
Engineering Surrogate Models for Boid Systems

Jan von Pichowski and Sebastian von Mammen

Julius-Maximilians-Universität, Würzburg, BY 97070, GER

Abstract

We examine the learnability of emergent flocking behavior in
boid simulations. To this end, we present (1) a detailed def-
inition of the boid model, (2) a formulation such that model
instances can be simulated efficiently, (3) metrics for training
surrogate models, (4) and an evaluation of early training re-
sults. For this proof of concept, we focus on simple architec-
tures like multi-layer perceptrons and graph neural networks.
The performance of these models is comparable to simula-
tions with an absolute error in the boid state of 5% in vary-
ing scenarios with varying interaction patterns and even sur-
passes the erroneous simulations for the prediction of formed
flocks. By splitting the prediction task into a boid adjacency
detection and a rule-application task, we observe that wrong
interactions between boids only have a minor impact on the
prediction results. Besides evaluating more complex models,
we suggest focusing on either the detection of stable emer-
gent states to predict them separately or on the understanding
of dynamic transitions of groups that show emergent behav-
ior.

Introduction
Reynolds (1987) introduced boid flocks to retrace the com-
plex collective movement patterns of flocks of birds. Boid
agents move in accordance with their neighbors, and thereby
continuously change their neighborhoods. As a result, boid
flocks represent dynamic systems with a dynamic structure
(Giavitto (2003)) and are, therefore, not only hard to predict
but also challenging to compute. For the computation, the
repeated identification of potentially ever-changing neigh-
bors poses the bottleneck. Lee et al. (2009) presented a vari-
ant of the algorithm that adjusts the neighborhood topology
only when required. Davison et al. (2019) integrated vari-
ous approaches to arrive at a fast solution, including keeping
transform data in the CPU cache, laying out the agents se-
quentially in memory, and distributed neighbor search on the
GPU. Yet, the prediction of dynamics and the efficient com-
putation of behaviors remain major scientific challenges.

In this paper, we present tooling and methods to study
the direct prediction of boid flocking behavior without the
need for calculating all individual interactions. Instead, we
train surrogate models, as surveyed by van der Hoog (2019),

of Reynolds’ boid model. In the next section, we briefly
outline some related works. Next, we provide a concise
boid model, closely inspired by Reynolds’ original publi-
cation but adapted to support our research goal. We jus-
tify the choice of parameters that leads us to demanding
scenarios. We detail the model in matrix notation to har-
ness the computational power of matrix multiplication units
(MMUs) as, for instance, provided in graphical processing
units (GPUs). For a sound analysis, we introduce new met-
rics to assess the quality of the learned flocking behavior.
We not only focus on the global deviations of a single boid
but also measure its local state in relation to its neighbors.
To gain some measure for comparison, we run these met-
rics for a baseline simulation, and test the results against
runs with errors systematically introduced at the integration
steps. Next, we present our approach to learning stepwise
predictions of the simulation state. We investigate the im-
pact of the boids’ interactions compared to the importance
of the flocking rules by splitting the prediction into a stage
that only predicts the boids’ adjacency and another stage that
only learns the movement behavior. Lastly, we compare the
learnability of a simulation with randomly initialized boids
to a simulation with coherently configured boids that fol-
low a clustered flight formation dynamics. This comparison
show, that the models perform better in learning the flocking
behavior than the potentially more chaotic behavior from a
random initialization.

Related Work
Learning agent behavior in various forms is a common topic
in the scientific community. For example, Jiahao et al.
(2022) present an approach to learn a controller for a sin-
gle boid agent based on observations of a flock. They do so
by training an artificial neural network that directs the indi-
vidual considering the local neighbors as well as obstacles to
avoid. Similarly, Powers et al. (2022) deduce the symbolic
rules for individual boids. Both works focus on learning
agent-centric descriptions that can be included in the simu-
lation. In contrast, we focus on learning a surrogate model
that can control the whole flock.

Angione et al. (2022) follow an approach similar to ours
by comparing different machine learning models deployed
to learn the ’Linked Lives’ model of social care provision in
the UK (Noble et al., 2012). It is similar since it also aims at
a surrogate model learned from a complex system. However,
it is different with respect to the model domain, the charac-
teristics of the concrete agent-based model, as well as the
authors’ focus on testing and comparing different machine
learning techniques. We focus on boid flocks due to their po-
tentially great dynamics arising from self-referential interac-
tions (von Mammen and Jacob, 2008) and explore whether
and to which extent it is feasible to capture these dynamics
by means of a learned surrogate model.

While we consider the contributions of this paper only
an early step in the quest for learning surrogate models of
complex boid flocks, they might pave the way for reaching
a greater goal. von Mammen et al. (2011), for instance, pro-
pose an approach to replace subsets of agents in large model
spaces whose group behaviors can be well predicted. Sim-
ilar to our motivation outlined above, they argue that such
locally deployed surrogate models could reduce the compu-
tational complexity.

