
Analysis and Generation of Flow
in 3D Jump’n’Run Games

Tobias Brandner
Julius Maximilian University

Würzburg, Germany
tobias.brandner@gmx.de

Marc Mußmann
Julius Maximilian University

Würzburg, Germany
ma mussmann@posteo.eu

Sebastian von Mammen
Julius Maximilian University

Würzburg, Germany
sebastian.von.mammen

@uni-wuerzburg.de

Abstract—Playing Luigi in the original Super Mario Bros feels
completely different to playing Mario. Why is that so? We pro-
pose an analytical way to design movement in 3D Jump’n’Runs.
To this end, we analyzed the movement parameters of three
influential games in the genre–Super Mario 64, Banjo Kazooie
and Donkey Kong 64–and visualized their evolution with graphs.
To compare the findings and further explore the parameter space,
we created our own 3D Jump’n’Run game in Unreal Engine 5
supporting a broad set of movement mechanics. Constrained by
the concrete movement parameters, we procedurally generate
levels by means of Blender’s Geometry Nodes and evaluate the
resulting flows of movement in a preliminary study. We believe
this approach achieves a high control and explainability for
movement mechanics and level design.

Index Terms—game feel, game analysis, platform games, 3D,
procedural content generation

I. INTRODUCTION

The Super Mario Bros series is one of the best-known and
most popular platformers on the market. But why are they
so much fun to play? In his book Game Feel, Steve Swink
describes this phenomenon as game flow with the words:

Real-time control of virtual objects in a simulated
space, emphasizing interactions through polish [1].

Game flow is therefore based on three key elements: Real-
time control, spatial simulation, and polish. With respect to 3D
Jump’n’Runs, this means: Reasonable control and response of
the player character, a game world that matches the player’s
movement parameters, e.g., his jump height and distance,
and audio-visual cues that emphasize the player character’s
interactions in the world. To investigate and analyze movement
flow, we first developed a broad set of movement mechanics
typically found in 3D Jump’n’Runs. To choose the right
parameters for these mechanics, we analyze three influential
games in the genre: Super Mario 64 [2], Banjo Kazooie [3],
and Donkey Kong 64 [4]. Based on this analysis we added
our own configuration called Boss’n’Run. To evaluate these
four configurations, we procedural generated a level based on
each individual set of movement parameters. The generated
level geometry fits the movement parameters and ensures the
playability of the respective configuration. This enables fast
evaluation of different sets of movement parameter variations.

II. RELATED WORK

Designing the optimal movement mechanics for a game is
an elaborate, iterative task, which can be supported by means
of an analytical underpinning: Movement mechanics are built
upon parameters. For example, a jump is defined by gravity,
velocity, height and distance. All of these parameters have
been measured, analyzed, and compared with each other in a
2D context [5], [6]. We propose a framework to investigate
3D Jump’n’Runs.

Movement parameters are tightly coupled to the surrounding
game world and are represented in their platform and obstacle
layout [7]. This makes it hard to explore vastly different
values as it involves changing the level layout. In contrast
to manual level creation, procedural generation can be used
to create levels based on a set of parameters. These can
determine the level layout and difficulty of platformer games
[8]. Additionally, continuous Jump’n’Run level generation is
possible by sewing together pre–generated, mechanic–focused
scenes [9]. Concerning 3D level generation, there exist several
solutions such as the commercial 3D animation software
Houdini [10]. But also the open source 3D software Blender
recently introduced a feature called Geometry Nodes, which
provides tools that enable a node-based procedural modeling
workflow [11]. This workflow allows for fast procedural
parametric concept design of complex 3D geometry [12].

III. METHODOLOGY

We designed and implemented a 3D Jump’n’Run1 with a
broad set of movement mechanics in Unreal Engine 5 as well
as a procedural level generation system created with Blender’s
Geometry Nodes. The level generation system is embedded
into the Unreal engine using the Altermesh plugin [13].

A. The player character

A 3D avatar was modeled in Blender, rigged with AccuRig2

and animated using Unreal’s re-targeting system. Next to the
usual movement mechanics, we implemented three different
jump mechanics as well as a climbing mechanic. An overview
of all the implemented movement states and their transitions
can be seen in figure 1.

