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Figure 1: From left to right: representative samples from the six diferent categories found in AI drawings: human-shaped, 
robot-shaped, hardware-shaped, simple shapes, computer-science related, animal-shaped. 

ABSTRACT 
Perceptions about AI infuence the attribution of characteristics and 
the interaction with AI. To fnd out how workers imagine an AI they 
would like to work with and what characteristics they attribute 
to it, we asked 174 working individuals to draw an AI they would 
like to work with, to report fve adjectives they associate with their 
drawing and to evaluate the drawn and three other, typical AI rep-
resentations (e.g. robot, smartphone) either presented as male or 
female. Participants mainly drew humanoid or robotic AIs. The ad-
jectives that describe AI mainly referred to the inner characteristics, 
capabilities, shape, or relationship types. Regarding the evaluation, 
we identifed four dimensions (warmth, competence, animacy, size) 
that can be reproduced for male and female AIs and diferent AI 
representations. This work addresses diverse conceptions of AI in 
the workplace and shows that human-centered AI development is 
necessary to address the huge design space. 
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1 INTRODUCTION 
Imagine working together with artifcial intelligence (AI). What 
do you see before your inner eye? Do you have a nice little helper 
in mind that makes your job easier or a big machine that scares 
you? Initial general surveys show that perceptions provide at least a 
skewed picture of the principles, opportunities, and risks of AI, often 
based on science fction narratives [21, 50, 60]. These narratives 
sketch AI as an uncaring threat to humanity that has lost control of 
its own creation [6]. In the context of work, the more realistic and 
often published threat of AI eliminating jobs [15] has additionally 
led to a rather negative perception of this technology 
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[39, 60]. With such a negative perception, it will be very chal-
lenging to use AI systems in the work context in an enjoyable, 
motivating, and efcient way. However, little is known about how 
people envision an AI system they would like to work with. More-
over, there is little empirical research on which perceptual dimen-
sions may be essential for designing AI-System in the context of 
work. Therefore, we explore how 174 people, working in diferent 
domains, imagine an AI that they want to work with and what as-
sociations and perceptions they associate with it. We further aim to 
identify latent dimensions that can be used for the future evaluation 
and design of AI representations. Thus, our work contributes initial 
insights into how we can design AI systems that are enjoyable, 
motivating, and efcient to work with. 

2 RELATED WORK 
The appearance of an AI at the interface can range from simple 
efects like the execution of a requested operation to simple text dis-
plays to humanoid and human-looking robots or virtual agents [50]. 
However, little research has been conducted on what AI can and 
should look like for specifc purposes. Phillips and colleagues [33] 
conducted three studies in which participants were asked to draw 
a household robot, a military robot, a generic robot, a humanoid 
robot, or an AI. Participants drew robots diferently depending 
on the context with more human-like depictions in the household 
context, while military robots and AI showed fewer facial features. 
The drawings of AI did yield a diverse range of depictions, going 
from completely anthropomorphic robots to abstract drawings of 
a network. In sum, this reveals that the context of usage infu-
ences the expected appearance of the depicted entities. Carolus and 
Wienrich [5] asked participants how they imagine the bodies of 
intelligent voice assistants (i.e. smart speakers). They found that 
most participants imagined human beings or (humanoid) robots, 
with few imagining other representations (e.g. animals, objects, or 
abstract representations). These few studies suggest that human 
characteristics are often attributed to AI systems. According to the 
Media Equation Approach [30, 36], this has severe consequences 
because numerous studies with computers [29], smartphones [4], 
or smart speakers [51] showed that people also assign human-like 
characteristics to technical entities. These attributions consequently 
infuence the perception and interaction. It is, therefore, interesting 
to look at which properties infuence the perception of (humanoid) 
others. 

In human-human interaction, warmth and competence (or sim-
ilar constructs) determine how we perceive others [1, 32, 38, 52]. 
Warmth includes evaluations that describe the perceived intent an-
other human might have (e.g. morality, trustworthiness, and friend-
liness). Competence comprises traits that describe the perceived 
ability to enact the intent (e.g. efcacy, skill, and intelligence) [14]. 
Stereotypes (e.g. religious afliation, origin, age, and profession) 
and behaviour infuence how warm and competent an individual 
is perceived which leads to specifc emotional and behavioral re-
actions [8]. Additionally, attractiveness [57, 59], facial expression 
[23, 28, 44, 49, 58], and choice of clothing and style [19, 43, 53] tend 
to infuence how we perceived others. 