Another way to reduce the algorithmic complexity is by
reusing information. Reynolds (1987) suggest to sort nearby
boids into constant sized bins. This dynamic spatial order-
ing and subsequent partitioning approach is implemented by
Klein and Spector (2009). It reduces the complexity to O(n)
if the boids do not change their bins. Lee et al. (2009) im-
proved this approach by using the kNN algorithm to deter-
mine a more stable bin assignments. At a later point, similar
techniques of reusing information are worth to be considered
for integrated into our approach.

Boids System Definition
The implemented simulation contains a finite set B of n =
|B| boids, which are located on a finite xy-plane of size
s = 1. We obtain continuous infinite movement by wrap-
ping the space and teleporting agents from one side to an-
other. Likewise, the neighborhood of the boids expands over
the border to the other side of the plane. This reduction of
space imposes bounds on the inputs for the learned models.

Each boid bi ∈ B has a position on the plane given by
xi ∈ [0, 1) and yi ∈ [0, 1) . The velocity of the boids is lim-
ited by a maximum value mv . Reynolds (1987) considers
this a simplified implementation of body-drag forces which
stop a bird from becoming infinitely fast. This variable is
chosen freely by Reynolds (1987) to obtain a realistically
looking animation. We choose the value mv = s/n care-
fully such that some boids cluster in the restricted space and
give, at the same time, enough space to other boids to fly
independently. The separation radius, also referred to as the
protection radius, is defined as rp = mv . It is the maximum
distance another boid can travel in one time step and, thus, to
hit the boid trying to avoid the collision. Boids further away

cannot hit the given boid, and are therefore not considered
a threat. The alignment and cohesion radius, generally re-
ferred to as the view radius, is chosen as rv = 3 · rp because
it results in a view area with space for roughly one order of
magnitude more boids than in the protection area. Reynolds
(1987) suggest to limit the view and protection area to model
the at around 300 degrees limited birds field of perception.
We follow his example and define the two-sided view an-
gle with αv = 0.8π. The outlined parametric relationships
render it sufficiently likely that boid agents meet but that
the whole space does not automatically coincide into one
cluster. Since scaling, especially in combination with differ-
ent integration schemes, can easily lead to quite vast differ-
ences in observable emergent effects, the outlined delibera-
tions should also help to consistently lead to traceable local
interactions and consistent global results.

Rules
In the following, we describe the three boid rules formulated
by Reynolds (1987). These rules form the core of the sim-
ulation. At each time step t ∈ N, each rule generates an
influence unit vector for a given boid. The influences, some-
times also referred to as urges, are combined into a weighted
sum that is interpreted as an accelerating force

f⃗t(bi) = wss⃗t(bi) + waa⃗t(bi) + wcc⃗t(bi) (1)

acting on the given boid bi ∈ B. Reynolds chooses the
weights ws ∈ R+, wa ∈ R+ and wc ∈ R+ freely to ob-
tain realistically looking results and afterward clamps the
value by a maximal force value mf . In Reynolds’ imple-
mentation, the maximum force is defined to be one order of
magnitude lower than the maximum speed, i.e. mf = 1

10mv .
We adopted this specification in our implementation accord-
ingly. This is a reasonable choice since it prevents the boid
from abruptly changing its direction and but it retains the
impact of the momentum of inertia. The dynamics are im-
plemented using explicit Euler integration with a delta of 1.

The rules consistently implement the the following struc-
ture. For each influence, a vector is calculated between the
given boid and each of its neighbors and totaled across the
whole neighborhood. The totaled vector is then normalized
and weighted in accordance with the influence. The align-
ment rule calculates the mean forward direction of all boids
in the view area of the given boid, defined by rv and αv .
The given boid’s forward direction is subtracted, the result-
ing vector normalized and used to calculate the resulting
force as outlined in eqn. 1. The cohesion rule calculates
the mean position of all boids in the view area and subtracts
the position of the given boid. The separation rule calcu-
lates the mean weighted offset of all boids in the protection
area of the given boid, defined by rp and αv . The offsets
are weighted by their negative inverse squared length which
leads to high weights for small offsets with inverted direc-
tion. The resulting, repelling vector is normalized and fed

into eqn. 1. The outlined rules form the core of the simula-
tion. In the next section, we express these rules in terms of
matrix operations to obtain a mathematical description well-
suited for efficient processing.

Boid Model in Matrix Notation

Data availability or generation is a crucial requirement for
any inductive learning task. As a result, it is important to
have the boid simulations run efficiently. In this way, we
can ensure the creation of sufficiently large training sets,
and even generate training data and efficiently calculate the
learning model’s efficiency during an active learning phase.
Overall, an efficient simulation improves the overall itera-
tion time, and thus the outcome of the training cycles.

