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Figure 1: Virtual character addresses observer. Screenshots show, left to right, static face, synthesized expression, and tracked 
expression. In our study, animation was either in sync with audio or delayed by the animation system’s inherent latency. 

ABSTRACT 
We report a mixed-design study on the efect of facial animation 
method (static, synthesized, or tracked expressions) and its syn-
chronization to speaker audio (in sync or delayed by the method’s 
inherent latency) on an avatar’s perceived naturalness and plau-
sibility. We created a virtual human for an actor and recorded 
his spontaneous half-minute responses to conversation prompts. 
As a simulated immersive interaction, 44 participants unfamiliar 
with the actor observed and rated performances rendered with 
the avatar, each with the diferent facial animation methods. Half 
of them observed performances in sync and the others with the 
animation method’s latency. Results show audio synchronization 
did not infuence ratings and static faces were rated less natural 
and less plausible than animated faces. Notably, synthesized expres-
sions were rated as more natural and more plausible than tracked 
expressions. Moreover, ratings of verbal behavior naturalness dif-
fered in the same way. We discuss implications of these results for 
avatar-mediated communication. 
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1 INTRODUCTION 
We use language with bodily motion to express our thoughts, ideas, 
and internal states. This gesture-speech unity plays a crucial role 
in conveying information, both with and without intention [40]. 
Facial expressions play a prominent role among other nonverbal be-
haviors, such as posture, proxemics, and paralinguistics. They also 
contribute to verbal behavior and are visible in most situations. Hu-
man face movements have been investigated in depth, often using 
the Facial Action Coding System (FACS) to deconstruct expressions 
into their underlying components based on anatomical movements 
[6]. For example, lip movement fosters speech comprehension [20], 
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and expressions on the level of micro-facial movements indicate 
deception [19]. Human eye morphology even facilitates perceiving 
gaze direction[14]. Gaze direction is used as input to detect infor-
mation about our environment and as output to signal attention 
[9] and regulate interaction [13]. 

The importance of facial expressions carries over to how (virtual) 
humans are perceived in virtual, augmented, and mixed reality 
scenarios (VR, AR, MR - XR for short). Here, virtual humans are 
usually classifed depending on agency as either avatars (controlled 
by human input) or embodied agents (controlled algorithmically)[3]. 
In immersive interpersonal communication, like in physical reality, 
faces are at the center of attention and crucial to conversation 
results [24, 30]. Behavioral and visual fdelity of virtual humans has 
shown to be important to XR experiences’ realism, plausibility, and 
presence and incorporated into several models thereof [15, 34, 35]. 

Recent progress in 3D reconstruction methods allows afordable 
creation of virtual humans [4], even allowing to attune their facial 
expressiveness to personal idiosyncrasies [21]. While this high vi-
sual fdelity can be achieved with consumer hardware, behavioral 
fdelity in XR setups is most commonly restricted to microphone 
input and tracking three devices in 3D space (typically two hand 
controllers and a headset). Newer headsets provide facial expres-
sion tracking, and existing ones can be modifed with external 
hardware to do so. As an alternative, facial expressions can also 
be synthesized from audio and head movements. To decide which 
approach to follow, it is important to compare the efect of tracking 
expressions to synthesizing them on naturalness and plausibility. 
More natural and more plausible nonverbal behavior could improve 
the experience of interpersonal communication in XR. It is also 
relevant to compare facial animation methods with and without 
their inherent latency. 

To investigate this, we compare the perception of facial expres-
sions captured with ARKit, Apple’s face tracking solution, to ex-
pressions created with the Oculus Avatar SDK, Meta’s widely used 
system for facial expression synthesis based on speaker audio, head 
movement, and tagged gaze targets, to a baseline of a static face. We 
let participants observe an avatar’s short performances in VR and 
rate them in terms of naturalness and plausibility. Performances 
are either shown with their original latency or in-sync with audio. 

