
Towards Generating Labeled Property Graphs for
Comprehending C#-based Software Projects

David Heidrich
German Aerospace Center (DLR)

Weßling, Germany
david.heidrich@dlr.de

Andreas Schreiber
German Aerospace Center (DLR)

Cologne, Germany
andreas.schreiber@dlr.de

Sebastian Oberdörfer
University of Würzburg
Würzburg, Germany

sebastian.oberdoerfer@uni-
wuerzburg.de

ABSTRACT
C# is the most widely used programming language among XR devel-
opers. However, only a limited number of graph-based data acquisi-
tion tools exist for C# software. XR development commonly relies
on reusing existing software components to accelerate development.
Graph-based visualization tools can facilitate this comprehension
process, e.g., by providing an overview of relationships between
components. This work describes a new tool called Src2Neo that
generates labeled property graphs of C#-based software projects.
The stored graph follows a simple C# naming scheme and — con-
trary to other solutions — maps each software entity to exactly one
node. The resulting graph facilitates the comprehension process by
providing an easy to read representation of software components.
Additionally, the generated graphs can act as a data basis for more
advanced software visualizations without the need for complex
data requests.

CCS CONCEPTS
• Human-centered computing → Visualization; • Computer
systems organization→ Real-time system architecture; • Infor-
mation systems → Information retrieval.

KEYWORDS
software visualization, software comprehension, labeled property
graph, c#, game engines

ACM Reference Format:
DavidHeidrich, Andreas Schreiber, and SebastianOberdörfer. 2022. Towards
Generating Labeled Property Graphs for Comprehending C#-based Software
Projects. In 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3551349.3560513

1 INTRODUCTION
In the area of XR development and research, the large amount of
technical software requirements — like low latencies [6], high frame
rates [23], and hardware compatibilities — have led to a widespread
adoption of 3D game engines. While these game engines, such as
Godot, CryEngine, or Unity, provide a wide range of pre-existing

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9475-8/22/10.
https://doi.org/10.1145/3551349.3560513

features and systems, they also commonly provide native support
for the programming language C#. As this makes C# the most
widely used programming language among XR developers [19],
even game engines without C# capabilities, like Unreal Engine,
allow C# scripting through various community plugins [5, 11].

By not using a proprietary scripting language, C# game engines
enable developers to reuse source code of existing C#-based soft-
ware projects. This can reduce development overhead and allows
for rapid prototyping. In some cases, like Godot, actually the whole
C# source code of the game engine is open source [7]. This gives
developers, researchers, and students the ability to modify all fea-
tures and systems provided by the game engine. However, before
developers can modify or reuse existing source code, they must first
build a basic understanding of the overall software system and its
components. Due to the abstract and complex nature of source code,
this comprehension can quickly evolve into a mentally demanding
and time-consuming activity. This is especially the case for larger
software projects, where even professional developers invest more
than 50% of their working time on software comprehension instead
of writing or modifying source code [22].

To facilitate this comprehension process, we generate labeled
property graphs of C#-based software projects. More specific, we
present our work-in-progress tool Src2Neo that converts a srcML
file to a graph stored in a Neo4j database. This work describes
the structure of Src2Neo in detail and presents a simple graph
database model for C# software structure. Finally, we discuss how
our approach can facilitate software comprehension and can result
in more advanced software visualizations.

2 RELATEDWORK
As graphs are a fundamental data representation of software struc-
tures, graph-based visualization techniques are the most popular
type of software visualization [18]. Typically, graphs consist of
nodes and edges. In the context of software structures, nodes gener-
ally represent software elements, like namespaces or classes. Edges
typically represent relationships between software elements, like a
namespace CONTAINS a class or a method CALLS another method.
Labeled property graphs are a certain type of graph that are used
to model real-world entities and their relationships to nodes and
edges [1, 16]. Here, all nodes and edges of a specific type have a
shared label. For example, all nodes that represent a namespace
receive a Namespace label. Additionally, nodes and edges can store
additional data in form of properties. That way, a Class node could,
e.g., contain information about its lines of code or code complexity.

As labeled property graphs can model many aspects of a soft-
ware system, they are often proposed as a unified data source for

preprint

https://doi.org/10.1145/3551349.3560513
https://doi.org/10.1145/3551349.3560513


ASE ’22, October 10–14, 2022, Rochester, MI, USA Heidrich et al.

Figure 1: Section from a srcML file built from a C#-based mesh generator library [10].

software analysis and visualization [14, 17, 20]. However, data ac-
quisition can be difficult based on the programming language. Due
to differences between languages, data acquisition tools are gener-
ally designed for one programming language only. Hence, different
acquisition toolings exist for, e.g., C++ [3, 13] or Java [14]. Besides
the "C# Plugin" [2] for the open-source software analysis tool jQAs-
sistant [14], there are — to the best of our knowledge — currently
no tools capable of mapping C#-based software projects to a labeled
property graph.