Instead of relying on algorithmic enhancements to the
computations, as in the originally proposed spatial partition-
ing or kNN-based methods (Lee et al., 2009),

we propose a matrix formulation of the boid model so it
can be executed on efficient MMUs alongside the learned
model.

Foundation

In the following, element-wise operations on matrices and
vectors are required. We use the Hadamard product (Styan,
1973) and division defined as

(A⊙B)ij := (A)ij(B)ij (A⊘B)ij :=
(A)ij
(B)ij

(2)

and expand the definition from matrices to vectors with the
following notation

a⃗⊙ b⃗ := diag(⃗a)⃗b (3)

a⃗⊘ b⃗ := diag(⃗a)⃗b−1, with b⃗−1 =

(
1

b1
,
1

b2
, . . . ,

1

bn

)T

.

(4)

Additionally, we introduce the row sum mapping Σr :
Rn×m → Rn as

Σr(M) : =

n∑
j

((M)0,j , (M)1,j , . . . , (M)n,j)
T (5)

to sum up the entries of each matrix row in a vector. Next,
we define the vector to matrix expansion Me : Rn → Rn×n

as

Me(v⃗) := (v⃗, v⃗, . . . , v⃗︸ ︷︷ ︸
n

), with v⃗ ∈ Rn . (6)

State Description

First, we define four vectors containing the positions and
velocities of all boids b1, b2, . . . , bn ∈ B with

x⃗ = (xb1 , xb2 , . . . , xbn)
T (7)

y⃗ = (yb1 , yb2 , . . . , ybn)
T (8)

dx⃗ = (dxb1 , dxb2 , . . . , dxbn)
T (9)

dy⃗ = (dyb1 , dyb2 , . . . , dybn)
T . (10)

Those vectors are arranged in position and velocity matrices
with

X = Me(x⃗) Y = Me(y⃗) (11)
dX = Me(dx⃗) dY = Me(dy⃗) . (12)

The offset between to boids bi and bj is calculated as
(X̄)bibj = (X)bjbi − (X)bibj with

X̄ = XT −X Ȳ = Y T − Y . (13)

Additional care needs to be taken in the implementation of
near-border situations. When one boid is on one side of the
area and the other boid is on the opposite side then the off-
set needs to be calculated around the border and not through
the area. This can be achieved with a shift by the size of the
area and a masking operation that selects the variant where
the two boids are nearest to each other. We omit this im-
plementation detail in the following equations (especially in
the equations for the adjacency matrices) for simplicity and
because it does not add anything substantial to the general
definitions.

The distance matrix D and the matrix D̂ containing the
squared distances between the boids are defined as

D̂ = D ⊙D = X̄ ⊙ X̄ + Ȳ ⊙ Ȳ . (14)

The total velocity v⃗ of the boids is defined as

v⃗ ⊙ v⃗ = dx⃗⊙ dx⃗+ dy⃗ ⊙ dy⃗ . (15)

It is used to obtain the normalized velocity along the coordi-
nate axes that is called the forward vector

fx⃗ = dx⃗⊘ v⃗ f y⃗ = dy⃗ ⊘ v⃗ . (16)

This leads to the forward matrices

fX = Me(fx⃗) fY = Me(fy⃗) . (17)

The case of zero velocity needs to be handled carefully when
implementing these operations. Here, the forward vector is
then best set to zero, too.

Modeling Interactions as Directed Adjacency
Matrices
After these basic definitions, we transfer the concept of di-
rected adjacency matrices to the boids model. We differen-
tiate between the adjacencies for the protected area and the
adjacencies for the full view area. For the protected area, a
boid bj ∈ B is adjacent to bi ∈ B, if the distance between
bj and bi is smaller or equal to the separation radius rp. The
same holds for the view area, but the limiting distance is the
view radius rv .

To formalize the given description, we introduce the adja-
cency matrix Ap ∈ {0, 1}n×n for the protected area as

(Ap)bibj =

{
1 if bi ̸= bj ∧ (D̂)bibj ≤ r2p
0 otherwise

(18)

Note that in the implementation we included the limited field
of perception by calculating the difference in the view direc-
tions following the same approach that leads to the offset
matrices X̄ and Ȳ . We omitted this detail in the equations
for simplicity. Additionally, the adjacency Av ∈ {0, 1}n×n

describes the interactions in the view area with

(Av)bibj =

{
1 if bi ̸= bj ∧ (D̂)bibj ≤ r2v
0 otherwise

. (19)

The vector a⃗v counting the numbers of interactions in the
view area is obtained by using the row sum mapping

a⃗v = Σr(Av)
T . (20)

