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Figure 1: Heat map of fixations (left) and reference picture, calculated AoI bounding boxes and fixations during guided mirror
exposure created from our framework (from left to right: head, left hand, right hand, feet).

ABSTRACT
Mirror exposure is an important method in the treatment of body
image disturbances. Eye tracking can support the unaffected as-
sessment of attention biases during mirror exposure. However, the
analysis of eye tracking data in mirror exposure comes with var-
ious difficulties and is associated with a high manual workload
during data processing. We present an automated data processing
framework that enables us to determine any body part as an area
of interest without placing markers on the bodies of participants.
A short, formative user study proved the quality compared to the
gold standard. The automatic processing and openness for different
systems allow a broad range of applications.
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1 INTRODUCTION
Mirror exposure, the prolonged confrontation with one’s mirror
image, is a well-known method in the treatment of body dysmor-
phic or eating disorders. It helps reduce symptoms of body image
disturbance, the “excessively negative, distorted, or inaccurate per-
ception of one’s own body or parts of it” [19, MB27.3], by reducing
attention biases and dissatisfaction towards specific body parts [7].
To understand the underlying effects of mirror exposure, research
on body image disorders has repeatedly examined the visual atten-
tion bias when looking at one’s own body. As the assessment of
attention bias via self-report is often biased, indirect methods of
measuring attention such as eye tracking can support the analysis
of mirror exposure and tracking of changes over time. Combined
with methods like thinking aloud and body part ranking accord-
ing to their perceived attractiveness, eye tracking helps identify
an attention bias towards specific body regions [15]. Various eye
tracking studies have shown that, particularly in the field of eating
disorders, the gaze behavior on the own body is biased [1, 2, 9, 15].
When confronted with photographs of their body, individuals with
eating disorders tend to focus predominantly on body parts they
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Figure 2: Processing steps of the framework. Upper path: Extraction of Fixations from eye tracking data. Lower path (from left
to right): Creating a Reference Picture from world camera video, Definition of AoI and bounding boxes from body data. Final
step: Combining fixations and bounding boxes for Data Evaluation.

find unattractive or unsatisfactory [2]. However, the analysis of eye
tracking data in mirror exposure comes with a variety of difficulties.
In contrast to the processing of gaze behavior on a computer screen,
it is not easily possible to automatically define individual body parts
as Areas of Interest (AoI) on a mirror.

In eye tracking scenarios without computer screen, one possibil-
ity to define AoI is to use trackingmarkers [17]. However, compared
to other scenarios, it is challenging to use tracking markers to in-
dicate body parts as AoI. Attaching them to the body could be
perceived as intrusive by the individuals, particularly when the
body perception is distorted. Further, idle body movements during
mirror exposure complicate the definition of AoI due to varying
rotation angles between markers. Hence, most studies present pic-
tures of the participants’ body or body parts on a computer monitor
to investigate the attention bias [1, 2, 12]. The combination of mirror
exposure and eye tracking is rare [7].

Tuschen-Caffier et al. [15] presented a study on attention bias
towards disliked body parts that combinedmirror exposurewith eye
tracking. However, their data processing was performed manually,
identifying body parts, AoI, and fixations frame by frame. Similarly,
Naumann et al. [9] investigated the effect of happiness and sadness
on the attention bias using eye tracking in a mirror exposure task.
Here too, the data processing was performed manually, using a
reference picture instead of the video footage to define fixations.

In sum, past work showed the importance and effectiveness
of mirror exposure for body distortion treatments. Eye tracking
can support the unaffected assessment of the attention bias but
is mainly measured on photographs or computer screens and not
in combination with the real-time mirror exposure. If combined,
the data analysis was carried out manually in a very laborious-
intensive, time-consuming process. So far, no solution has been
presented for automatic analysis and evaluation of eye tracking
data in mirror exposure.

In our approach, we present an automated data processing frame-
work that enables to determine any body part as AoI, without plac-
ing markers on the bodies of our participants. We support our
framework with a short, formative user study in which we com-
pare automatically created AoI to the previous gold standard, i.e.,
manually adjusted AoI. Thus, the present work contributes to an
improvement and dissemination of the effortful mirror exposure.

2 SYSTEM DESCRIPTION
2.1 Hardware and Software
As an eye tracking device, we used the Pupil Core 1 glasses by Pupil
Labs [8]. It includes two eye cameras recording the eye movements
(refresh rate of 200 Hz) and one world camera recording the user’s
field of view (refresh rate set to 120 Hz). The Pupil Core advertises
an accuracy of 0.6° and a precision of 0.02°. We connected the eye-
tracker to a smartphone via USB. For data recording, we used Pupil
Mobile 2 and streamed the data via peer-to-peer WiFi connection
to a computer running Pupil Capture 3, v3.2.16. For calibration, we
used the single marker calibration. For post processing, we used
Pupil Player 4, v3.2.16.