2 RELATED WORK 
Several approaches have been used to make virtual faces come to life 
that we roughly divide into either expression tracking or expression 
synthesis. Exemplary works for synthesized expressions include an-
imated eyes being preferred over static eyes when viewing oneself 
in a virtual mirror [5] and veridical gaze preferred over synthe-
sized gaze in a dyadic avatar-mediated interaction [31]. Gonzalez-
Franco and colleagues showed increased self-identifcation with self-
avatars’ pre-baked animations [10]. Murcia-López and colleagues 
let participants select animation parameters for stylistic characters 
that are included in the Oculus Avatar SDK [22]. It activates blend-
shapes with FACS-like semantics as follows: lip-sync is created 
by retrieving phonemes in a temporal convolutional network, eye 
behavior is based on dynamic saliency-based gaze targeting with 
blinks about every six seconds or more often during speech and 
gaze, and ambient micro-expressions are linked to lip sync and eye 

gaze events. It has also widespread use in commercial applications, 
e.g. in PokerStars VR, Epic Roller Coasters, or Tribe XR. Other, more 
data-driven approaches created realistic facial animation from au-
dio, but are not readily integrated to game engines common in XR 
research [7, 28, 38]. 

Tracking facial expressions in XR setups is challenging since 
head-mounted displays obstruct large face areas. Before headsets 
with built-in facial expression tracking became available, previous 
works have deployed custom-built hardware or composed existing 
sensors, commonly fusing lower face tracking sensors with eye-
tracking headsets [17, 25, 29, 39]. 

Apart from diferent expressions outputs, facial animation meth-
ods can difer in processing duration, introducing audiovisual mis-
alignment. Since light travels faster than sound we are not used 
to quicker audio and are sensitive to even small synchronization 
errors: perceptual thresholds have been reported from around 80ms 
[37] to around 180ms [41]. Hence, we can synchronize animations 
to recorded audio to isolate the efect of expression output irrespec-
tive of processing duration. 

We decided to compare facial expressions synthesized with the 
Oculus Avatar SDK to facial expressions tracked with ARKit. Both 
use FACS-like action unit semantics and provide plugins to forward 
expression data to game engines. 

3 METHOD 
Our study followed a 2x3 design with between-groups factor latency 
adjustment (animations in sync with audio vs. delayed by latency 
inherent to the animation system) and within-groups factor facial 
animation method (face tracking vs. expression synthesis vs. static 
face). Written approval for the study was obtained from the ethics 
committee of the Institute for Human-Computer Media (MCM) of 
the Julius-Maximilians-Universität Würzburg1. 

We hypothesize two efects: 
1. Main efect of facial animation method: static faces are per-

ceived as less natural and less plausible than animated (synthesized 
and tracked) faces. 

2. Interaction efect of latency adjustment x facial animation method: 
In original latency, the quicker method is perceived as more natural 
and plausible than the slower method. When latency is adjusted for, 
both synthesized and tracked facial expressions are rated equally 
natural and plausible. 

3.1 Character Creation 
We based our virtual human on a full-body scan using the approach 
from Achenbach and colleagues [1]: In a custom-built rig of 94 
DSLR cameras, multi-view images of our scanning subject were 
captured to generate a dense point cloud. A template model’s pose 
and shape parameters were then optimized to ft this point cloud. 

In a second step, we personalized blendshapes with the auto-
mated pipeline of Menzel and colleagues [21]. 

Finally, minor scanning artifacts in texture and mesh were cor-
rected manually, resulting in a skinned mesh resembling our actor 
with high visual detail and ready for real-time animation. 

1https://www.mcm.uni-wuerzburg.de/forschung/ethikkommission/ 
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3.2 Performance Capture 

Figure 2: Performance capture setup. Actor facing a man-
nequin as target while equipped with head tracker, micro-
phone, and hand controllers, with face tracker on table. 

To initiate unscripted natural behavior, we examined a set of 
questions intended to be used in a classroom for English lessons
2, similar to Lee and colleagues’ conversation prompts [16]. We 
then picked questions we thought to inspire spontaneous, casual 
answers about non-intimate topics that neither require too much 
background knowledge nor reveal personal information, such as 
"What makes someone a good driver?" or "Are holidays really re-
laxing? What stressful things are involved in taking a holiday?". 

We instructed a trained actor to freely respond to our selected 
questions as if asked by a recently met acquaintance. Their imagined 
conversation partner was embodied as a mannequin sat opposite of 
him at a table (cf. Figure 2). We set a target of about 30 seconds per 
response, because longer observation times of expressive behavior 
have not shown to predict interpersonal outcomes better [2]. 