Boid Rules Reformulation
Using the obtained matrices we reformulate the three boids
rules. The matrices Sx and Sy contain the separation values
for each boid with respect to every other one:

Sx = X̄ ⊘ (−D̂)⊙Ap Sy = Ȳ ⊘ (−D̂)⊙Ap (21)

Using the row sum mapping leads to the unnormalized sep-
aration value for every boid:

s⃗′x = Σr(Sx) s⃗′y = Σr(Sy) (22)

Using the length vector s⃗ of the separation vectors, we obtain
the separation value for every boid for each dimension:

s⃗⊙ s⃗ = s⃗′x ⊙ s⃗′x + s⃗′y ⊙ s⃗′y (23)

s⃗x = s⃗′x ⊘ s⃗ s⃗y = s⃗′y ⊘ s⃗ (24)

The alignment rule is similar to the separation rule refor-
mulated as

a⃗x = Σr(fX
T ⊙Av)⊘ a⃗v − fx⃗ (25)

a⃗y = Σr(fY
T ⊙Av)⊘ a⃗v − fy⃗ . (26)

Note that we calculate the mean value by dividing through
the view sum a⃗v . In the implementation, it is a valid choice
to set the values to zero, if a division by zero occurs for
special cases like when no boid is in the view area.

Lastly, the cohesion rule is based on the position matrices

c⃗′x = Σr(X
T ⊙Av)⊘ a⃗v − x⃗ (27)

c⃗′y = Σr(Y
T ⊙Av)⊘ a⃗v − y⃗ (28)

that is again normalized to

c⃗⊙ c⃗ = c⃗′x ⊙ c⃗′x + c⃗′y ⊙ c⃗′y (29)

c⃗x = c⃗′x ⊘ c⃗ c⃗y = c⃗′y ⊘ c⃗ . (30)

Error Measures for Evaluating
Interactive Agents

In general, a surrogate simulation model receives the de-
scription of a given simulation state to yield a subsequent
one. Comparing the obtained state with the results of the
baseline simulation allow one to assess the performance of
the learned model. In this section, we provide an overview of
commonly used approaches and we introduce an improved
metric specifically tailored to capture the relevant properties
of boid flocks.

The most immediate notion to assess the surrogate’s per-
formance is by comparing the agents’ absolute positions
from predicted and baseline data. The velocity can be ig-
nored, since it is an internal parameter of the boid and not
considered part of the simulation state. Accordingly, An-
gione et al. (2022) use the mean square error (MSE) for
evaluating the prediction of agents. There is a discussion by
Willmott and Matsuura (2005) whether the mean-absolute
error (MAE) is more appropriate. Similarly, a combination
of multiple measures might be used as proposed by Chai and
Draxler (2014). All these measures are similar as they com-
pare the absolute positions of the boids and only differ in
their sensitivity to outliers in the data set.

Regarding the latter, we decided to build on the root-
mean-square error RMSE as it has been widely adopted
specifically as it exhibits greater sensitivity to outliers and
considering the approximating nature of the surrogate model
we are aiming at, we prefer many small errors over a few
large ones. Also, the loss function used to train the model
can be designed to optimize the model with respect to this
error measure.

We adapt the RMSE measure to make it comparable to
the metric we will introduce shortly to capture the quality
of flock predictions. By normalizing the RMSE error by the
maximal possible distance between two boids, we obtain the
global error

eg =

√√√√∑
bi∈B

eg(bi, b̂i)2

|B|
, (31)

Figure 1: Three boid configurations for comparing the met-
rics. In the middle figure, the boids are moved on each axis
by one unit and rotated by one quarter. In the right figure,
the boids are separated by one unit from their original posi-
tions.

with

eg(bi, b̂i) =
||x⃗(bi)− x⃗(b̂i)||√

2
(
s
2

)2 . (32)

where x⃗(bi) refers to the predicted position of boid bi
whereas x⃗(b̂i) refers to the position of the same boid in the
simulated state.

We refer to this error measure as global because it com-
pares the global position of the predicted boids to their sim-
ulated counterparts. In the following, we develop a local
error measure el to estimate the error of the boid position
with respect to its local environment. Fig. 1 shows a set of
three boids that is firstly translated and rotated, and secondly
scaled. From the figure, we can infer that the rotation and
translation are operations that yield invariant results with re-
spect to the local organization of the flock, i.e. the relative
positions and orientations remain the same and the boids’
interactions are not affected. Scaling, however, results in a
different structure because some boids might not interact any
longer due to their limited view area. Consequently, a local
error measure should be insensitive to the invariant transla-
tion and rotation operations.

