
Modulith: A Game Engine Made for Modding
Daniel Götz

goetz@bii-gmbh.de
Building Information Innovator GmbH

Würzburg, Germany

Sebastian von Mammen
sebastian.von.mammen@uni-wuerzburg.de

Julius-Maximilians-Universität
Würzburg, Germany

ABSTRACT
A modular game engine facilitates development of game technolo-
gies and game contents. The latter includes content creation by the
player in the form of modding. Based on a requirements analysis
to meet the needs of developers, gamers and modders, we present
a novel concept for a fully modular game engine. This concept in-
cludes a module system, which allows additional code to be loaded
at runtime, and various support systems that simplify the use of
the engine and the creation of modules. We present a proof-of-
concept implementation, underline its fulfillment of the unearthed
requirements, and demonstrate its use.

CCS CONCEPTS
• Software and its engineering → Requirements analysis; Object
oriented development; • Information systems → Multimedia
content creation.

KEYWORDS
game engine, modding, entity component system, user-generated
content

ACM Reference Format:
Daniel Götz and Sebastian von Mammen. 2023. Modulith: A Game Engine
Made for Modding. In Foundations of Digital Games 2023 (FDG 2023), April
12–14, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3582437.3582486

1 INTRODUCTION
The source code of computer games can be organized in a modular
fashion to support extensive reuse. Examples are sub-systems for
rendering, physics calculations, or input handling, sometimes re-
ferred to as sub-engines. They can be wrapped into an execution
framework referred to as game engine, which drive the games cre-
ated with them [1, 12, 27]. As game technology undergoes fast adap-
tion, even the sub-engines, as the corner stones of game engines,
need to be frequently updated and sometimes even replaced. For
instance, several current game engines would still heavily benefit
from changing their rendering sub-engines to the Vulkan applica-
tion programming interface (API) [26]. As a result, game engines
are usually designed to be inherently modular at a low level to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FDG 2023, April 12–14, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9855-8/23/04. . . $15.00
https://doi.org/10.1145/3582437.3582486

make the process of re-writing and replacing sub-engines as easy
as possible.

Similarly, modular design also plays a significant role in game
design and development—on top of the underlying game engine.
Instead of offering the same modular API of the sub-engines, a
different solution is typically used: Engines expect the developers
to utilise high-level coding patterns such as object orientation or
component aggregation, oftentimes in combination with a script-
ing language for writing the gameplay code that interacts with the
lower-level systems. This infrastructure aims at faster development
times, e.g. by using an interpreted language that does not need to
be compiled for less performance-critical parts of the game logic.
However, this also results in a decrease in performance as the code
might not run from optimised, native binaries on the target systems.
Also, the need for an interfacing layer with the engine and indi-
vidual (sub-)systems increases code complexity and maintenance
overhead. This can significantly diminish the relative benefits of
scripting languages, if the designers/developers aim at complex or
performance-intensive gameplay features. However, without the ad-
ditional scripting layer, low-level API changes would immediately
break existing code bases, whether of games or code extensions
such as dedicated libraries or plugins: Backwards compatibility
would quickly get lost.

Lastly, games themselves can also be the platform for adding
modular pieces. Examples include developer-made additions in
form of downloadable contents (DLC) or player-made additions
referred to as modifications (mods), both being especially prevalent
in singleplayer games. The creation of mods, or modding, can be
greatly facilitated by game engines [23]. At the same time, if an
engine does not inherently support modding, game studios often-
times do not consider it worth their investment. As a result, games
may miss out on establishing a modding community, which could
otherwise increase the lifetime and the sales of a game for years to
come. Apart from sales, modding communities can also serve as a
recruitment pool for developers. For example, both of the aforemen-
tioned advantages are highlighted by [11] to further the success of
the popular Elder Scrolls game series.

In this paper, we present the requirements-based engineering
concept, design and development of a proof-of-concept game en-
gine that is inherently modular at every level, even supporting
hot-loading of code during runtime1. We highlight its flexibility in
light of the gathered requirements and give three complementing
examples that allow one to trace the amount of work required for
the respective mods. We briefly outline seminal works that our
project was built on in the next section. Section 4 will present both
the results of the conducted requirements analysis and the design
we inferred. In Section 5, we will present exemplary use cases that

1Link to the Git-Repo of the developed game engine Modulith: https://github.com/
Eregerog/Modulith.

https://doi.org/10.1145/3582437.3582486
https://doi.org/10.1145/3582437.3582486
https://doi.org/10.1145/3582437.3582486
https://github.com/Eregerog/Modulith
https://github.com/Eregerog/Modulith
Sebastian von Mammen
Author’s Copy

FDG 2023, April 12–14, 2023, Lisbon, Portugal Götz and von Mammen

comprehensively demonstrate the flexibility of the engine. In par-
ticular, we briefly present the modular composition of graphics and
physics sub-engines, the modular composition of game contents,
and, finally, mods that alter the game contents. We conclude with a
short summary and an outlook on potential future work.