To record the performer’s behavior we equipped him with Valve 
Index Knuckles tracking hand motions and a HTC Vive tracker to 
record head movements. We recorded a video and facial expressions 
with an iPhone 12 Pro that ran a custom-built app. It used ofcial 
Apple SDKs to record the phone’s screen with camera feed and 
microphone input and the detected facial expressions as 52 FACS-
like coefcients together with 3D poses for head, both eyes, and 
the point currently looked at. 

For our virtual reconstruction of the scene, we let the actor raise 
his arms to a T-pose and probed several landmark positions in the 
room with an additional HTC Vive Controller: the corners of the 
table, iPhone camera, the mannequin’s chin, forehead, and eyes, 
and the actor’s tip of the nose, nasion, corners of the mouth, and 
wrists. 

3.3 Animation 
3.3.1 Coordinate System Alignment. To fnd the ofset between 
head tracker origin and the skinned mesh’s skull joint, we regis-
tered virtual face mesh landmarks with corresponding face land-
marks probed in the performance capture setup. This was further 
refned by manually matching the tracker placement on the virtual 
2http://tefpedia.com/Tefpedia:Conversation_questions 

character in a juxtaposition of face sensor screen capture and the 
virtual character rendered in a matching perspective. 

To match coordinate frames from ARKit and SteamVR, we frstly 
registered matching vertices from ARKit’s face mask with vertices 
from the full-body mesh with corresponding blendshape weights 
applied. Secondly, we applied the previous ofset from head tracker 
to virtual skull joint. Finally, we further adjusted the ofset so that 
the gaze rays hit the iPhone camera at the time of recording when 
the actor truly looked at it. 

Similarly, we ofset head poses forwarded to the Oculus Avatar 
SDK to have the SDK template avatar match the actor avatar’s eye 
level and direction. 

3.3.2 Body pose. To infer the actor’s body pose, we used the VRIK 
solver from RootMotion’s Final IK package3: hand and head end 
efector targets followed respective tracker trajectories with a fxed 
pelvis target at the seat and elbow bend goals at the armrests. 
We retrieved ofsets between trackers and end efectors from the 
recorded T-pose. 

Figure 3: Facial Animation Pipeline. Performance (left) is 
turned into corresponding animation parameters (right) 
from either audio and tagged gaze targets (Meta Oculus 
Avatar SDK, top center), or RGBD tracking (Apple ARKit, 
bottom center). Resulting avatar renders shown in Figure 1. 

3.3.3 Facial Expression. Data for both tracked and synthesized 
facial animation was brought into a shared animation parameter 
space to drive the virtual actor mesh (cf. Figure 3). We transferred 
ARKit expressions directly since the mesh had exactly matching 
blendshapes. Mapping expressions from the Oculus Avatar SDK 
directly to their semantically matching ARKit blendshapes resulted 
in diferent expressiveness. Therefore, for each Oculus Avatar SDK 
expression, we computed its closest resemblance built from a com-
bination of ARKit blendshapes and baked it as new target shape. 

To transfer gaze direction, we rotated the actor avatar’s eyes so 
that their visual axes point towards the look-at point. For tracked 
expressions we used the reported look-at point, for synthesized 
expressions we derived the look-at point as the middle of where 
the Oculus Avatar SDK’s avatar gaze rays are closest. 

3https://assetstore.unity.com/packages/tools/animation/fnal-ik-14290 
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3.3.4 Latency Adjustment. For synthesized expressions we pre-
calculated phoneme weights for the audio track to synchronize 
them. The Oculus Avatar SDK used them with an ofset of 40ms. 
To get them in their original latency, we live-fed the actor audio 
into the SDK. 

To synchronize tracked expressions with the audio track, we 
ofset the animation track by our measured motion-to-photon la-
tency. We recorded a person repeatedly opening their mouth with 
a bilabial plosive and manually counted the number of frames until 
their mirrored ARKit mesh opened its mouth. This yielded an ofset 
of 152.5ms. For original latency, we used the tracked expressions 
without delay. 

The body pose was synchronized to audio by slowly swinging 
a controller in the face tracker’s camera frustum and delaying the 
audio track so that movement peaks co-occur. Staufert and col-
leagues report a motion-to-photon latency for a HTC Vive tracker 
[36] of 56.14ms, which we used as delay for body pose tracking 
data. 