Similarly, the appearance of artifcial entities like robots infu-
ences the experienced closeness [12], perceived aggression, intel-
ligence, and animacy [40]. Robots with a human-like appearance 
foster perceived attractiveness [45, 55], trust [46, 47], preference 
[11, 17], likability/sympathy [13, 42], empathy [37], sociability [24], 
warmth, and competence [41]. For AI, perceived warmth predicts 
preference [16, 26] and anthropomorphism seems to predict cred-
ibility [55], performance expectations and preference (in highly 
controlled contexts) and threat (in less controlled contexts) [54], 
efort expectancy [18], likeability [48], trust [31], forgiveness of 
failure [25] and more risky fnancial decisions [10]. Overall, it can 
be said that the appearance of an AI has a strong infuence on the 
emotional and behavioral reactions of users and also impact their 
interaction with artifcial counterparts. 

In summary, research shows that people have very diferent 
perceptions of AI systems, and letting them draw freely is a promis-
ing way to interrogate these perceptions (for further discussion 
see [5]). However, there are few studies so far that have used this 
method and none that specifcally address the context of work. It 
also turns out that many internal and external features infuence 
the perception of human and artifcial counterparts. However, there 
is no systematic classifcation of the features. Therefore, this paper 
addresses two research questions: How do people working in difer-
ent domains imagine an AI system they would like to collaborate 
with (Part I)? Which latent features infuence the perception of AI 
in the wo

3 EMPIRICAL STUDY 

3.1 Data collection & sample 
To answer the research questions, empirical data was collected 
from 174 English-speaking individuals in an online study using 
the survey tool SoSci-Survey on August 31, 2022. Participants were 
recruited using Prolifc.org and received a compensation of £3.50 
for completion. The average completion time was 20.56 minutes (SD 
= 5.52). Individuals were eligible to participate if they are either full-
or part-time employees. The average age was 39.82 years (SD = 11.65, 
ranging from 19 to 73 years). Of all participants, 47.25% identifed 
as female, 51.10% as male, and 1.65% as "other". All individuals who 
participated came from the United Kingdom. 

rk context (Part II)? 

3.2 Experimental procedure and measures 
After the participants were informed about the purpose of the 
study and gave consent, they were asked to imagine they were 
working with AI and to draw an AI they would like to work with 
using their computer and mouse. This procedure was chosen as 
it was deemed less cumbersome for the participants and we ex-
pected clearer images than drawings on paper. They should then 
freely describe the AI using fve adjectives. Then, participants were 
randomly assigned to one of two experimental conditions (female 
(A)/male (B) representations of AI). Each participant saw three 
diferent AI representations in random order (Figure 2). Half of 
them either saw a stereotypical female or male set of AI repre-
sentations depending on the experimental condition. Participants 
rated the shown AI representations regarding 35 semantic diferen-
tials focused on the internal (e.g. dead/alive, evil/good, cruel/caring, 
incompetent/competent) and external properties (e.g. small/huge, 

https://Prolific.org
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light/heavy, young/old, weak/strong). For each semantic diferen-
tial, the participants rated how much they attribute these properties 
to the AI representation on a 7-point scale. The items stemmed from 
common questionnaires [2, 3] as well as self-constructed items (for 
a full list, see Appendix A). 

3.3 Part I: Exploratory analysis of the drawn AI 
We inductively analyzed the drawings of AI through a grounded 
theory approach with three researchers [7] to identify if there are 
general categories of representations of AI. All researchers had 
experience with this approach. The analysis was done in Miro [27], 
where each drawing was uploaded without any additional informa-
tion. First, we went through each drawing together, discussed what 
was pictured, and grouped the drawings on their content. Then, 
for axial coding, we went through each of these initial groups to 
fnd common themes or elements to break them into even smaller, 
more detailed, and cohesive categories. This was repeated until no 
smaller categories could be found. Then, each category was labeled 
with a name. If there were disagreements between researchers on 
a particular drawing, this drawing was put aside and discussed 
again later to fnd a suitable category. If no suitable or agreeable 
category was found, it was put in the ’Other’ - category. The fve 
attributes associated with every drawing were then analyzed in the 
same manner within each category to identify whether there are 
emphases in the attribution of certain adjectives depending on the 
category. If an entry was not showing an accurate word or if it was 
illegible due to spelling mistakes, it was removed from the analysis. 