2.2 Framework for Automated Data Processing
To accelerate and simplify the data evaluation process, we devel-
oped a framework consisting of several algorithms that fully auto-
mate the evaluation process using body measures and the export
of the Pupil Labs eye tracking software. All scripts are written in
Python 3.7. We used pandas 5 and NumPy 6 for processing the data
and Matplotlib 7 and Pillow 8 for visualization. The procedure and
algorithms work exactly the same for all eye tracking data provided
by Pupil Labs devices. The final framework is depicted in Figure 2,
the source code can be found in our GitHub project 9.

Extraction of Fixations. For the definition of fixations, we use the
exported CSV file of Pupil Player, which lists all fixations during
the recording with a normalized X and Y position, a duration, and
a unique ID. We adopted the default values for fixations from the
software. These were a maximum dispersion of 3.0° and a minimum
duration of 300ms.

Creating a Reference Image. Our approach for the automated pro-
cessing of the recorded eye tracking data is based on the assumption
that the location of specific body parts is known at all times. During
a mirror exposure task with little to no movement and rotation,
1https://pupil-labs.com/products/core/
2https://pupil-labs.com/blog/news/pupil_mobile/
3https://docs.pupil-labs.com/core/software/pupil-capture/
4https://docs.pupil-labs.com/core/software/pupil-player/
5https://pandas.pydata.org/
6https://numpy.org/
7https://matplotlib.org/
8https://python-pillow.org/
9https://github.com/ChrisGoettfert/mirror-exposure-gaze-analyzer
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the position of the body parts of interest stays relatively the same
over time. Thus, similar to the approach of Naumann et al. [9], we
extract a single world camera image from Pupil Player as a refer-
ence picture reflecting the subject’s point of view throughout the
experience, see Figure 3.

Definition of AoI. Pupil Player allows defining surfaces as AoI
based on Apriltag 10 markers. To avoid placing markers on the
body parts of our participants, we define the mirror as a singular
surface using four markers, as visible in Figure 4, and developed an
algorithm to define any number of separate body parts as AoI. We
calculate the position of the respective body parts using eye height
(height of the world camera), standard body measures for the local
population, derived from ISO/TR 7250-2:2010 [5] and additional
environment information, stored in a text file. The included body
measures are the 50th percentile dimensions (width, length) and
calculated location of the respective body part (height of the lower
end of a body part). The included environment information are
height of the lower edge of the lowest markers, length and width
of the surface on the mirror, distance of the mirror to the ground,
and distance of the subject to the mirror.

The first step in calculating AoI is a conversion from cm to px.
We calculate a “scaling factor” derived from the size of our mirror
and the resolution of the reference picture in px, which defines
the ratio between cm and px in our reference picture. Based on
this scaling factor, we can precisely locate the world camera in the
reference picture and use the eye height for further calculations.
The second step is the localization of body parts of interest on the
reference picture. For this purpose, we developed an algorithm that
can locate the body parts in the reference picture based on eye
height, standard body measures and the intercept theorem, which
defines the position of objects on the mirror surface.

By using Algorithm 1, we can locate the height of the body
part of interest on our reference picture. By applying the same
principles, the widths of the body parts can be calculated. A value
that adequately describes the length of the AoI is added to the height,
to obtain an appropriate length value for the AoI. To visualize the
calculated AoI, bounding boxes are added to the reference picture
as visible in Figure 3. For refinement of the bounding boxes, we
enabled manual adjustment of their length and width.

Data Evaluation. Finally, to map the fixations to the AoI, we
calculate whether the fixations were within the created bounding
boxes. As mentioned earlier, each fixation has a normalized X and
Y position based on the size of the surface (mirror). In the same
way, we normalize the bounding box positions and calculate for
each of the measured fixations whether it was inside a bounding
box or not, resulting in the number of hits for each bounding box
and the total duration of fixation time within a bounding box. The
fixations over a certain time span can be visualized on the reference
picture either with or without bounding boxes. In sum, our tool
extracts the fixations from eye tracking data, combines them with
a reference picture and individually defined AoI, and provides the
user with information about the number of fixations and dwell time
within each AoI.