3.4 Immersive Observation 
Observation in VR occurred seated from the perspective of the 
mannequin facing the actor during performance capture. Since we 
focus on efects of facial animation, we occluded the character’s 
lower body and forearms by placing a table between observer and 
actor in the otherwise empty virtual environment. We used a Reverb 
G2 Omnicept as headset (resolution of 2160x2160 pixels per eye at 
90Hz refresh rate). 

3.5 Procedure 
Our study procedure, depicted in Figure 4, took about 60 minutes. 
We welcomed participants and let them read the study briefng. Af-
ter we answered questions about the procedure, participants gave 
informed written consent to their participation and use of their 
data. Then they flled out digital questionnaires about previous 
XR and gaming experience, demographics, and symptoms related 
to simulator-sickness using the Simulator Sickness Questionnaire 
(SSQ) [12] on a dedicated workstation. The experimenter performed 
quasi-random group assignment using covariate-adaptive random-
ization [11]. Accordingly, participants were evenly assigned to the 
latency adjustment conditions (all animations either in sync with 
audio or delayed by the animation system’s latency) across biologi-
cal sex and previous XR and gaming experience. Each participant 
then observed and rated the virtual character in four diferent per-
formance blocks. 

In each block, the performance was shown in its three facial 
animation variations, frst rated with a static face, then with syn-
thesized and tracked facial expression in randomized order. Thus, 
every participant rated twelve observations. To conclude, partici-
pants reported SSQ scores, familiarity with the shown actor before 
the experiment, and gave optional study feedback in an open text 
feld. 

Before the frst trial, the experimenter instructed them on how 
to don the VR headset including adjusting lens spacing, strap ft, 
and a sound test. When ready, participants were instructed to sit 
relaxed and the virtual camera was calibrated. Once calibrated, the 
previously set up black screen overlay was removed to reveal the 

virtual scene. In it, a text panel informed participants about the 
virtual character about to be shown and instructed them to observe 
him attentively. Then, the panel showed the prompt he would 
respond to. Performances ended by hiding the virtual character 
and displaying a prompt to remove the headset to continue with 
the questionnaire on the computer. Here, we investigated behavior 
naturalness by asking for agreement to three statements on a Likert-
scale (7 points from "completely disagree" to "completely agree"): 
1. The verbal behavior of the virtual character seemed natural, 2. 
The nonverbal behavior of the virtual character seemed natural, 
3. The verbal and nonverbal behavior of the virtual character ft 
together. To assess appearance and behavior plausibility, we asked 
for agreements to six statements from the same-named dimension 
of the Virtual Human Plausibility Questionnaire (VHPQ [18]) on 
a Likert-scale (7 points from "completely disagree" to "completely 
agree"): 1. The behavior of the virtual character seemed plausible, 
2. The appearance of the virtual character seemed plausible, 3. 
The virtual character’s behavior matched its appearance, 4. The 
behavior and appearance of the virtual character were coherent, 
5. The virtual character behaved as I would expect it to behave, 
6. I could predict how the virtual character would behave by its 
appearance. 

3.6 Participants 
We recruited 48 participants via our university’s participation man-
agement system. They were free to pick a time slot provided on 
weekdays during normal working hours and compensated with €10. 
We excluded four from analysis - two due to technical issues with 
the setup, one because of language comprehension issues, and one 
because they reported to be familiar with the actor. 

The 44 participants we included for analysis (29 of them female) 
had a mean age of 26.1 years (SD=6.1) and mostly had a higher 
education entrance qualifcation (23) or completed studies (19). 

4 RESULTS 
We used R v4.2.2[27] for analysis, aggregated Likert-scale ratings 
as interval-level data [23], and evaluated efects with linear mixed 
modeling using nlme[26]. We used random intercepts for all vari-
ables and modeled factors and interactions as fxed efects, as pro-
posed by Field et al. [8]. All efects are reported as signifcant at 
p<.05 using log-likelihood ratio. Descriptive values are shown in 
Table 1. To test our hypotheses, we used two planned orthogonal 
contrasts throughout our analysis: frstly comparing observation of 
static faces to observation of either animated faces (tracked or syn-
thesized), secondly comparing synthesized to tracked expressions. 
Since post-exposure SSQ scores were lower than pre-exposure in 
both conditions, we did not analyze simulator sickness further. 