2 RELATEDWORKS
There are numerous advantages for developers and players to rely
on modding [23]. From a creator’s perspective flexibility through
modularity might offer smoother and faster development through-
out the whole life cycle of a game. For sake of longevity, platform-
independence, specialisation, and manymore, developers may want
to swap lower-level sub-engines, e.g. for rendering or physics [12],
whether externally provided for fast prototyping or developed in-
house for perfect customisation [10]. When creating game content
such as a map navigation technique or combat mechanics, multiple
iterations are often needed to ensure both great playability and
code quality. Concurrent development and easy-to-use integrated
tests, as made possible by a modular engine, would provide the
greatest insights and allow for fast advancements. Lastly, after a
game has been released, developers will generally need to develop
post-release patches and content additions. Players heavily invested
in a specific title may be motivated to introduce minor improve-
ments, e.g. the visual quality by changing post-processing effects or
textures. They may also seek a different gameplay experience, by
re-balancing the game’s mechanics or creating new maps. Larger
teams of such modders may also work together to create new high-
quality content, such as new quest-lines with voice-acted dialogue
or sprawling worlds. There are even rare cases of new games built
with original assets and stories using the modding tools of another
game, such as the total-conversion mod Enderal [25]. Accordingly,
modders might want to create individual modules that contain ev-
erything necessary from code to assets to have their creations stand
for themselves. They might also, however, want to collaborate with
others and contribute to a greater goal.

ARGoS is an example of an engine with modular architecture
[21]. It is an efficient and flexible multi-robot simulator which al-
lows for loading sub-engines at run-time, e.g. the physics engine or
robot controllers. Data components are used to communicate be-
tween these “plug-ins” and to aggregate various state information
in model entities, e.g. the transformation state as well as sensor
and actuator capabilities of a robot. Swapping in compiled C++
code, as shown by [6], allows for even greater performance than
only relying on well-organised data structures of such entity com-
ponent systems (ECS) [12]. To generate machine-readable binary
code, C-code files are translated by a compiler. The resulting object
files contain the memory addresses to compiled code blocks, such
as functions or variables. Swapping in code can still be achieved
by compiling code changes, or even entire “dynamic” classes [16]
into dynamically linked libraries (DLLs), which can be loaded at
runtime [24]. While static libraries will be embedded in the ex-
ecutable binary of an application, the code blocks contained by
dynamic libraries may be shared by numerous applications. Their
code blocks can be accessed from the outside since their exact loca-
tion within the file is exposed. Dynamic libraries’ contents can, thus,
be changed without the need to recompile dependent applications.

Access to the dynamic libraries’ contents is either established when
the respective application is loaded (load-time dynamic linking)
or later, on-demand (run-time dynamic linking). For the latter, the
operating system typically provides four functions: One function
for establishing access to a dynamic library, one that retrieves a
pointer to specific code blocks (e.g. functions), one that unloads a
library, and another one that captures and reports any errors.

Subtype polymorphism as provided by class inheritance in C++
allows us to override behaviors [7]. Implementing virtual functions,
obsolete ones can be replaced by their newly-compiled versions due
to pointers referencing the underlying data [21]. For performance-
critical applications, this flexibility may be turned off for release
builds to save the referencing overhead. Data-oriented program-
ming, i.e. ensuring that data is laid out in memory for efficient
handling, and building on the ECS pattern is currently considered
the ideal strategy for efficient and yet flexible model designs [12].
Folmer points out that component-based development also sup-
ports high-quality software development and easier integration of
cooperative works [10].

In the popular game engine Unity [28], low-level components can
be added though “packages” which may contain high-performance
native code, C# source files, as well as game assets. They are in-
stalled and updated through a graphical user interface (GUI) in the
editor. The Creation Engine, used for games like Skyrim [4] and
Fallout 4 [5], provides the Creation Kit-editor for modding. Edits
and additions to game code are saved as plug-ins, whereas assets
such as scripts or textures are archived separately. Several popular
game engines have been compared with respect to their modding
capabilities in [23].

While, popular game engines generally provide flexible asset
management and script loading, none of them provides modding ca-
pabilities to the extent proposed and realised in the work presented
in the remainder of this paper. In particular, our approach supports
modding of native C++ code snippets and low-level modding of
(sub-)engines. As a result, our proposed engine just consists of the
bare minimum, i.e. a module and resource system for loading other
mods, whereas the engine’s expected core systems are implemented
as interchangeable mods, themselves. Hence, upon execution, the
engine’s functionality is bootstrapped by loading one mod after the
next, rather than being tightly and unalterably integrated.