3.3.1 Results of the drawings. Within the 174 drawings of AI, 
four big categories showed AI as robots (50 drawings), humans (65 
drawings), simple shapes (20 drawings), and hardware (18 draw-
ings). Representative samples from each category can be seen in 
fgure 1. Robot and human-shaped AI representations difered in 
the use of right angles to draw the outlines and/or the addition 
of mechanical parts such as antennas or buttons. AI depicted as 
hardware was devoid of appendages to physically interact with the 
real world and was often recognisable as desktop computers, lap-
tops, and smart speakers. No drawing showed a smartphone. Eight 
drawings showed AI as either animal and 11 were computer-science-
related pictures. Animals were either quadruped or had obvious 
animal-like features such as ears, a tail, or whiskers. Computer-
science-related drawings contained any drawings of networks, log-
ical gates, or zeroes and ones. Simple geometric shapes contained 
circles, rectangles, boxes, triangles, and swirls. One small ’Other’ -
group contained the three drawings that did not ft in other groups 
showing a plant, UI-Buttons and a foating cube between two fat 
elements. 

The category that contained drawings representing AI as a hu-
man contained several sub-categories with varying degrees of the 
depicted human body: one category included only simple smileys 
(n=12), one showed human faces in a box (n=4), one included de-
tailed human faces (with e.g hair, ears, glasses) (n=21), one included 
whole human bodies (n=19) and one contained only human upper 
bodies (n=9). Most drawings did not explicitly state the gender of the 
AI. All but eight drawings depicted the human-shaped AI drawings 
to be smiling, the rest showed a neutral facial expression. 

The group of robotic AI representations were further divided into 
robotic faces and whole body robots. All robot bodies had appendages 
to interact with the world (either arms or legs). One robot had six 
arms, the rest had two or none. Most robots had a neutral (neither 
smiling nor frowning) or not discernible expression. 

3.3.2 Results of the associated atributes. From the attributes that 
were associated with each drawing, fve groups were deducted. 
These groups were the (1) appearance, the (2) inner characteristics, 
the (3) capabilities of an AI, (4) references to other entities (e.g 
human-like or robotic), or (5) was not ftting in another group, be-
ing labeled as Other. Human-, robot- and animal-shaped AI were 
predominantly described with inner characteristics while the other 
categories focused on the capabilities of the AI. These categories 
were then again subdivided into smaller categories. They can be 
seen in table 1, with the total number of attributes given to each in-
dicated in brackets. For all categories, "Warmth" contains attributes 
such as (friendly, happy, kind, pleasant, approachable, likable, trust-
worthy, nice and warm), while "Cold" contains the attributes cold or 
emotionless. "Capable" contained attributes concerning functionali-
ties and power such as e.g powerful, functional, working, dependable, 
productive, while "Smart" contains the attributes intelligent, smart, 
and knowledgeable. The distinction between "capable" and "smart" 
was made as "capable" refers to more in-depth functionalities while 
"smart" is a more general description. These two categories difer 
for the found categories of drawings, with human-, animal- and 
robot-shaped AI being perceived as smart and the others as pow-
erful, capable, useful and functional. "Usable" contains attributes 
concerning the usage and usability of an AI that a user directly ex-
periences while interacting with it, e.g efective, efcient, usable. An 
AI should be efective, efcient, and intuitive, regardless of shape. 

3.4 Part II: Exploratory factor analysis and 
measurement invariance of the 35 semantic 
diferentials 

To fnd latent variables that infuence perceptions of AI, the 35 
semantic diferentials collected for every AI (drawn and given rep-
resentations) were evaluated with exploratory factor analysis. We 
also used confrmatory factor analysis to test for measurement in-
variance with robust estimations (Satorra-Bentler correction) for 
female and male AI representations and the diferent classes of AI 
(robot, human, phone). 

3.4.1 Results of the exploratory factor analysis. Even though the 
�2-test became signifcant (�2(62) = 108.49, p < .001), other model 
ft indices show a good model ft (TLI = .98, RMSEA = .04, 90%-CI 
[.028, .050]) after removing items with low loadings. The loadings 
for each item and factors can be seen in Table 2. In summary, the 
exploratory factor analysis helped to reveal four factors that ft 
the empirical data to a high extent and help to explain a total of 
68.10% of variance. The factors encompass the domains "warmth", 
"competence", "animacy", and "size". 