4.1 Behavior Naturalness 
Rating of nonverbal behavior naturalness was signifcantly afected 
by facial animation method (�2 (2)=93.24, p<.001), but not by la-
tency adjustment (�2 (1)=.25, p=.62). There was no signifcant in-
teraction between latency adjustment and facial animation method 
(�2 (2)=.50, p=.78). Contrasting ratings of static faces with ratings 

https://2)=93.24
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Figure 4: Experiment Procedure 

of synthesized and tracked expressions revealed a signifcant dif-
ference (b=.68, t(86)=11.8, p=<.001). Likewise, contrasting synthe-
sized with tracked animations proved signifcant (b=-.5, t(86)=-5, 
p=<.001). 

Verbal behavior naturalness rating was also signifcantly afected 
by facial animation method (�2 (2)=68.36, p<.001), but not by the 
method’s latency (�2 (1)=.37, p=.54). There was no signifcant in-
teraction between latency adjustment and facial animation method 
(�2 (2)=2.62, p=.27). Contrasting the static face with the two dy-
namic methods (synthesized and tracked) revealed a signifcant 
diference (b=.65, t(86)=9.74, p=.006). Likewise, the contrast com-
paring synthesized to tracked animations proved signifcant (b=-.5, 
t(86)=-5, p=<.001). 

Match between verbal and nonverbal behavior was signifcantly 
afected by facial animation method (�2 (2)=167.53, p<.001), but 
not by latency adjustment (�2 (1)=1.19, p=.28). Ratings show no 
signifcant interaction between latency adjustment and facial ani-
mation method (�2 (2)=2.24, p=.33). Contrasting animated with non-
animated faces revealed signifcant diferences (b=1.01, t(86)=18.9, 
p<.001), as did contrasting both animated face versions (b=-.56), 
t(86)=-6.08, p<.001). 

4.2 Appearance and Behavior Plausibility 
Rating of appearance and behavior plausibility was signifcantly 
afected by the facial animation method (�2 (2)=104.69, p<.001), 
but not by the method’s latency (�2 (1)=.53, p=.47). There was 
no signifcant interaction between latency adjustment and facial 
animation method (�2 (2)=.34, p=.84). 

Contrasting ratings of static faces with the two dynamic meth-
ods (synthesized and tracked) revealed a signifcant diference 
(b=.55, t(86)=13.0, p=<.001). Likewise, the contrast comparing syn-
thesized to tracked animations proved signifcant (b=-.36, t(86)=-
5.45, p=<.001). 

4.3 Qualitative Feedback 
Several participants mentioned they felt directly addressed by the 
avatar. A few participants speculated about what changed between 
observations within a performance block. Some guessed that faces 
continuously moved more realistically from trial to trial within 
a block, although we randomized the condition order. Multiple 
participants mentioned they had difculty in diferentiating the 
two animated conditions. 

5 DISCUSSION 
Static faces were, on average, rated as less natural and less plausible 
than animated faces. Notably, this efect was also shown for verbal 
naturalness. While we had formulated our hypothesis H1 towards 
the overall diference in naturalness, we highlight this diference 
because verbal behavior was never manipulated and always equal 
per performance block. 

Against our hypothesis H2, the performance ratings did not re-
veal an interaction efect between facial animation method and its 
synchronization to speaker audio. This might be due the relatively 
small audiovisual skew we used between groups. Also, rating dif-
ferences in verbal behavior naturalness hint at participants not nec-
essarily focusing on the two channels (verbal/ nonverbal) distinctly, 
while not paying close attention to their temporal alignment. 

While our planned contrasts did show signifcant diferences, we 
expected the comparison between the two animated performances 
two show inverted diferences: All plausibility and naturalness rat-
ings were, on average, higher for synthesized expressions than for 
tracked ones. In other words, participants found non-personalized, 
"generic" expressions ft the actor’s avatar better than ones from 
the actor himself. This might stem from artifacts in the tracked 
facial expressions or the synthesized expressions including more 
prosocial cues. 

As a frst suspicion, we retroactively re-watched the tracked 
performances with a focus on tracking artifacts. While common 
in live tracking data, e.g. in the form of jittery lips, sudden jumps 
after tracking loss, and eyes and/or mouth not closing completely, 
these issues usually do not occur in facial expression synthesis. 
Synthesized expressions are smoother by design. However, we did 
not fnd such artifacts in the captured facial performance. 