3 REQUIREMENTS ANALYSIS
Both, the developers’ and the players’ modding needs would be
addressed by a fully modular game engine, which, in addition to
modular loading of assets, allows to load sub-engines and gameplay
code during runtime. Several according sub-goals G can be defined.
First, the engine should allow its sub-engines to be interchangeable
modules, potentially built on modules themselves (G1) to meet the
need for modularity during game development and modding. Fur-
thermore, it should be able to compose games on top of numerous
sub-engine modules (G2), allowing the same low-level modules to
be re-used between games, without having to modify them on a
game-by-game basis. Lastly, the engine should offer the possibility
to add additional content to deployed games, to make them easy to
mod. This has to be considered from the perspective of the modders
wanting to realize their creative vision, who depend on tools for

Modulith: A Game Engine Made for Modding FDG 2023, April 12–14, 2023, Lisbon, Portugal

easy mod creation and the ability to modify as much of a game’s
assets as possible (G3). Additional perspectives that need to be con-
sidered are those of the players, who want an easy installation of
mods (G4) and the perspective of the game developers who want to
still be able to update their game with fixes and provide additional
content without breaking mods with every update (G5).

Considering the outlined goals, we can infer several concrete
system requirements R. Integral to all goals concerned with module
development (G1 to G3) is the engine’s capability to load additional
code at runtime to maintain fast iteration times and inversion of
control. To achieve runtime loading, there must be a specification
on how to structure and compile the code of a module that devel-
opers can follow, so that the engine can detect the module as a
loadable component (R1). Furthermore, the engine should offer an
API to load these modules on-demand or on engine startup (R2).
Since the engine itself has control over the game loop, loaded mod-
ules need to be able to register callbacks for various game loop
events (R3), allowing them to execute their behavior. Additionally,
modules should also be able to provide their own game loop events
to other modules (R4). However, to register callbacks, the compiled
module code needs to have access to the engine’s data structures
and functions API (R5). It is equally important for all goals that a
module can use the API of another module. In the most simple case,
the created games will generally depend on the sub-engines’ APIs,
such as the rendering and physics systems. But in more complex
examples a higher-level sub-engine may depend on the API of a
lower-level sub-engine. The requirements for such dependencies
are as follows: A module needs to be able to define dependencies to
other modules (R6). It should also have access to the API of all its
dependencies (R7), allowing it to build higher-level code on top of
them. The module system also needs to be designed in a way that
ensures that modules are loaded in the correct order (R8) to make
sure that dependencies are resolved when loading and maintained
when unloading the respective modules. Modules’ dependencies to
external libraries also need to be resolved (R9). Furthermore, the
exchange of data between modules should be realized by means of
an efficient, so-called glue layer (R10) in order to avoid a potential
bottleneck [10]. Providing a GUI (R11) can make the engine easier
to use and allow one to define dependencies in a visual manner.
From the GUI, the build process can be automated by creating build
files for every module (R12). Generally, mods need to be able to
override the assets of modules they depend on (R13), to override
the behavior of a dependency (R14). The latter would, for example,
allow a mod to provide its own camera controller. Lastly, the de-
ployment of mods should not require writing any code (R15), and
it should be possible to deploy updates in the form of fixes and
content additions to a game, while minimizing the risk that mods
could break as a result (R16).

4 CONCEPT & DESIGN
The architecture of the game engine as a whole has to consider the
engine runtime, the engine andmodules as visualized in figure 1. We
first elaborate about their relationships, then we present the ECS as
a generic means to organise data and communication in Modulith,
and finally we shed some light on its editor—all to address the
requirements outlined in the previous section.

<<Executable>>
Engine Runtime

<<Shared Library>>
Engine

<<Shared Library>>
Module A

<<Shared Library>>
Module B

Dynamically Linked (Load- time dynamic linking)

Dynamically Loaded (Run- time dynamic linking)

Figure 1: Module A has a dependency to B (demonstrating
R7). The runtime and both modules are dynamically linked
against the engine (R5). The engine has the capability to
dynamically load modules A and B on demand or on startup
(R2).

4.1 The Modular Foundations
Aligned with Section 2, the engine itself as well as all modules are
compiled as shared libraries to be able to use run-time dynamic
linking and dynamic loading. As a result, modules have access to
the engine’s API (R5), as well as to those of other modules (R7),
allowing one to modify their behaviours (R14). Another point of
consideration in the engine’s architecture is how the engine and
modules expose their API in order to facilitate R5 and R7. In order to
share the declarations of functions and signatures with dependants,
the headers of a module can be deployed alongside its library. Then
the depending modules can link against its library and include its
headers.