Generating a labeled property graph requires a predefined meta
model of the graph database. The C# Plugin for jQAssistant already
introduced a meta model for C#-based software systems [2]. How-
ever, we chose against using this model as it is designed for software
analysis tasks. Hence, resulting graphs are very complex and in-
clude many meta nodes, like Member or File. Additionally, there
are no direct edges between, e.g., class and namespace nodes or
method and class nodes. Hence, visualization tools require complex
data queries to gain basic insights.

3 LABELED PROPERTY GRAPHS
For our graph database meta model, we chose a simple design solely
based on the C# software structure (see Figure 2). It only includes
the node labels Namespace, Class, Interface, Enum, Method, and
Field. The model also includes the edge labels CONTAINS, IMPORTS,
IMPLEMENTS, INHERITS_FROM, and CALLS. Additionally, nodes
contain properties, like "Name", "File Path", and "Lines of Code".
However, additional properties can easy be added to nodes.

3.1 Src2Neo
We use XML files generated with the open source tool srcML [4].
Among other languages, srcML parses C# source code to a XML file.
This file contains all original information, including file structure,
white spaces and comments. Inside the XML file, all syntax elements
receive individual XML-tags (see Figure 1). For example, a <unit>
tag represents a file and <namespace>, <class>, and <function> tags
represent their C# counterparts. As all software components can
easily be addressed, srcML is commonly used in software metrics
extraction [15].

Our tool Src2Neo then converts a given srcML-generated XML
file to a labeled property graph. First, it identifies all software com-
ponents (i.e., namespaces, classes, interfaces, enums, methods, and
fields). To navigate inside the XML file and to find specific XML

Figure 2: Meta model of the Src2Neo graph database.

nodes, we use XPath expressions. For example, we use the ex-
pression "./def:class" to find all class nodes inside the XML file
or "./def:namespace" to get all namespaces. For each identified soft-
ware component, we extract their software metrics.

After identifying all individual software components, we look
for relationships between them. For example, to identify Names-
pace CONTAINS Class relationships, we use the XPath expression
"./../../../def:namespace" on each class node in the XML. If a parent
namespace is found, we store the relationship. Other examples are
the Class IMPORTS Namespace relationships, where we look for the
<using> tag with the XPath expression "./../def:using" on each class,
or the Method CALLS Method relationship, where we look for the
<call> tag inside a method and resolve the called name.

Finally, we write the data to a Neo4j graph database (see Figure 3).
During the writing process, we go through all identified software
components and store each component as an individual graph node.
Then we add all software component relationships to the graph.
All data is added via Cypher queries which are sent to the Neo4j
server using the .Net Neo4j driver [8].

4 DISCUSSION
The generated nodes are a 1:1 representation of a C#-based soft-
ware project. They do not include any meta nodes that require
complicated data queries that can slow down the comprehension
process. Hence, developers, researchers, and student can explore

preprint



Towards Generating Labeled Property Graphs for Comprehending C#-based Software Projects ASE ’22, October 10–14, 2022, Rochester, MI, USA

Figure 3: Different views of a generated labeled property graph visualized with the Neo4j Browser. Namespace nodes are blue,
class nodes are orange, interface nodes are light-brown, enum nodes are green, method nodes are red, and field nodes are pink.

the software components without the need for specialized graph
visualization tools. However, the relationship placement can be
more challenging. To reduce complexity, our database meta model
does not include all possible relationships. For example, we only use
the IMPORTS relationship between classes and namespaces (as it is
the case in the source code). But in some use cases, a representation
with IMPORTS relationships between namespaces might be the
more suitable solution. Hence, our graphs will not replace advanced
software visualization tools with custom data queries.

Advanced software visualization tools could, however, benefit
from using our generated graphs as a data source. On one hand,
the easy graph layout could facilitate rapid software visualization
prototyping (especially for unskilled software developers). On the
other hand, metaphor-based software visualization tools, like Island-
Viz [12] or Code City [21], could map their metaphors to specific
nodes and edges inside the graph database. This could reduce the
complexity of such big open-source software visualization tools
and make them more accessible.

5 FUTURE WORK
We plan to extend our meta model with more relationships, e.g.,
a TYPE_OF relationship between a field and a class. At the same
time, we want users to be able to choose the level of detail of
the generated graph. For example, users might want to combine
methods and fields into a single Class Member node or do not want
to include certain relationships, likeMethod CALLS Method, to keep
the graph database more simple.

We are currently identifying possible user requirements follow-
ing an user-centered design process. After this design process is
finished, we plan to evaluate and quantify the benefits of Src2Neo
and its generated labeled property graphs.

We also plan to supportmore C# components, like structs, records,
generic classes, partial classes, or anonymous types. Additionally,
we are thinking about adding specific support for C#-based game

engine projects, like Godot or Unity projects, including meta files
and resource files. Finally, as srcML is already capable of tagging
C++ and Java projects, we want to add support for these program-
ming languages in the future, too. Src2Neo is currently developed
in C# and available on GitHub [9].

REFERENCES
[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter Boncz, George Fletcher,

Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan
Sequeda, et al. 2018. G-CORE: A core for future graph query languages. In
Proceedings of the 2018 International Conference on Management of Data. 1421–
1432.

