is exported to .onnx format.

We compared the neural network with Logistic Regression (LR)
and Support Vector Classifier (SVC), also implemented in the scikit-
learn package [14], using the remaining 20% of our dataset. The
neural network performed best in the overall F1-score and Precision
(see Table 1). Thus, we chose the neural network as our classifier.

Predicting: We use the Barracuda [16] plugin to use the exported
neural network as a component in Unity. This component can be
attached to every virtual object with a mesh (collider) component. It
predicts the likelihood that the user is currently referring to the object
in each frame. This likelihood is encoded in a confidence value
in [0,1]. The MMI can retrieve these confidence values for each
respective object to recognize and interpret the user’s interaction.
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Figure 4: Frame rates (mean & standard deviation) depending on the
number of awareness modules running simultaneously.

4 PERFORMANCE BENCHMARK

We used Unity3D 2019.4.20f1 and the aforementioned hardware to
create a VR application with 100 virtual objects to serve as a test envi-
ronment for our performance benchmark. The benchmark measured
frames per second (fps) while incrementally adding the awareness
modules to the virtual objects resulting in a total of 101 measure-
ments, i.e., average fps and standard deviation. For each measure-
ment, the application was restarted and the respective amount of
modules was added to the virtual objects. After a ten-second delay,
the fps was captured and logged for 50 seconds. We conducted the
benchmark on a PC equipped with an NVIDIA GeForce GTX 1080
Ti graphics card, an Intel (R) Core (TM) i7-8700K 3.70 GHz proces-
sor, and 16 GB of DDR4 memory running Windows 10. Barracuda
was configured to CSharpBurst mode.

Fig. 4 depicts the results of all 101 runs. The baseline fps with 100
virtual objects without an awareness module was 89.03 (SD=6.80).
The application ran stable until nine simultaneously active modules
where we measured an fps of 88.41 (SD=9.09). However, the perfor-
mance started to decline from the tenth object onwards with an fps
of 32.10 (SD=3.83) with 100 modules.

5 CONCLUSION

We presented an interaction technique for determining the user’s
non-verbal deixis in VR applications. We designed it for the use in
speech and gesture MMIs, where it provides an alternative design
choice to the commonly used ray-casting. It addresses the limitations
of rigid and dichotomous interaction techniques in this context and
aims to increase the MMI’s overall flexibility and effectiveness. This
work showcased the technique’s concept, a machine-learning-based
reference implementation in VR, and validated its feasibility with a
first performance benchmark. We identify the following limitations
that open up space for subsequent future work: (1) During data
collection, it seemed that some participants were unsure of how to
interact, which later made it difficult to determine correct interac-
tions when labeling the data. We need a more refined environment
for data collection that encourages the user to interact as naturally
as possible and enables clear labeling of the data. (2) The bench-
mark results show that the calculations of the awareness modules of
each frame eventually lead to significant performance degradation.
Performing these calculations only every second or third frame may
yield a significant performance gain without negatively affecting the
classifier’s accuracy. However, the current reference implementation
is sufficient for first investigations of our technique’s user experience
when combined with speech input in an MMI before addressing
these limitations.
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