Since the engine is compiled as a library itself, a separate appli-
cation, the engine runtime, is needed for loading and starting it.
It is compiled as an executable, is dynamically linked against the
engine at load time, and hands over execution to the game loop of
the engine. The engine also offers an API for modules to register
callbacks for various game loop events (R3). On top of that, it is also
responsible for loading, initializing, shutting down and unloading
modules and exposing an API for modules to (un-)load other ones.
Which modules are loaded upon startup is determined by a text file
(R15). The engine and the engine runtime have dependencies to
several third-party libraries: crossguid allows for OS-independent
generation of unique identifiers used by the module system [15].
boolinq, a header-only library, allows for functional programming
when modifying and iterating over data structures [8]. spdlog is
incorporated for logging [18], as well as yaml-cpp for parsing and
emitting YAML files [3]). And lastly, glm library is used for the
mathematical data structures and functions useful for graphics and
game logic [13]. Should a module depend on an external library, it
can simply link against it to use its API (R9). If the external library
is a shared library, it has to be deployed alongside the module. Us-
ing an external static library, however, might result in excessive
space usage and, even worse, conflicting code, e.g. when embedding
different versions to resolve the dependencies of different modules.
A module has to implement a given specification to be recognized
and loadable by the engine (R1). All files related to a module must
be contained in a subfolder relative to the executable containing a
configuration file. It contains the module’s name, author, version,

FDG 2023, April 12–14, 2023, Lisbon, Portugal Götz and von Mammen

and, most importantly, its dependencies to other modules (R6). The
subfolder may also contain game asset files, the module’s shared
library, and other shared libraries. The dependencies of modules are
specified in a text file (to address R8) and stored as a directed acyclic
graph (DAG), nodes representing modules, edges dependencies. Its
reverse/forward traversal yields the loading/unloading order of the
modules, respectively.

Search paths of external libraries are kept in memory and auto-
matically considered for the built process. After loading a module,
its initialization function is called to perform any necessary start-
up logic. Analogously, a shutdown function with clean-up logic is
called when a module is unloaded. The implementation of these
methods is mandatory (R1). Re-compiling a library that has already
been loaded is made possible as well, by flagging it hotloadable
which makes sure that a copy of the originally compiled DLL is
created and loaded, and the original can still be worked on. To avoid
pointers to unloaded modules and to allow modules to create their
own abstractions for callbacks (R4), modules (un-)register their
data when (un-)loading, respectively. Modules can, e.g., register
callbacks in the game loop (R3) by means of the so-called Subcon-
text abstract class. Modules can derive from this class and register
an instance with the engine, which will then call various virtual
methods in the subcontext when called from the game loop. Default
callbacks happen for initialization and shut-down of the subcon-
text, at various stages of a frame, and when modules are loaded and
unloaded. Custom callbacks can be implemented as well, e.g. for
drawing GUI elements or responding to click events as part of a
GUI module.

Since modules should also be able to override the assets of depen-
dant modules (R13), each module should register its assets with the
engine, whereas the last identical one persists. Its identity would be
inferred from identical paths of the respective files2. In Modulith’s
current version, the asset management functionality is not com-
pleted, yet. Instead, assets are directly loaded by the gameplay code.
An example of dependencies and the envisioned override behaviors
is depicted in figure 2.

Game Module

Configuration File

Shared Library

Asset Folder

Player.fbx

Player.png

Monster.fbx

Modification Module

Configuration File

Asset Folder

Player.fbx

Player.png

Depends on

Override

Figure 2: In the example, the Game Module provides assets,
which are overwritten by theModificationModule (R13). The
underlying dependency is specified in the Configuration File
(R6).

2The paths would be defined relative to the respective module’s subfolder placed in
the root directory of Modulith.

Developers need to be able to release updates and content addi-
tions for their deployed game modules (R16), which affords back-
wards compatibility. Without, a dependant module might not build
any longer, not load after an update, or behave incorrectly. Remov-
ing, renaming or changing the signatures of functions is only possi-
ble for internally used ones. Implementation changes of functions
work in general, but they are not considered by dependent modules
that have previously defined versions in their sources due to the
functions being declared as ‘inline’ code. Similarly, adding data
structures is safe, whereas any other changes result in incompati-
bility. As a general guideline, we recommend exporting a minimal
set of functions and data structures [24] and avoiding ‘inline’ code
to improve maintainability. Instead of modifying existing functions,
new ones can also be added and old corresponding ones labelled as
‘deprecated’ rather than being removed. If incompatibility cannot
be avoided, developers can always fall back on semantic versioning
schemes for their modules, to properly communicate backwards
compatibility [22].