3.4.2 Results of the measurement invariance tests. Measurement 
invariance describes the "equivalence of a construct across groups 
or measurement occasions and demonstrates that a construct has 
the same meaning to those groups" [35].For AI gender, diferential 
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Figure 2: Diferent AI representations for both experimental conditions (from left to right: humanoid, anthropomorphic robot, 
phone) 

Table 1: The attributes given to each category of drawings. The numbers in brackets indicate the total number of attributes 
given. 

Category Inner Characteristics Capabilities Appearance References Other 

Human (354) 
190 Attributes: 
Warmth (134), Friend (5), Cold (4), 
Other (47) 

64 Attributes: 
Smart (22), Simple (7) , 
Fast(7), Reliable/Accurate (6), 
Other (22) 

55 Attributes: 
Plain (11), Female (9), 
Attractive (6), Non-Binary (3), 
Male (1), Other (25) 

19 Attributes: 
Human-Like (12), 
Computer/Machine (5), 
Other (2) 

47 Attributes 

Robot (290) 
114 Attributes: 
Warmth (70), Fun (9), 
Cold (7), Other (28) 

69 Attributes: 
Smart (29), Capable (15), 
Usable (14), Logical (5), Fast 
(4), Other (16) 

48 Attributes: 
Metallic (5), Cute (5), Large (4), 
Strong (4), Mobile (4), Male (2), 
Other (24) 

44 Attributes: 
Robot (17), Human-Like (8), 
Technical (5), Non-Human (3), 
Other (11) 

15 Attributes 

Hardware (109) 

32 Attributes: 
Warmth (12), Boring (7), 
Cool (4), Cold (3), Scary (3), 
Other (3) 

39 Attributes: 
Capable (10), Smart (7), Usable (6), 
Fast (4), All-Seeing (4), Other (8) 

18 Attributes: 
Metallic (6), Compact (4), Clean/ 
Tidy (4), Large (2), Other (2) 

15 Attributes: 
Technical (6), Robot (5), 
Computer (2), Other (2) 

5 Attributes 

21 Attributes: 36 Attributes: 16 Attributes: 19 Attributes: 
Simple Shapes (109) Warmth (17), Animated (3), 

Terrible (1) 
Capable (11), Usable (10), Smart (5), 
Fast (2), Other (8) 

Rectangular (5), Shiny (5), 
Stylish (3), Other (3) 

Technical (6), Alien/Inhuman (6), 
Futuristic (3), Alexa/Amazon (2) 

17 Attributes 

C.S -Related (67) 

10 Attributes: 
Warmth (2), Cold (2), Witty (2), 
Straight-Forward (1), Obedient (1), 
Mysterious (1), Creative (1) 

37 Attributes: 
Capable (13), Smart (6), Usable (6), 
Learning (2), Other (10) 

3 Attributes: 
Network (1), Narrow (1), 
Pattern (1) 

9 Attributes: 
Computer (6), Human (1), 
Network (1) 

8 Attributes 

Animals (40) 28 Attributes: 
Warmth (26), Loyal (2) 

4 Attributes: 
Smart (2), Intuitive (1), Connected (1) 

10 Attributes: 
Cute (3), Female (2), Attractive (2), 
Small (1), Furry (1), Young (1) 

3 Attributes: 
Cat-Like (1), Lifelike (1), 
Human-Like (1) 

0 Attributes 

item loading was found for "No own will/Own will", "Incompe-
tent/Competent", and "Unreliable/Reliable" while a diferential in-
tercept was found for "Incompetent/Competent". Diferential item 
functioning was found for "Cruel/Caring" regarding item loadings 
and for "Cruel/Caring", "Unreliable/Reliable", "No own will/Own 
will", "Awful/Nice", "Has no consciousness/Has consciousness", "Un-
intelligent/Intelligent", "Not useful/Useful", and "Small/Huge" re-
garding intercepts between AI representation classes. However, 
partial invariant models with acceptable model ft were found for 
both sub-sample comparisons (model ft and comparisons can be 
found in Appendix B). These results suggest that diferent repre-
sentations of AI seem not to be evaluated in the same way. 