1https://brandnerkasper.itch.io/bossn-run
2https://actorcore.reallusion.com/auto-rig979-8-3503-5067-8/24/$31.00 ©2024 IEEE

https://brandnerkasper.itch.io/bossn-run
https://actorcore.reallusion.com/auto-rig

Sprinting

Wall Sliding

JumpDouble Jump

Triple Jump

Long Jump

Wall Jump

Idle/Walking

Climbing

Fig. 1: Hierarchically structured taxonomy of all movement
states that the player character can enter in the game world.

Similar to Super Mario 64, we implemented a triple jump
and a long jump: After performing a regular jump and landing
the player, there is a short time window to jump again to
perform a double, and then a triple jump resulting in jumps
with greater height. Jumping while running results in a long
jump, which covers more distance but less height. If the
player jumps against a wall, the character enters a sliding state
with reduced gravity. Instigating a jump in this state yields
a wall jump. The wall jump catapults the character upwards
but also away from the wall, whereby the launch angle can
be controlled. On certain walls the character is allowed to
climb. While climbing, jumping also results in a wall jump.
All states are polished through animations and blendspaces.
Furthermore, we added particle effects to plausibly anchor the
character’s movements in the world. For example, while the
character is running small dust clouds are spawned beneath
his feet. We implemented a rather common dual-stick joypad
control, where the left stick moves the character and the right
one the camera.

B. The level

There exist multiple approaches to create procedural levels
or structures. We use a hierarchical approach for generating a
coherent level, that is guided by a spline curve. This hierarchy
consists of higher-level, connected structures formed from
sequentially connected sections. The implemented sections are
tailored to the four different movement mechanics of climbing,
wall jumps, long jumps, and triple jumps, as their interplay
yields the greatest challenges. For the long jump section,
we placed two platforms far apart. The closer to the long
jump distance, the more difficult is the leap. For the triple
jump section, three platforms are placed between a starting
platform and a target platform. Here, the difficulty scales
with the distances of the three in-between platforms and their
difference in elevation. Both sections can be seen in figure
2. The climbing and wall jump sections are shown in figure
3. The climbable geometry is generated around larger, pillar-
like structures. Wall jumps can be performed on a number of
walls placed between two platforms similarly to the long jump
section. The level generation is constrained by the movement
parameter presets, ensuring that any level is solvable.

Fig. 2: Left: Section related to the long jump mechanic. Right:
Section related to the triple jump mechanic.

Fig. 3: Left: Section related to the far climbing. Right: Section
related to the wall jump mechanic.

IV. ANALYSIS

We collected movement data from the aforementioned
games, compared and plotted them. For example, investigating
a simple walking movement of a character, we look at a) its
acceleration b) maximum speed, and c) deceleration.

A. Gathering data from other games

Since we focus on 3D Jump’n’Runs, we chose three in-
fluential games of the genre: Super Mario 64 (SM64), Banjo
Kazooie (BK), and Donkey Kong 64 (DK64). We measured
the movement parameters such as maximum running speed or
jump height using recorded video footage from the respective
game [5]. To time the values as exactly as possible, we
analyzed the recorded footage frame by frame using Shotcut3.
For the maximum running speed, we captured footage of the
character running at full speed for a given estimated distance
and time. We then calculated acceleration/deceleration by
analyzing video footage of the character starting and stopping.
In SM64, for example, the acceleration phase is indicated by
a particle system, some dust clouds, that stop spawning once
the character has fully accelerated. Knowing the maximum
running speed and the time it takes the character to reach it,
we can calculate acceleration/deceleration using eqn. 1.

a =
∆v

∆t
(1)

For the jump height and gravity, we analyzed the character
jumping/falling over a certain estimated distance and tracking
his time in the air. Using the formula for projectile motion
and rearranging it, we can calculate gravity with eqn. 2.

g = −2h

t2
(2)

3https://shotcut.org/

https://shotcut.org/

Knowing the gravity and the estimated jump height, we can
calculate the jump velocity of the character using eqn. 3 [14].

vj =
h− 1

2gt
2

t
(3)

Related work normalized movement parameters by the char-
acters’ height and width to better compare them across games.
We use metric units to ease development and get a better
understanding of the values. Therefore, the data collected is
influenced by estimates to some degree, since none of these
games have a reference object in metric units.

B. Comparing movement parameters

After collecting and calculating the movement parameters
of the four games, we visualize the mechanics in graphs
and compare the parameters in tables. We consider the walk
movement first, as shown in in figure 4.

Fig. 4: The graph shows the distance traveled over time and
the resulting velocity. The walking analysis considers three
phases: Accelerating from a previous halt, moving at full speed
for 0.5s, and decelerating to a halt.