4.2 Modulith’s Entity Component System
To facilitate efficient inter-module communication (R10), we pro-
vide an ECS inspired by the property-centric approach which sep-
arates data and logic and optimizes the memory layout for better
cache utilization. It consists of four components: Entities are identi-
fiable wrapper objects which aggregate data components and which
are registered with an entity manager. The components are regis-
tered with different systems that process their data, i.e. they read or
write component data when receiving callbacks from the engine’s
game loop.

In order to keep the inner-most loops small and to improve
instruction cache utilization, we support bulk operations, i.e. that
systems read/write from/to large numbers of components at once.
To this end, we provide a query system, making use of C++ templates
to implement various querying constraints, to select sets of specific
components, as well as a custom memory allocator, an entity chunk,
which makes sure that the respective components are laid out
sequentially in memory. Each chunk allocates a fixed size buffer
of memory on the memory heap in which a certain amount of
entities alongside their components are allocated. When a chunk is
filled with entities a new chunk is created and memory of empty
chunks is released again. Gaps due to removal of entities are filled
by entities moved from the end of the chunk.

The ECS and the asset management system are outsourced into
the so-called Core Module, which also provides an application win-
dow and asset importers. It relies on the glfw library for creating
the application window [9] and on the OpenGL API of glad [14].
Dear ImGui is integrated to draw debug UI for developers [20].
Lastly, the assimp library [17] and stb_image header [2] from the
stb repository have been integrated for loading models and textures,
respectively.

4.3 Modulith’s Editor
An important feature of the engine is to provide a GUI for easy
creation of modules that integrate with IDEs (R11 and R12). To this
end, we provide an editor module that can optionally be loaded and
allows for control of the loaded modules and creation of new ones.

Modulith: A Game Engine Made for Modding FDG 2023, April 12–14, 2023, Lisbon, Portugal

The idea is that developers and modders can load the editor while
they are developing to allow for fast iteration cycles. The editor
is realized as a separate module depending on the core module’s
provision of Dear ImGui’s API to draw its debug windows. The edi-
tor’s overlay windows can be toggled on or off to not interfere with
gameplay. In its module factory window (figure 3 (a)), the user can
enter the name, author, description, version, and dependencies of a
new module, which can be viewed in the module’s properties pane
(figure 3 (b)). Subfolders and configuration files are automatically
created beneath the targeted executable. A C++ project containing
minimal default source code files (including mandatory start-up
and shutdown code) and headers, as well as CMake build files for
CMake for use with popular IDEs such as Visual Studio or CLion
are stored in a user-chosen directory. On this basis, the user can
work on modules right away. In the browser window window (figure
3 (c)), all the available modules can be viewed at one glance and be
(un-)loaded by single click. It offers the ’Scripts’ tabs to also dive
into the source code of the respective modules (figure 4).

(b)

(a) (c)

Figure 3: (a) shows the module factory window to define
new modules, (b) the properties that can be displayed for
a selected module, and (c) the browser window listing the
available modules. Together, these GUI elements implement
R11 and R12.

Whole scene graphs of entities can be inspected in the entity
view window (figure 5 (a)), whereas the properties window (figure 5
(b)) displays component data of selected components only. These
windows have been inspired by the editor of the Unity Engine [28].
Lastly, the editor’s profiling window (figure 6) displays the statistics
of the engine’s built-in profiler. These include the overall frames
per second (FPS) and milliseconds needed to execute various game
loop callbacks. As a result, this window can be used to profile and
optimize any modules that might slow down gameplay.

Figure 7 shows the default workflow of the editor. One starts the
engine with at least the “Editor” module loaded. Pressing F3, one

(a) (b)

Figure 4: (a) shows the scripts tab of the browser window
revealing the file and folder structure of the edited module’s
code files, (b) a popup where the user can enter information
for creating an ECS system (our solution for R10).

(a) (b)

Figure 5: (a) shows the entity viewwindow can be seen, which
visualizes the scene graph formed by the entities, (b) the
properties that can be displayed for a selected entity.