We construct the local error el in eqn. 34 from the dis-
tances to the local neighbors of the given boid. The relevant
neighbors are restricted to those boids that are present in the
view area. Additionally, we scale the error similarly to the
global error measure to obtain comparable error measures.
The local error is defined as

el =

√√√√∑
bi∈B

el(bi, b̂i)2

|B|
(33)

with

el(bi, b̂i) =
∑
bj∈B

(Âv)bibj

∣∣∣||x⃗(bj)− x⃗(bi)|| − ||x⃗(b̂j)− x⃗(b̂i)||
∣∣∣∑

bk∈B(Âv)bibk

√
2
(
s
2

)2
(34)

Error Translated & Rotated Flock Scaled Flock

ec 0.08363 0.52290
β 0.16095 0.16095
el 0.00000 0.32190
eg 0.29428 0.20000

RMSE 0.04667 0.02000

Table 1: Error measures applied to the examples in fig. 1.
The local error is only sensitive to scaling whereas the global
error also considers translation and rotation. RMSE behaves
similarly to the global error.

eg and el capture the global, absolute positions as well as
the local, relative positions of the boids, respectively. We
weight and total these measures to combine them in eqn. 36.
The blending factor β describes which error measure is more
relevant for a given flocking scenario. For example, if there
are no interactions between boids then the global error is
more relevant. In contrast, if all boids interact as a single
flock, then the local error is more relevant. The β value is
the normalized average distance between a given boid and
all other ones.

β(b̂i) =
1

|B̂| − 1

∑
b̂j∈B̂

||x⃗(b̂j)− x⃗(b̂i)||√
2
(
s
2

)2 (35)

A high β value decodes that the given boid is far away
from other boids whereas a low β value means that it is sur-
rounded by other boids.

The local and global error and the β value lead to the com-
bined error measure

ec(bi, b̂i) = β(b̂i)eg(bi, b̂i) + (1− β(b̂i))el(bi, b̂i). (36)

The RMSE is used to obtain a single error measurement for
the whole predicted state that is sensitive to outliers.

ec =

√√√√∑
bi∈B

ec(bi, b̂i)2

|B|
(37)

Table 1 provides an overview of the impact of the types
of transformations on boids as shown in fig. 1. It serves as a
reference for comparing the obtained results.

Learnable Boids Models
In order to gain an insight in the learning success and the ef-
fectiveness of the surrogate models, we compare the predic-
tions of different surrogate models with erroneous simula-
tion runs. We arrive at systematically erroneous simulation
runs by introducing a small error to the velocities and the
positions of the boids at each simulation step. Additionally,
entries in the adjacency matrix are flipped randomly. The er-
rors are normally distributed and the standard deviation σ of

the error refers to the requested fraction e of the maximum
value for the given property. For example, an error value of
e = 0.01 means that 68% of all velocity errors are smaller
than 0.01 · mv . For reference, we use three models RND-
0.01, RND-0.05, RND-0.10 with e = 0.01, e = 0.05 and
e = 0.10, respectively.

With respect to the learning task itself, we implement and
compare four different approaches. First, we directly learn
to predict a future state from a given one by means of a
multi-layer perceptron (MLP) artificial neural network. We
refer to this end-to-end surrogate model by means of MLP
as E2E-MLP. It consists of two hidden layers with 300 fea-
tures. Second, we fully calculate the adjacency matrix (fol-
lowing eqns. 18 to 20) and only replace the integration of
the boids’ movement, i.e. the application of the boid rules,
by means of a graph neural network (GNN). We refer to this
rule-integration model as RULES-GNN. The GNN architec-
ture based on convolutions by Kipf and Welling (2016a) is
a natural choice since it uses the inherent graph structure of
the boid flocks and the message-passing approach leads to
a similar information flow compared to the application of
the boid rules. The RULES-GNN model consists of two hid-
den graph convolution layers with 300 features. Third, we
train another MLP to only determine the adjacency matrix
and integrate their movement as described in eqns. 21 to
30. We refer to this surrogate model as ADJ-MLP. Again, it
consists of two hidden layers with 300 nodes to keep the
complexity of the models comparable. Kipf and Welling
(2016b) present an auto-encoder architecture for predicting
links in graphs. We evaluated this as an improved approach
for detecting interactions between boids but were not able
to obtain non-degeneration, converging results therefore ex-
cluded it from our evaluation. Nevertheless, it is a reason-
able choice since it allows to design a model which is more
tailored towards the task of detecting boid interactions and
additionally could lead to a sparse approach that reuses the
matrix of the previous step. Fourth, we combine the ADJ-
MLP and the RULES-GNN model to arrive at a second end-
to-end surrogate model that is independent of any priors
or predefined simulation logic. We refer to this surrogate
model as MLP-GNN. It is trained by combining both loss
functions.