In a further exploratory analysis we compared the two animated 
face variations. In social settings, gaze behavior includes directing 
gaze at another one’s face (face-gaze) or eyes (eye-gaze), simulta-
neously looking at each other’s face (mutual gaze) or eyes (eye 
contact), and intentionally not looking at another person (gaze 
avoidance). Since we did not record observer eye gaze, we looked 
at how often the virtual human’s eyes were directed toward the ob-
server. We calculated how long in total the virtual human’s gaze rays 
hit the mannequin’s head. More specifcally, we checked whether 
a sphere moving from eye origin along the gaze direction hit a 
capsule collider placed to ft the mannequin head. The tracked ex-
pressions included more gaze towards the mannequin, but with 
shorter dwell times. 

https://2)=104.69
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Latency Face Appearance + Behavior Plausibility Behavior Naturalness 

Verbal Nonverbal Match 

Original 

Adjusted 

Static 3.56 (1.26) 4.39 (2.36) 3.26 (1.91) 
Synthesized 5.67 (0.98) 6.36 (0.85) 5.85 (1.20) 
Tracked 4.83 (1.28) 5.68 (1.50) 4.72 (1.55) 
Static 3.80 (1.38) 3.76 (2.38) 3.36 (0.50) 

Synthesized 5.75 (1.00) 6.35 (0.83) 5.88 (1.21) 
Tracked 5.02 (1.20) 5.73 (1.28) 5.01 (1.47) 

2.28 (1.45) 
6.14 (0.90) 
4.89 (1.60) 
2.77 (1.51) 
6.08 (1.20) 
5.09 (1.51) 

Table 1: Descriptive statistics. Means of independent variables with standard deviations in brackets. 

We suggest this rating diference in favor of synthesized expres-
sions should be utilized for conversational agents or playing back 
monologues. Therefore, more natural and more plausible anima-
tions might be achieved without the need for facial expression 
tracking. For truly interactive settings with dynamic turn-taking 
our fndings might not generalize. Since facial expression tracking 
also contains personal facial expression dynamics and veridical 
gaze points, showing synthesized expressions instead might con-
tribute to misunderstandings. Still, achieving natural and plausible 
facial animations with tracking input from consumer devices is a 
valuable insight for XR researchers and developers. 

6 LIMITATIONS AND FUTURE WORK 
We presented one character across throughout all observations. 
This might have rendered the experimental setting less realistic, 
since people usually do not repeat themselves word by word. We 
opted for this approach because it allowed direct comparisons be-
tween the conditions, but suggest to also compare characters that 
difer in factors like gender, ethnicity, and voice. Similarly, we sug-
gest exploring efects of facial animation depending on character 
familiarity. 

Also, our approach could be extended to truly interactive setups. 
However, latency might show difcult as independent variable be-
cause audio and nonverbal behavior can then only be synchronized 
by delaying audio signals by the facial animation’s processing dura-
tion. This amplifes the diference between conversation partners’ 
"non-mutual realities" [32] and results in misunderstandings, e.g. 
in the form of overlapping talk [33]. 

Furthermore, future work should also address efects of nonver-
bal behavior on the perception of verbal behavior in more detail. 

7 CONCLUSION 
We explored how two facial animation methods (tracking or syn-
thesis of facial expression) compared to each other and a baseline of 
a static face when used on a personalized, photorealistic virtual hu-
man. In a mixed-design observation study, 44 participants observed 
four performances, each in its three facial animation variations, 
and subsequently rated their appearance and behavior plausibility, 
and behavior naturalness. The between-groups factor of latency 
adjustment (animation in-sync with audio or delayed by recording 
latency) showed not to infuence ratings signifcantly. However, 
the within-factor facial animation method showed to signifcantly 
afect ratings: Overall, performances were rated more plausible 

and more natural when shown with animated faces (synthesized/ 
tracked expressions), even more so for synthesized ones than for 
tracked ones. This implies that natural, plausible facial animations 
for avatars do not require facial expression tracking when showing 
another avatar’s monologue. We suggest further work to address 
these implications for character variations and truly interactive 
settings. 
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