Figure 6: The profiling window of the editor module shows
the current FPS at the top, while the times for each game
loop callback to various gameplay systems are listed below.

switches into the editor’s UI where one can create a new module in
the browser window. After setting the new module’s name, version,

FDG 2023, April 12–14, 2023, Lisbon, Portugal Götz and von Mammen

dependencies and storage path, it is automatically loaded and acti-
vated for editing. At the same time, all the required CMake files and
default code stubs are generated for the automated build process.
The files can be accessed through the IDE, where the build process
can also be triggered. In the editor’s module browser, new script
files for systems and components can be added to the new module.
Typically one would add at least one system and several compo-
nents. According files are generated and added to the build files as
well. Arbitrary gameplay, low-level (sub-)engine code or modding
code can be introduced in the new script files, which need to be
manually registered in the module’s code file, next. Assets such as
3D models, textures, animations, sounds, would be manually added
to the mod’s folder structure and loaded in code. The new version
of the module can be compiled from the IDE and reloaded from the
editor’s browser or properties windows. One would repeatedly add
more assets, systems, components, change their concrete interplay
and implementations, recompile and reload to arrive at the desired
mod.

5 CREATING A GAME, MOD-BY-MOD
In this section, we create and change a game mod-by-mod, im-
plementing some of the mods outlined in Section 2, in order to
demonstrate the flexibility of our proposed engine. In particular, we
load the engine core, mod it with the required rendering and physics
sub-engines, load a game, mod the game’s view and mechanics, and
assets.

The foundational renderer module implements ECS components
and an ECS rendering system built on rendering abstractions pro-
vided by the core module. Entities can have point light, directional
light, or mesh components attached and the rendering system will
collect and render all of this data each frame. The physics mod-
ule wraps the external PhysX library [19] to provide ECS physics
components and a simulation system. Our basic implementation
provides support for rigid bodies, box colliders, collision events,
and character controllers.

For illustration purposes, we built a simple 3D tower defense
game module which relies on the core, renderer, and physics mod-
ules. The player views the world from a bird’s eye. Ghosts spawn
on graveyards at the edges of the map. They move towards a clock
tower at the center of map and try to destroy it. It is the player’s
task to prevent this from happening by using special abilities or
by placing obstacles. Both activities cost resources, which results
in the game’s challenge of finding an optimal strategy to fight the
ghosts. Screenshots of this game can be seen in figure 8.

In the Tower Defense module, every rendered object is an entity
with components containing data for meshes and shaders. The
ghosts also use the character controller components provided by the
physics system to handle movement behaviour and collision logic.
Additional ECS components and systemswere created formanaging
the health of the ghosts and killing them when their health drops
to zero. However, the information related to the game state, such as
available resources, were not stored in an ECS component. Instead,
these weremanaged by a custom Subcontext implementation, a class
provided by the core module implementing a singleton pattern,
as it was easier to access from other places in the code than a
component. Lastly, the GUI that shows the available resources was

Start Modulith
 and Switch to Editor (F3)

The Module is loaded and
 activated for editing

CMake and standard code files
are generated

In Editor's Browser Window

Create New Module
Set Name, Version,
Dependencies, Path

In Module Browser

Add Systems
 and Components

In IDE
Load Assets and Add

Gameplay / Low-level / Mod
Code

In Module Code File

Register Components /
Systems / Subcontexts

In Properties Window (via Browser)

Iterate

(Hot-)Reload Module

Files are generated
and added to CMake

In File System

Add Assets to
Mod's Folder Structure

Figure 7: The default workflow for creating mods in Mod-
ulith.

implemented using the functions of Dear ImGui, also provided by
the core module.

We also created a mod for the tower-defense game, called the
shooter module. It adds the ability for the player to take control of a
character and fight the ghosts using a projectile weapon from the
third-person view. The weapon has limited ammunition and needs
to be reloaded. Additionally, the player can rely on a telescopic
sight for better shooting accuracy. Screenshots of the character and
its weapon can be seen in figure 9.

Similar to the game’s module, the player character is also an
entity with render components and a character controller compo-
nent attached to it. Furthermore, ECS systems and components for
the weapon were implemented. The projectiles utilize rigid body
physics and interact with the already present health systems to
deal damage to ghosts. Lastly, the ability for the player to switch be-
tween the bird’s eye view and controlling the character was added
by enabling or disabling the respective entities.

Modulith: A Game Engine Made for Modding FDG 2023, April 12–14, 2023, Lisbon, Portugal

(a) (b) (c)

Figure 8: (a) shows a clock tower that needs to be defended from ghosts approaching from everywhere. (b) shows different
types of ghosts (white ones are more robust, yellow ones faster) spawn on graveyards. (c) shows a lamp obstacle which damages
close-by ghosts.

Figure 9: A player character seen in 3rd-person perspective,
shooting (magical crystals) at a ghost.

Finally, a mod for the tower-defense game with a dependency
on the shooter module was created. It is called the Mario module, as
it replaces the player’s character added by the shooter module with
a model looking like the famous jump and run hero Mario. It also
increases the height of the player’s jump and allows to kill ghosts
by jumping on their heads, as can be seen in figure 10.