Experiments
We conduct three experiments to evaluate the complexity of
the learning task, the learning capability of the described
models with respect to a broad sampling of flock configu-
rations, and, reducing the learning task’s complexity, their
capability with respect to already formed flocks.

The first experiment provides an insight in how strongly
the boid simulation diverges based on cumulative errors,
also in comparison with a completely randomly predicted
state. To this end, we sample 100 initial conditions with ran-
dom boid state (velocity and position). Next, we obtain pre-

dictions for 10 steps from the erroneous simulations RND-
0.01, RND-0.05, and RND-0.10. For each step, we deter-
mine the cumulative error by comparing the predictions to
a correct simulation. The boid prediction errors are mea-
sured in terms of the average combined error over all sam-
ples to include local and global influences. Lastly, we mea-
sure how much a random state would deviate from the sim-
ulation, to understand at what point a prediction cannot be
distinguished from a random guess anymore.

The second experiment is about evaluating the proposed
surrogate models with respect to learning the boids’ behav-
ior from random boid states. The number of boids is fixed
to n = 20 and the influences are weighted equally with
wc = wa = ws = mf . Due to the initial random dis-
tribution of boids with different positions, speeds, and di-
rections, we expect varying interaction patterns of the boids
during simulation. This imposes a strong challenge on train-
ing the models. The dataset consist of 800 samples of an
initial simulation state, where the positions and velocities of
the boids are randomly generated. For the 800 samples 10
steps are simulated and included into the dataset. This leads
to a dataset with 8000 samples consisting of an input state
and the next state as the response. We use a 60-20-20 split
and repeat the experiment 10 times with different seeds to
obtain sound results.

In the last experiment, we evaluate the proposed models
with respect to learning the behavior of boids that have al-
ready formed a specific type of flocking behavior. With a
strong tendency to collectively move in one direction and
not split, this specific learning task drastically reduces the
space of potentially emerging interaction patterns. At the
same time, investigating the prediction of flocks that have
already transitioned into a specific flocking pattern may pro-
vide a starting point to divide the learning task into easier
sub-tasks. A flock consists of n = 21 boids that are ini-
tially located near each other are heading towards a common
random direction. We randomly varied the initial positions
of the boids by at most 2rv units. As a consequence, one
randomly located and randomly shaped cluster emerges at
the beginning of the simulation. Despite the different initial
conditions, the dataset is prepared and the experiment con-
ducted in the same way as for the second experiment. This
includes the weights of the boids’ influences such that we
can compare the results to the second experiment.

Results and Discussion
Fig. 2 shows the results of the first experiment, i.e. the mean
combined error of the three erroneous simulation runs RND-
0.01, RND-0.05, and RND-0.10 compared with the correct
simulation over 10 steps. After ten steps with e = 0.10, the
simulation result cannot be distinguished from a completely
random state. The curve gets steeper with a higher error and
shows the chaotic nature of the error propagation.

Tables 2 and 3 contain the results of the second and third

Model ec el eg RMSE
RND-0.01 0.16453± 0.00170 0.01766± 0.00010 0.05334± 0.00072 0.02120± 0.00052
RND-0.05 0.67418± 0.00621 0.07772± 0.00032 0.21375± 0.00252 0.08698± 0.00186
RND-0.10 1.16898± 0.00571 0.15310± 0.00071 0.35406± 0.00247 0.14705± 0.00196

E2E-MLP 0.86254± 0.05090 0.14890± 0.01069 0.22896± 0.01228 0.04430± 0.00304
RULES-GNN 2.04911± 0.20352 0.10315± 0.00062 0.76927± 0.08515 0.36403± 0.07696

ADJ-MLP 0.04753± 0.00075 0.00546± 0.00003 0.01512± 0.00035 0.00614± 0.00024
MLP-GNN 2.78383± 0.04443 0.10381± 0.00164 1.07776± 0.01842 0.66324± 0.01916

Table 2: The table contains the results of the second experiment about predicting the state of boids with varying interaction
patterns. It present the commonly used RMSE value for the models and the newly introduced error measures. A better el
measure compared to the eg measure implies that the model is able to learn the inter-flock relations between boids whereas a
lower eg indicates that the global positions of the individual boids are more likely correctly predicted. The ec measure compares
the overall performance of the different models, considering both local relations and global positions. The table shows in which
areas the surrogate models perform better than the baselines RND-0.01, RND-0.05, or RND-0.10.