For our own preset, Boss’n’Run (BnR), we combined the
highest acceleration, speed, and deceleration of the other
three games. SM64 has the lowest speed, acceleration and
deceleration. It also takes the longest amount of time to reach
maximum speed, and to come to a halt. DK64 takes the longest
distance traveled to reach the maximum speed and to come to
a halt. BK takes the least time and the least distance to reach
the maximum speed, and to come to a halt. The parameters
are summarized and compared in table I.

Looking at figure 5, we see how the jump differs between
the four games. BnR has the highest speed on the ground
and therefore can jumps the farthest. SM64 features the
highest gravity and the lowest ground speed. This results in
the shortest jump distance. Yet, it still achieves the highest
jump by overcoming (the greatest of all) gravity for only a
short period of time. DK64 has the lowest jump height and
shortest airtime. BK has the lowest gravity and jump speed and

TABLE I: Movement parameters for walking. For speed, accelera-
tion, and deceleration, highest values are marked in red and lowest
values in blue. For time and distance to reach maximum speed, lowest
values are marked in red and highest values in blue.

BnR SM64 BK DK64

Velocity (m
s

) 6 4 4.5 5.4
Acceleration (m

s2
) 20 8 18 12.8

Deceleration (m
s2

) 20 8 18 12.8
Time (s) 1.1 1.5 1.0 1.35
Distance (m) 4.8 4 3.38 4.98

Fig. 5: The jump height and distance over time of a character
leaping at full speed.

remains the longest time in the air. The jumping paramters are
summarized and compared in table II.

TABLE II: Default jump parameters of the four games BNR, Super
Mario 64, Donkey Kong 64, and Banjo Kazooie. For all parameters,
the highest values are marked in red and the lowest in blue.

BnR SM64 BK DK64

Gravity (m
s2

) -18.6 -20.7 -14.0 -20.2
Ground Velocity (m

s
) 6 4 4.5 5.4

Jump Velocity (m
s

) 8.7 9.3 7.3 8.2
Height (m) 2.03 2.09 1.84 1.66
Time (s) 0.93 0.9 1.0 0.81
Distance (m) 5.6 3.6 4.5 4.4

V. EVALUATION

We conducted a preliminary study with 14 participants–
mainly Computer Science students. They were tasked to
play and evaluate the four different movement presets and
according levels. The resulting difference in level generation is
shown in figure 6. The participants were asked three questions:

1) How do you like the jump mechanics? (Rated from 1
(bad) to 5 (good))

2) How is the overall Game Flow for you? (Rated from 1
(poor) to 5 (fluid))

3) How difficult was the level for you? (Rated from 1 (easy)
to 5 (difficult))

Fig. 6: Top view of the triple jump section, generated based
on movement presets: Boss’n’Run (BnR), Super Mario 64
(SM64), Banjo Kazooie (BK) and Donkey Kong 64 (DK64)

We have summarized the results in figure 7. One can
see relationships between the three evaluation categories. For
instance, the ratings of the jump mechanics and the game flow
coincide well across all four games. Similarly, the difficulty
ratings are inversely proportional to the jump and flow ratings
for the three games BnR, SM64, and BK. In particular, BK
received the highest jump/flow ratings and the lowest difficulty
rating. BnR received similar ratings, albeit a slightly lower
flow value. SM64 is opposing these two games, achieving
the lowest jump and flow ratings (but coinciding well) and
reporting the greatest experienced difficulty. Interestingly, all
of DK64’s ratings assume the middle ground of the four
examples, and the effect of opposing jump/flow vs. difficulty
is still there but hardly noticeable. DK64’s ratings, thus, seem
close to the demarcation where the ratio of positive jump/flow
and opposing difficulty ratings flips.

Although these results suggest a consistent relationship
between jump/flow and difficulty, the study is very preliminary
and has several shortcomings. The correlation between jump
and flow ratings could stem from a strong dependency of the
two measured variables and not imply a causal relationship.
The number of participants was rather low and not all par-
ticipants were exposed to each condition, which led to even
fewer absolute ratings. Questionnaires with more participants
and more refined questions might resolve this issue. We
only focused on traditional 3D Jump’n’Run’s with a more
similiar movement parameter space. Exploring a wider range
of games where the calculation of mathematical correlation
values yielding greater certainties should, therefore, be pur-
sued. The bigger result space in turn could then be used to
find optimal parameters, via a grid search.