[2] Stefan Bechert and Richard Müller. 2020. jQAssistant C# Plugin. https://github.
com/softvis-research/jqa-csharp-plugin

[3] Andrea Biaggi, Francesca Arcelli Fontana, and Riccardo Roveda. 2018. An Archi-
tectural Smells Detection Tool for C and C++ Projects. In 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). 417–420.
https://doi.org/10.1109/SEAA.2018.00074

[4] Michael L Collard, Michael J Decker, and Jonathan I Maletic. 2011. Lightweight
transformation and fact extraction with the srcML toolkit. In 2011 IEEE 11th
international working conference on source code analysis and manipulation. IEEE,
173–184.

[5] Stanislav Denisov, Josh Olson, Stan Prokop, Sean Devonport, and Victor Müller.
2022. UnrealCLR. https://github.com/nxrighthere/UnrealCLR

[6] Mohammed S Elbamby, Cristina Perfecto, Mehdi Bennis, and Klaus Doppler. 2018.
Toward low-latency and ultra-reliable virtual reality. IEEE Network 32, 2 (2018),
78–84.

[7] Github. 2022. Godot Engine. https://github.com/godotengine/godot
[8] Github. 2022. Neo4j .NET Driver. https://github.com/neo4j/neo4j-dotnet-driver
[9] Github. 2022. Src2Neo. https://github.com/DLR-SC/src2neo
[10] Github. 2022. Triangle.NET. https://github.com/wo80/Triangle.NET
[11] Mikayla Hutchinson. 2019. MonoUE. https://mono-ue.github.io/
[12] Martin Misiak, Andreas Schreiber, Arnulph Fuhrmann, Sascha Zur, Doreen Seider,

and Lisa Nafeie. 2018. IslandViz: A tool for visualizing modular software systems
in virtual reality. In 2018 IEEE Working Conference on Software Visualization
(VISSOFT). IEEE, 112–116.

[13] Johann Mortara, Philippe Collet, and Xhevahire Tërnava. 2020. Identifying and
Mapping Implemented Variabilities in Java and C++ Systems using symfinder.
In Proceedings of the 24th ACM International Systems and Software Product Line
Conference-Volume B. 9–12.

[14] Richard Müller, Dirk Mahler, Michael Hunger, Jens Nerche, and Markus Harrer.
2018. Towards an open source stack to create a unified data source for soft-
ware analysis and visualization. In 2018 IEEE Working Conference on Software
Visualization (VISSOFT). IEEE, 107–111.

preprint

https://github.com/softvis-research/jqa-csharp-plugin
https://github.com/softvis-research/jqa-csharp-plugin
https://doi.org/10.1109/SEAA.2018.00074
https://github.com/nxrighthere/UnrealCLR
https://github.com/godotengine/godot
https://github.com/neo4j/neo4j-dotnet-driver
https://github.com/DLR-SC/src2neo
https://github.com/wo80/Triangle.NET
https://mono-ue.github.io/


ASE ’22, October 10–14, 2022, Rochester, MI, USA Heidrich et al.

[15] Roy Oberhauser. 2020. A Machine Learning Approach Towards Automatic
Software Design Pattern Recognition Across Multiple Programming Languages
(Proceedings of the Fifteenth International Conference on Software Engineering
Advances). IARIA, 27 – 32. https://nbn-resolving.org/urn:nbn:de:bsz:944-opus4-
10255

[16] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new opportu-
nities for connected data. " O’Reilly Media, Inc.".

[17] Aashik Sadar and Vinitha Panicker. 2015. DocTool-a tool for visualizing soft-
ware projects using graph database. In 2015 Eighth International Conference on
Contemporary Computing (IC3). IEEE, 439–442.

[18] Mojtaba Shahin, Peng Liang, and Muhammad Ali Babar. 2014. A systematic
review of software architecture visualization techniques. Journal of Systems and
Software 94 (2014), 161–185.

[19] SlashData. 2021. State of the Developer Nation 20th Edition.
[20] Lynn von Kurnatowski, David Heidrich, Nalin Güden, Andreas Schreiber, Hendrik

Polzin, and Christian Stangl. 2021. Analysing and Visualizing large Aerospace
Software Systems. In ASCEND 2021. 4082.

[21] Richard Wettel and Michele Lanza. 2008. Codecity: 3d visualization of large-
scale software. In Companion of the 30th international conference on Software
engineering. 921–922.

[22] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. 2017. Measuring program comprehension: A large-scale field study with
professionals. IEEE Transactions on Software Engineering 44, 10 (2017), 951–976.

[23] Jianghao Xiong, En-Lin Hsiang, Ziqian He, Tao Zhan, and Shin-Tson Wu. 2021.
Augmented reality and virtual reality displays: emerging technologies and future
perspectives. Light: Science & Applications 10, 1 (2021), 1–30.

preprint

https://nbn-resolving.org/urn:nbn:de:bsz:944-opus4-10255
https://nbn-resolving.org/urn:nbn:de:bsz:944-opus4-10255

	Abstract
	1 Introduction
	2 Related Work
	3 Labeled Property Graphs
	3.1 Src2Neo

	4 Discussion
	5 Future Work
	References