Just like the shooter module, the Mario module’s gameplay is
also implemented using the ECS by implementing a custom system
that checks whether the player character collides with the heads of

Figure 10: A Mario-like avatar overrode the previous player
character of the shooter module. It can jump further and kill
ghosts by hopping on their heads.

any ghosts. This module demonstrates that mods can even have a
dependency on and modify the contents of another mod.

FDG 2023, April 12–14, 2023, Lisbon, Portugal Götz and von Mammen

6 SUMMARY & FUTUREWORK
Based on developers’, modders’ and players’ goals for modding,
we formulated several requirements and developed, implemented
and demonstrated the use of an according modular game engine,
Modulith. It is open-source and freely available.

Modulith implements a powerful module system for loading
assets and code at runtime, relying on dynamic loading of shared
libraries. Modules may have dependencies to one another or to
external libraries. To ensure backwards compatibility, we recom-
mend to use non-inline code changes, additions to data and func-
tionality, and deprecation warnings to fade out obsolete code over
longer periods of time. Modules of arbitrary functional levels can be
loaded—from low-level sub-engines over systems for game mechan-
ics and game design specifications to small mods only introducing
novel assets or changing minor gameplay aspects. Each of these
modules can then be built independently, without having to re-
compile dependant modules. In the previous section, we explained
and demonstrated the use of Modulith by providing two low-level
modules for rendering and physics, a game module and two game-
play and asset modifications. These modules were built on top of
the engine runtime that loads the engine module with its inherent
extension infrastructure (e.g. dependency resolution of modules
and provision of subcontexts) as well as the core module (e.g. pro-
vision of an ECS architecture and an asset management system).
For fast modding cycles, Modulith’s graphical editor hides a large
amount of the underlying complexities of code generation, module
integration and execution of the necessary build processes.

For potential future work, there are several important direc-
tions to work towards. First, there are numerous extensions and
improvements of the current implementation of Modulith, as basic
as the integration of a sound sub-engine module, advanced sup-
port for input modalities, or an improved support for data-oriented
ECS organisation of sequential memory layouts. Given its inherent
modularity, we could envision sharing different mod cascades and
branches that might emerge from communities tailoring to specific
needs such as high-quality rendering adventure games or very fast
shooter games. Second, user experience and usability studies on
Modulith could help to gain insights in how to further improve
this system and what to specifically consider in next research steps
in general. Third, albeit opposing the very principle of Modulith,
we also see the necessity to proactively limit moddability for some
aspects of games to ensure, for instance, that players enjoy the
gameplay experiences as intended by the designers or that compet-
itive multi-player games are fair. Fourth, we strongly believe that
modding in itself deserves more research efforts both from a social
and design perspective but also from a technology perspective. To
this end, a more rigorous analysis and classification of different
types of mods alongside their potential uses could be conducted. We
hope that our research can contribute to these valuable potential
future endeavours.

REFERENCES
[1] Michael Abrash. 1997. Michael Abrashs graphics programming black book. Coriolis

Group Books, United States.
[2] Sean Barrett. Last Accessed Online: November 2022. stb: single-file public domain

(or MIT licensed) libraries for C/C++. https://github.com/nothings/stb
[3] Jesse Beder. Last Accessed Online: November 2022. yaml-cpp: A YAML parser

and emitter in C++. https://github.com/jbeder/yaml-cpp
[4] Bethesda Softworks. 2011. The Elder Scrolls V: Skyrim. https://elderscrolls.

bethesda.net/en/skyrim
[5] Bethesda Softworks. 2015. Fallout 4. https://fallout.bethesda.net/en/games/

fallout-4
[6] Doug Binks, Matthew Jack, and Will Wilson. 2019. Runtime Compiled C++ for

Rapid AI Development. In Game AI Pro 360. CRC Press, Boca Raton, 155–171.
https://doi.org/10.1201/9780429055058-12

[7] Grady Booch, Robert A Maksimchuk, Michael W Engle, Bobbi J Young, Jim
Connallen, and Kelli A Houston. 2008. Object-oriented analysis and design with
applications. ACM SIGSOFT software engineering notes 33, 5 (2008), 29–29.

[8] Anton Bukov. Last Accessed Online: November 2022. boolinq: Super tiny C++11
single-file header-only LINQ template library. https://github.com/k06a/boolinq

[9] Camilla Löwy et al. Last Accessed Online: November 2022. GLFW: Open Source,
multi-platform library for OpenGL, OpenGL ES and Vulkan development on the
desktop. https://www.glfw.org/

[10] Eelke Folmer. 2007. Component Based Game Development – A Solution to Esca-
lating Costs and Expanding Deadlines? Component-Based Software Engineering
Lecture Notes in Computer Science 4608 (2007), 66–73. https://doi.org/10.1007/978-
3-540-73551-9_5

[11] Rob Gallagher, Carolyn Jong, and Kalervo A Sinervo. 2017. Who wrote the
elder scrolls?: modders, developers, and the mythology of Bethesda softworks.
Loading... The Journal of the Canadian Game Studies Association 10, 16 (2017),
32–52.