Model ec el eg RMSE
RND-0.01 0.09087± 0.00033 0.01944± 0.00008 0.02230± 0.00008 0.00040± 0.00003
RND-0.05 0.43370± 0.00143 0.09302± 0.00033 0.10309± 0.00028 0.00712± 0.00012
RND-0.10 0.88238± 0.00268 0.19168± 0.00063 0.19277± 0.00054 0.02514± 0.00033

E2E-MLP 0.33003± 0.02485 0.06303± 0.00573 0.12270± 0.00492 0.00972± 0.00076
RULES-GNN 0.80868± 0.21963 0.09253± 0.01722 0.74013± 0.28762 0.32824± 0.18751

ADJ-MLP 0.01233± 0.00022 0.00253± 0.00005 0.00364± 0.00007 0.00005± 0.00004
MLP-GNN 0.87224± 0.21722 0.09797± 0.00910 0.80032± 0.30478 0.37660± 0.20394

Table 3: The table contains the results of the third experiment about predicting the state of boids in a stable flock. The
mean error rates of the step-wise predictions by the models are stated in comparison to the erroneous simulations. RMSE and
ec provide an overview about the overall performance whereas el and eg give an insight in the prediction capabilities of the
individual boids or the boids in relation to their flocks.

experiment, respectively. For these experiments, in addition
to the step-wise errors, we measure the accuracy of the en-
tries in the predicted adjacency matrices at each step and
calculate the mean and standard deviation over the 10 exper-
iment runs. A low accuracy either implies that boids out-
side a given view area influence the respective agent, or that
boids inside its view area do not. The accuracy of the adja-
cency prediction in the second vs. the third experiment is for
ADJ-MLP 0.69871 ± 0.01664 vs. 0.77998 ± 0.00134 and
for MLP-GNN 0.66007 ± 0.03552 vs. 0.77703 ± 0.00665,
respectively. Accordingly, better adjacency predictions are
achieved in the more specific, third experiment, consistently
by both surrogate models. The ADJ-MLP that only learns
the adjacency prediction achieves better result in this domain
than the MLP-GNN, which additionally learns the rule pre-
diction and, thus, is tailored towards a twofold objective.

Considering the values presented in the tables, the perfor-
mances reported on a specific flocking formation (table 3)
are better than the ones for the generic case (table 2). We
expected this due to the reduced complexity of the learning
task, which is confirmed also by the generally lower error
rates introduced by the RND models. This observation is

only crossed by el which suggests that the local relations
exhibited in the investigated flocking type is greater than for
the generic case which is sampled across 800 different ran-
dom initializations.

The RULES-GNN presents the ability of a GNN to learn
the boids rules, with the correct adjacencies as prior. The
results show that it’s not able to learn the global properties.
Jiahao et al. (2022) state the inherent problem of GNN-based
models is that a given boid can only access the diffused state
information of other boids because the information is repeat-
edly multiplied by the convolution operator. In contrast, the
MLP-based model handles all boids at the same time even
though they might not interact. The E2E-MLP performs
better than the MLP-GNN combination which could be at-
tributed to the weaker performance of the GNN with respect
to global property predictions combined with the errors in
the predicted adjacencies.

All in all, the E2E-MLP is slightly worse in the second ex-
periment than the RND-0.05 simulation because it produces
a higher local error than the erroneous simulation. Fig. 3
confirms this observation as flocks form but partly with dif-
ferent members. For the prediction of the flock in the third

Figure 2: This figure shows the effect of cumulative errors
on the simulation obtained in the first experiment. The com-
bined prediction error for each step of the erroneous simu-
lations RND-0.01, RND-0.05, and RND-0.10 is compared
to the combined error of a randomly generated simulation
state.

Figure 3: This figure shows an exemplary prediction from
the second experiment of the E2E-MLP model after 10 steps
compared to the initial state and the simulated state after 10
steps. Only those individuals within rv = 0.15 units in the
graph can interact and form flocks.

experiment, we observe the same patterns as in the results
for experiment two, but this time the predictions are bet-
ter. The E2E-MLP even surpasses the RND-0.05 model in
the combined error measure. Additionally, the local error is
smaller in comparison to the global error. Thus, the models
are able to predict the inner state of the flock better. Fig. 4
supports this observation by showing that the flock stays to-
gether but moves slower than the simulated flock.

The ADJ-MLP performs best by far, even though it
wrongly predicts 30% of the interactions between the boids.
With nearly one-third of wrong interactions the predicted
state deviates very little from the simulated state compared
with the other models or the erroneous simulations. There-
fore, we conclude that the correct simulation of the rules has
a stronger impact on overall performance than determining
the correct interactions.

Figure 4: This figure depicts an exemplary prediction of the
E2E-MLP for the third experiment. The flock has an initial
movement targeting the right corner of the simulation area.
In the prediction, the flock stays together and moves in the
initial direction.

Figure 5: For an example from the the third experiment,
we show the boids’ traces, with weaker colors referring to
earlier time steps.