10https://april.eecs.umich.edu/software/apriltag

ALGORITHM 1: Pseudocode to calculate the positional
px height of the feet in the reference picture
Function CalculateHeightsForAreaOfInterestPositions

/* Calculate the scaling factor (px to cm

ratio) */

𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑓 𝑎𝑐𝑡𝑜𝑟 ← 𝑖𝑚𝑎𝑔𝑒ℎ𝑒𝑖𝑔ℎ𝑡

𝑚𝑖𝑟𝑟𝑜𝑟ℎ𝑒𝑖𝑔ℎ𝑡

/* Calculate cm differences */

𝑑𝑖 𝑓 𝑓 𝑒𝑦𝑒 𝑓 𝑒𝑒𝑡 ← 𝑒𝑦𝑒ℎ𝑒𝑖𝑔ℎ𝑡

𝑓 𝑒𝑒𝑡ℎ𝑒𝑖𝑔ℎ𝑡

/* Transform to px and multiply it by 0.5

(intercept theorem) */
𝑑𝑖 𝑓 𝑓 𝑒𝑦𝑒 𝑓 𝑒𝑒𝑡𝑖𝑛𝑝𝑥 ← 𝑑𝑖 𝑓 𝑓 𝑒𝑦𝑒 𝑓 𝑒𝑒𝑡 × 𝑠𝑐𝑎𝑙𝑖𝑛𝑔𝑓 𝑎𝑐𝑡𝑜𝑟 × 0.5
/* Subtract differences to determine the

height */
𝑓 𝑒𝑒𝑡ℎ𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑝𝑥 ← 𝑒𝑦𝑒ℎ𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑝𝑥 − 𝑑𝑖 𝑓 𝑓 𝑒𝑦𝑒 𝑓 𝑒𝑒𝑡𝑖𝑛𝑝𝑥

end

3 EVALUATION
To validate our approach, we compare the bounding boxes automat-
ically generated by our framework using standard bodymeasures to
manually optimized bounding boxes, adjusted for each participant
to the respective body parts.

3.1 Methods
Participants. The study was conducted with N = 5 participants

(age: M = 23.8 years, SD = 1.94 years, 4 Female, 1 Male). All partici-
pants were either students or employees of the local university. All
participants either did not have a visual impairment or had it cor-
rected with contact lenses during the experiment. The participants’
height varied from 163 cm to 174 cm.

Mirror Exposure. The mirror exposure was divided into an ex-
ploratory phase to get used to the set-up (25 s) and four guided
phases (8 s each). During the guided phases, the participant was
instructed to look at their head, right hand, left hand, and feet, for
8 s each. The face is the area in the reflection with the shortest
distance to the eyes; the feet have the longest distance to the eyes.
We added the hands as they are relatively hard to define compared
to the other two areas, as they are neither connected to the floor
nor the participants’ height. All tasks during mirror exposure were
prompted via prerecorded audio instructions.

Procedure. The experiment was performed in a laboratory of the
local university. After giving consent, the participants answered
a short demographic questionnaire on a computer. Then, the eye
tracker was set up and calibrated three to four times using one-
point calibration to achieve an optimal tracking result. The average
accuracy was M = 1.46° (SD = 0.37°). The average precision was M
= 0.12° (SD = 0.04°). The participant was positioned on a marker in
the center of the room facing the mirror and performed the mirror
exposure task.

Laboratory Setup. The laboratory setup is shown in Figure 4. We
used a 50 cm x 200 cm mirror with markers attached at a height
of 57 cm (lower edge) and 169 cm (upper edge). The participants
stood in 1.40m distance to the mirror and 1.40m distance to the
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Figure 3: Reference image and AoI bounding boxes cre-
ated from the framework. Left: automatically created
bounding boxes, right:manually adapted bounding boxes.

Figure 4: Laboratory setup: Mirror with Apriltag markers
(left), calibration marker (right), each 1.40 m distance
from participant.

one point calibration marker. The calibration marker was placed at
eye height for each participant individually.

Analysis of Eye Tracking Data. We defined the head (width = head
width [4, 4.3.10]; length = face height × 1.5 [4, 4.3.11]; vertical
position = body-height - length), hands (width = hand width [4,
4.3.3]; length = hand length [4, 4.3.1]; vertical position = fist height
[4, 4.4.4] + 0.5 × feet length, due to gaze angle; horizontal position =
center +/- 0.5 hip width [4, 4.1.12]) and feet (width = 2 × foot width
[4, 4.3.8] + 10 cm (stance width); length = foot length [4, 4.3.7]) as
AoI. Bounding boxes, fixations, and dwell time (overall duration of
fixations within a bounding box) during the guided phases were
calculated as described in Section 2. During the guided phases, we
calculated the average distance of all measured fixations to the
center of the respective calculated bounding box (error, in cm). As a
measure for precision (proximity between several measures of the
same type), we used the Root Mean Square (RMS) of the angular
distance between successive samples (in degree) [8].