4 DISCUSSION 
Overall, the approach we chose for this study was rather exploratory 
and user-centred. The participants were asked to draw and evaluate 
AI they would like to work with without receiving any further cues 
or information on how an AI might look. Nonetheless, the results 
are very much in line with the literature on drawings of AI systems 
[5, 33]. While AI that people want to work with came in diverse 
shapes, our participants imagine AI mainly as humans or at least 
humanoid robots/humanoid robot faces. Drawings that are funda-
mentally diferent from human and humanoid robotic revealed that 
AI representations go beyond what can be considered standard, e.g 
animals, hardware, or abstract representations. Notably, no drawing 
depicted AI as a smartphone. This is surprising, as it is an everyday 
tool and uses AI for many functions. However, this is in line with 
other research that found robots, computers, and humans are the 
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Table 2: Obliquely rotated factor loadings of the items for AI representation evaluation (factor loadings < .20 are not shown) 

Factor 1 Factor 2 Factor 3 Factor 4 

Dislikable/Likable 0.68 
Awful/Nice 0.88 
Evil/Good 0.89 
Dubious/Trustworthy 0.71 
Bad to me/Good to me 0.81 
Cruel/Caring 0.94 -0.23 
Dead/Alive 0.69 
No own will/Own will -0.30 0.89 
Has no consciousness/Has consciousness 0.87 
Emotionally Unintelligent/Emotionally Intelligent 0.25 0.66 
Unintelligent/Intelligent 0.68 0.21 
Not useful/Useful 0.76 
Incompetent/Competent 0.83 
Unreliable/Reliable 0.68 
Small/Huge 1.00 
Light/Heavy 0.83 

frst things that come to mind for many people when thinking of 
AI [39]. 

Participants associated diferent attributes with the categories of 
drawings. In general, participants mostly attributed aspects refer-
ring to inner characteristics, capabilities, the appearance of the AI, 
or references to other beings (e.g being human-like). Many adjec-
tives directly referred to warmth or other social characteristics such 
as helpfulness, funniness, or approachability. The less human-like 
a category is drawn, the fewer attributes refer to warmth but to the 
capabilities of an AI, e.g computer-science-related representations 
showed nearly no association with inner characteristics but with 
capabilities. In contrast, animals were more associated with inner 
characteristics than with capabilities. This diference in associations 
might also appear in diferent working contexts. 

Other descriptions described the drawn human-shaped AI to be 
a friend. It seems that a social relationship is important to many 
drawers of human AI representations. Especially in the light of 
the Media Equation Approach and "Computers as Social Actors" 
[30, 36], it seems reasonable to assume that AI is also perceived as 
a social actor. Even though some attributes called the AI "scary" 
or "terrible", most were more positive than negative. This is an 
expected result, as the drawings and the associated attributes show 
an AI that our participants want to work with. 

In the exploratory factor analysis, latent dimensions of warmth, 
competence, animacy, and size were identifed for the total sample. 
All four factors could be reproduced for the sub-samples of gen-
der (male vs. female) and AI class (humanoid vs. robot vs. phone). 
However, diferential item functioning was found for several items 
regarding item loading and item intercepts indicating diferent im-
portance of the items for the latent dimensions and diferent base 
levels regarding the items for diferent AI gender and AI represen-
tations. It is known from research on human-human interaction 
that warmth and competence are two central dimensions on which 
people perceive their communicative partners [8] and that they 
are central for emotional and behavioral reactions that humans 

show towards human interactive partners [9]. Research related to 
interactions with robots and AI also shows that warmth and compe-
tence seem to be central dimensions that infuence our interaction 
[16, 26, 34, 41]. Animacy has also been considered an important 
dimension in research on robots [40]. Similarly, anthropomorphism 
has been discussed in relation to robots [42], virtual agents [20] 
and AI [5, 10, 18, 22, 25, 31, 48, 54, 55]. The question arises whether 
the "human-likeness" (i.e. anthropomorphism) has a positive efect 
because of the more familiar appearance [56] or because we per-
ceive robots, virtual agents and/or AI which are more "human-like" 
to also be more animate. Possibly, higher anthropomorphism goes 
hand in hand with higher animacy which could be a potential me-
diator for the efects of anthropomorphism. So far, both constructs 
are rather loosely defned and can be difcult to distinguish. 