[12] Jason Gregory. 2019. Game engine architecture. CRC Press, Taylor & Francis
Group, Boca Raton.

[13] Christophe Groovounet. Last Accessed Online: November 2022. OpenGL Mathe-
matics. https://glm.g-truc.net/0.9.9/index.html

[14] David Herberth. Last Accessed Online: November 2022. Multi-Language
GL/GLES/EGL/GLX/WGL Loader-Generator. https://glad.dav1d.de/

[15] Graeme Hill. Last Accessed Online: November 2022. CrossGuid: A minimal, cross
platform, C++ GUID library. https://github.com/graeme-hill/crossguid

[16] Gisli Hjalmtysson and Robert Gray. 1998. Dynamic C++ Classes-A Lightweight
Mechanism to Update Code in a Running Program. In USENIX Annual Technical
Conference, Vol. 98. USENIX Association, New Orleans, 65—-76.

[17] Kim Kulling. Last Accessed Online: November 2022. The Open-Asset-Importer-
Lib. https://assimp.org/

[18] Gabi Melman. Last Accessed Online: November 2022. spdlog: Very fast, header-
only/compiled, C++ logging library. https://github.com/gabime/spdlog

[19] NVIDIA Corporation. Last Accessed Online: November 2022. NVIDIA PhysX:
Open source scalable multi-platform physics simulation solution. https://
developer.nvidia.com/physx-sdk

[20] Omar Ocornut. Last Accessed Online: November 2022. Dear ImGui: A bloat-free
graphical user interface library for C++. https://github.com/ocornut/imgui

[21] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy,
Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro, Frederick
Ducatelle, and et al. 2012. ARGoS: a modular, parallel, multi-engine simulator
for multi-robot systems. Swarm Intelligence 6, 4 (11 2012), 271–295. https:
//doi.org/10.1007/s11721-012-0072-5

[22] Tom Preston-Werner. Last Accessed Online: 2023. Semantic Versioning 2.0.0.
https://semver.org/

[23] Lukas Schreiner and Sebastian von Mammen. 2021. Modding Support of Game
Engines. In The 16th International Conference on the Foundations of Digital Games
(FDG) 2021 (Montreal, QC, Canada) (FDG’21). Association for Computing Machin-
ery, New York, NY, USA, Article 36, 9 pages. https://doi.org/10.1145/3472538.
3472574

[24] Milan Stevanovic. 2014. Advanced C and C compiling. Apress, Berkeley, CA.
[25] SureAI. 2016. Enderal. https://sureai.net/games/enderal/?lang=en
[26] The Khronos Group. Last Accessed Online: November 2022. Vulkan. The Khronos

Group. https://www.khronos.org/vulkan/
[27] Alan Thorn. 2011. Game engine design and implementation. Jones & Bartlett

Learning, Sudbury, MA.
[28] Unity Technologies. Last Accessed Online: November 2022. Unity. Unity Tech-

nologies. https://unity.com/

https://github.com/nothings/stb
https://github.com/jbeder/yaml-cpp
https://elderscrolls.bethesda.net/en/skyrim
https://elderscrolls.bethesda.net/en/skyrim
https://fallout.bethesda.net/en/games/fallout-4
https://fallout.bethesda.net/en/games/fallout-4
https://doi.org/10.1201/9780429055058-12
https://github.com/k06a/boolinq
https://www.glfw.org/
https://doi.org/10.1007/978-3-540-73551-9_5
https://doi.org/10.1007/978-3-540-73551-9_5
https://glm.g-truc.net/0.9.9/index.html
https://glad.dav1d.de/
https://github.com/graeme-hill/crossguid
https://assimp.org/
https://github.com/gabime/spdlog
https://developer.nvidia.com/physx-sdk
https://developer.nvidia.com/physx-sdk
https://github.com/ocornut/imgui
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://semver.org/
https://doi.org/10.1145/3472538.3472574
https://doi.org/10.1145/3472538.3472574
https://sureai.net/games/enderal/?lang=en
https://www.khronos.org/vulkan/
https://unity.com/

	Abstract
	1 Introduction
	2 Related Works
	3 Requirements Analysis
	4 Concept & Design
	4.1 The Modular Foundations
	4.2 Modulith's Entity Component System
	4.3 Modulith's Editor

	5 Creating a Game, Mod-by-Mod
	6 Summary & Future Work
	References