Conclusion
Based on Reynolds’ original boid model, we present a
MMU-friendly notation that allows us to train simple sur-
rogate models for the boids simulation. We run some base-
line tests systematically introducing cumulative errors to un-
derstand how quickly the boid dynamics deviate and to un-
derstand which degree of accuracy a boid system surrogate
should at least exhibit. We introduce a novel error mea-
sure that considers both the local and the global behavior
of the predicted boids. We utilize this measure to train sev-
eral surrogate models (E2E-MLP, ADJ-MLP, RULES-GNN,
and MLP-GNN) on randomly sampled initial conditions of
a boid system and, lastly, on an initial condition scenario
that robustly results in a stable flocking cluster. Our anal-
yses show that simple surrogate models are able to make
predictions in the order of erroneous simulations that con-
stantly introduce an absolute error of about 5%. For the
presented proof of concept investigations, we rely on very
simple model architectures that can be improved in the fu-
ture. Considering the successful limitation of the complexity
of the learning task in the stable flocking cluster experiment,
a more systematic divide and conquer approach to learning
and using surrogate models for different swarm configura-
tion but also for simulating different phases of dynamics
could be a generally fruitful direction for future research.

References
Angione, C., Silverman, E., and Yaneske, E. (2022). Using ma-

chine learning as a surrogate model for agent-based simula-
tions. PLOS ONE, 17(2):1–24.

Chai, T. and Draxler, R. R. (2014). Root mean square error (rmse)
or mean absolute error (mae)? – arguments against avoid-
ing rmse in the literature. Geoscientific Model Development,
7(3):1247–1250.

Davison, T., Samavati, F., and Jacob, C. (2019). Lifebrush: paint-
ing, simulating, and visualizing dense biomolecular environ-
ments. Computers & Graphics, 82:232–242.

Giavitto, J.-L. (2003). Topological collections, transformations
and their application to the modeling and the simulation
of dynamical systems. Lecture notes in computer science,
2706:208–233.

Jiahao, T. Z., Pan, L., and Hsieh, M. A. (2022). Learning to swarm
with knowledge-based neural ordinary differential equations.
In 2022 International Conference on Robotics and Automa-
tion (ICRA), pages 6912–6918.

Kipf, T. N. and Welling, M. (2016a). Semi-supervised clas-
sification with graph convolutional networks. CoRR,
abs/1609.02907.

Kipf, T. N. and Welling, M. (2016b). Variational graph auto-
encoders. In Bayesian Deep Learning Workshop at NIPS.
arXiv.

Klein, J. and Spector, L. (2009). 3d multi-agent simulations in
the breve simulation environment. Artificial life models in
software, pages 79–106.

Lee, J. M., Cho, S. H., and Calvo, R. A. (2009). A fast algorithm for
simulation of flocking behavior. In 2009 International IEEE
Consumer Electronics Society’s Games Innovations Confer-
ence, pages 186–190. IEEE.

Noble, J., Silverman, E., Bijak, J., Rossiter, S., Evandrou, M., Bul-
lock, S., Vlachantoni, A., and Falkingham, J. (2012). Linked
lives: The utility of an agent-based approach to modeling
partnership and household formation in the context of social
care. In Proceedings of the 2012 Winter Simulation Confer-
ence (WSC), pages 1–12.

Powers, S., Smith, J., and Pinciroli, C. (2022). Extracting sym-
bolic models of collective behaviors with graph neural net-
works and macro-micro evolution. In Dorigo, M., Hamann,
H., López-Ibáñez, M., Garcı́a-Nieto, J., Engelbrecht, A., Pin-
ciroli, C., Strobel, V., and Camacho-Villalón, C., editors,
Swarm Intelligence, pages 142–154, Cham. Springer Inter-
national Publishing.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed
behavioral model. In Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’87, pages 25–34, New York, NY, USA. Associ-
ation for Computing Machinery.

Styan, G. P. H. (1973). Hadamard products and multivariate sta-
tistical analysis. Linear Algebra and its Applications, 6:217–
240.

van der Hoog, S. (2019). Surrogate modelling in (and of) agent-
based models: A prospectus. Computational Economics,
53(3):1245–1263.

von Mammen, S. and Jacob, C. (2008). The spatiality of swarms-
quantitative analysis of dynamic interaction networks. In AL-
IFE, pages 662–669.

von Mammen, S., Steghöfer, J.-P., Denzinger, J., and Jacob, C.
(2011). Self-organized middle-out abstraction. In Bettstet-
ter, C. and Gershenson, C., editors, Self-Organizing Systems,
pages 26–31, Berlin, Heidelberg. Springer Berlin Heidelberg.

Willmott, C. J. and Matsuura, K. (2005). Advantages of the mean
absolute error (mae) over the root mean square error (rmse)
in assessing average model performance. Climate Research,
30(1):79–82.