Even though it was possible to reproduce the same confguration 
of item loadings and latent dimensions in sub-samples of diferent 
AI representation gender and diferent classes of AI representations 
(human, robot, phone), we found metric and scalar measurement 
noninvariance. Some items showed diferential item functioning 
regarding the height of item loadings and item intercepts. At frst, 
this poses a practical problem as it disallows the comparisons of 
diferent AI representation gender and classes regarding the latent 
dimensions. Besides its relevance for the research practice of mean 
comparisons, the presence of measurement noninvariance is also 
interesting for our knowledge about the assessment of AI represen-
tations. We must assume that some characteristics (i.e. items) difer 
in their importance for the evaluation of AI representations and that 
diferent evaluative standards regarding some characteristics (i.e. 
items) are applied to diferent classes of AI representations. It might 
be concluded that AI representations that difer regarding their 
perceived gender and their general class (human, robot, phone), 
difer more substantially not only regarding the perceived warmth, 
competence, and animacy but also regarding the basic evaluation 
processes. AI representations are, thus, more diversely perceived 
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as expected. It may be necessary to develop diferent measurement 
tools to enable the assessment of diferent AI representations. 

4.1 Limitations & Future Work 
Several limitations need to be mentioned regarding the present 
study. First, the quantitative results are based on a rather small 
sample (N = 174). For the factor analyses, it is difcult to say whether 
the factorial structure will hold up when further data is collected, in 
particular in the subsamples of AI classes and gender. Replication 
with a bigger and more diverse sample might be essential, especially 
as our complete sample is UK-based. Perceptions of AI seem to be 
strongly dominated by pop cultural infuences and might difer 
between countries, Western and Eastern cultures, social groups 
that receive diferent media, diferent working domains, or by age 
or gender. However, for the qualitative analysis of drawings and 
adjectives, the sample is large and exceeds the size of previous 
studies. 

The evaluation of the AI representations was done via semantic 
diferentials (i.e. two adjectives or short descriptions that are pre-
sumed to be exact opposites). This might be problematic: Semantic 
diferentials cannot necessarily be assumed to be metric (no zero 
point and no identical distances between selection options). Am-
bivalent adjective pairs such as "Awful/Nice" or "Bad to me/Good 
to me" might not present "real" opposites and their dichotomy can-
not be assumed with certainty. For example, an AI might be "Bad 
to me" (e.g. because it threatens my feeling of job security) and 
"Good to me" (e.g, because it helps me with my tasks and reduces 
job load) at the same time. A further evaluation with independent 
adjectives/short descriptions instead of semantic diferentials might 
create interesting insights. Especially in the case of ambivalent AI 
representations, a more accurate picture could emerge. Including 
the collected adjectives that the participants have generated might 
identify dimensions given to AI by their potential users. 

Most participants drew humans or humanoid robots. This, how-
ever, does not mean those humanoid and robotic-humanoid rep-
resentations are best suited to represent AI in a working environ-
ment. More research is needed to explore which options can be 
implemented at the workplace and to test how diferent AI repre-
sentations impact motivation, user intention, user experience, and 
other work-related variables such as efectiveness and satisfaction. 
For example, as we found that attributed capabilities and charac-
teristics difer regarding the category of the AI drawing, certain 
AI representations might be best suited for distinct working con-
texts that come with specifc expectations regarding the role of 
an AI. Extended reality [50] can be a useful tool to prototype AI 
directly in a specifc working context. Drawings with a computer 
mouse might have led to simplifed or stylized depictions. A further 
evaluation with pen and paper and in color might stimulate the 
creativity of the participants and lead to additional insights. Our 
study does not provide any insights into which of the identifed 
dimensions is central to the actual intention to use an AI or user 
experience. In the next step, it would be crucial to identify how the 
AI representation classes difer regarding the identifed dimension, 
how characteristics of an AI representation are related to warmth, 
competence, animacy, and size, and how these dimensions predict 
user experience and the intention to use an AI system. Also, it might 

be interesting to identify how characteristics of the participants 
such as prior experiences with AI and feld of work infuence AI 
drawings and evaluation. 

5 CONCLUSION 
This study helps to understand how working people imagine AI they 
want to work with, which conceptions they associate with it, and to 
identify latent dimensions to evaluate diferent AI representations. 
We found that (1) most participants either imagined an AI they 
would like to work with as a human or robot with few notable de-
viations (animals, hardware, and abstract representations), (2) most 
adjectives referred to the AI representations’ inner characteristics, 
capabilities, shape, or references to other entities, (3) human-like 
conceptions were more associated with inner characteristics and 
device-like conceptions with capabilities, and (4) latent dimensions 
of warmth, competence, animacy, and size are central for the evalu-
ation of AI representations but produce a measure invariance. Thus, 
our study contributes to the development of human-centered AI in 
the context of work by considering the perceptions and associations 
of potential users. Our work lays the frst stepping stone to explore 
AI representations further and match them with work outcomes 
and job satisfaction in future studies. 
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