3.2 Results
Figure 3 shows the automatically created in comparison to the man-
ually adjusted bounding boxes. Scaled by mirror size, the sizes of
the automatically created bounding boxes were 22 × 15 cm (female)
or 22 × 15.5 cm (male) for the head, 17 × 8 cm (female) or 19 × 8 cm
(male) for each hand and 22× 18 cm (female) or 23× 19 cm (male) for
both feet. The mean sizes (length ×width) of the manually adjusted
bounding boxes were 13.6 × 11.28 cm for the head, 6.85 × 7.45 cm
for each hand and 10.96 × 18.24 cm for both feet.

Figure 1 shows the heatmap on the mirror surface created by
Pupil Labs and the automatically created bounding boxes in rela-
tion to the fixations of an exemplary participant during the mirror
exposure task. While the gaze data of the phases for head and feet
correspond to the respective bounding box, the automatically cre-
ated bounding boxes for the hands are visibly offset. Table 1 shows
the mean error, number of fixations and dwell time for each of the
AoI during the guided phases for both automatically created bound-
ing boxes (left) and manually created bounding boxes (right). While
the values for hands and feet are relatively similar in both variants,
the hands in the manually adjusted bounding boxes descriptively
show a lower error, more fixations and longer dwell time.

4 DISCUSSION
Our work aimed to create a framework that facilitates the analysis
of eye tracking data in mirror exposure. Based on a commercially
available eye tracking system, we developed a framework that is
easy to use and enables us to rapidly define AoI. By defining the
mirror as a large surface and calculating fixations and AoI within
that surface, our framework allows us to compute gaze data in
mirror exposure without time-consuming post-processing. Our
system can automatically calculate AoI and process and visualize
gaze data based on these. Overall, the user evaluation revealed
comparable results of our framework to the previous gold standard,
i.e., manually defined AoI.

Our framework is not limited to the Pupil Core eye tracking
glasses but can be extended to other systems. The automatic pro-
cessing and openness for different systems allow a broad range
of applications in real-life mirror exposures or even in virtually
extended applications - an emerging treatment application [6, 10,
11, 13, 14, 16, 18]. In addition, our system allows defining and im-
plementing any other AoI than the examples we used in our exper-
iment. However, this requires some expertise in python, as well as
a suitable selection of standard body dimensions.

However, our system still has some shortcomings. Based on the
automatically created bounding boxes, manual adjustments of a
few pixels still seem necessary for optimal fit. One approach to opti-
mization would be to measure the body parts of the tested subjects.
However, measuring the dimensions of each body part per person
is time-consuming and intrusive - similar to attaching markers on
the body. For future use, we suggest a revision of the standard di-
mensions used and simplifying the manual adjustments by creating
a graphic user interface. Even with these manual adjustments, our
method provides a time-saving approach.

Our result for hands and feet shows a relatively large error for
both types of bounding boxes. Gazes to the feet were detected less
accurately than the rest of the data, as the pupil tends to be covered
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Table 1: Number fixations dwell times and error with automatically generated AoI. Number fixations dwell times and error
with manually generated AoI.

Automatic Bounding Boxes Manual Bounding Boxes
Fixations Dwell time (s) Error (cm) Fixations Dwell time (s) Error (cm)
M (SD) M (SD) M (SD) M (SD) M (SD) M (SD)

Head 14.0 (4.86) 3.6 (1.26) 5.5 (2.02) 12.6 (4.22) 3.1 (1.09) 6.6 (2.18)
Left hand 7.4 (5.39) 1.8 (1.22) 5.2 (2.07) 8.4 (5.08) 2.1 (1.10) 4.7 (1.61)
Right hand 4.4 (3.83) 1.0 (0.99) 8.8 (3.08) 7.6 (4.22) 2.0 (1.10) 8.1 (4.25)
Feet 2.0 (2.10) 0.4 (0.42) 18.7 (8.67) 3.6 (2.80) 0.8 (0.68) 18.3 (9.93)

when looking downwards and the feet are furthest to the eye posi-
tion. The bounding boxes created for the hands are comparatively
small which makes them vulnerable to small, idle body movements
of the participants, to the participants not standing exactly in the
center of the mirror and to the overall tracking accuracy. The cur-
rent framework bases on the premise that there is no body motion
during the mirror exposure. Future work could solve this problem
via a human pose estimation algorithms using deep learning meth-
ods like OpenPose [3] that track different body parts in real-time.
This way, AoI could be analyzed in motion.

5 CONCLUSION
We have presented a framework that enables simple and fast pro-
cessing and analyses of eye tracking data during mirror exposure
tasks. Taking eye tracking system from Pupil Labs as an example,
we have developed an algorithm that allows us to automatically
define areas of interest, manually optimize them, and evaluate and
visualize gaze data. Our system allows easy to use application in
various fields of research on mirror exposure.
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