VI. CONCLUSION & FUTURE WORK

We measured and compared the movement mechanics of
three popular 3D Jump’n’Run games. We presented a hierar-
chical approach to the design of 3D Jump’n’Run levels, which
adhere to according movement parameters. In a preliminary
study, we asked 14 participants to rate the jump mechanics, the
flow, and the difficulty of instances of the three measured move
sets and an additional one, which implemented the most vivid
behavior. This early study suggests that flow and positively

Fig. 7: The results of the preliminary study for the four move-
ment presets: Boss’n’Run (BnR), Super Mario 64 (SM64),
Donkey Kong 64 (DK64), and Banjo Kazooie (BK). Evalu-
ating the feel for the jumping mechanics, overall flow of the
game and the perceived difficulty of the level.

evaluated jump mechanics go hand in hand and that there is
an inverse relationship between flow and difficulty. While more
research is required to corroborate these findings, we believe
that the overall approach to combine an analytical design of
move sets, to complement them with procedurally generated
level designs, and to select and refine parameters based on
user tests provides a sound testbed for further investigations.

REFERENCES

[1] S. Swink, Game feel: a game designer’s guide to virtual sensation.
CRC press, 2008.

[2] Nintendo, “Super Mario 64,” https://www.nintendo.de/Spiele/
Nintendo-64/Super-Mario-64-269745.html, accessed: 2024-03-24.

[3] Rare, “Banjo Kazooie,” https://www.xbox.com/de-DE/games/store/
banjo-kazooie/bsjg7ttswvj2, 1998, accessed: 2024-03-24.

[4] ——, “Donkey Kong 64,” https://www.nintendo.de/Spiele/Nintendo-64/
Donkey-Kong-64-269459.html, accessed: 2024-03-24.

[5] M. Fasterholdt, M. Pichlmair, and C. Holmgård, “You say jump, i say
how high? operationalising the game feel of jumping.” in DiGRA/FDG,
2016.

[6] Game Maker’s Toolkit, “Why does celeste feel so good to play?” https:
//www.patreon.com/posts/28582857, accessed: 2024-03-24.

[7] G. Smith, M. Cha, and J. Whitehead, “A framework for analysis of
2d platformer levels,” in Proceedings of the 2008 ACM SIGGRAPH
symposium on Video games, 2008, pp. 75–80.

[8] R. R. Wehbe, E. D. Mekler, M. Schaekermann, E. Lank, and L. E.
Nacke, “Testing incremental difficulty design in platformer games,” in
Proceedings of the 2017 CHI conference on human factors in computing
systems, 2017, pp. 5109–5113.

[9] M. C. Green, L. Mugrai, A. Khalifa, and J. Togelius, “Mario level gener-
ation from mechanics using scene stitching,” in 2020 IEEE Conference
on Games (CoG). IEEE, 2020, pp. 49–56.

[10] Side Effects Software Inc., “Houdini,” https://www.sidefx.com/products/
houdini/, accessed: 2024-04-04.

[11] J. van Gumster and J. Lampel, “Procedural modeling with blender’s
geometry nodes: A workshop on taking advantage of the geometry nodes
feature in blender for procedural modeling,” in ACM SIGGRAPH 2022
Labs, 2022, pp. 1–2.

[12] M. Denk, J. Mayer, H. Völkl, S. Wartzack et al., “Procedural concept
design with computer graphic applications for light-weight structures
using blender with subdivision surfaces,” in DS 119: Proceedings of the
33rd Symposium Design for X (DFX2022), 2022, pp. 1–10.

[13] Aechmea Studios, “Altermesh,” https://altermesh.com/, accessed: 2024-
04-04.

[14] GDC, “Math for game programmers: Building a better jump,” https:
//www.youtube.com/watch?v=hG9SzQxaCm8&t=461s, accessed: 2024-
03-24.

https://www.nintendo.de/Spiele/Nintendo-64/Super-Mario-64-269745.html
https://www.nintendo.de/Spiele/Nintendo-64/Super-Mario-64-269745.html
https://www.xbox.com/de-DE/games/store/banjo-kazooie/bsjg7ttswvj2
https://www.xbox.com/de-DE/games/store/banjo-kazooie/bsjg7ttswvj2
https://www.nintendo.de/Spiele/Nintendo-64/Donkey-Kong-64-269459.html
https://www.nintendo.de/Spiele/Nintendo-64/Donkey-Kong-64-269459.html
https://www.patreon.com/posts/28582857
https://www.patreon.com/posts/28582857
https://www.sidefx.com/products/houdini/
https://www.sidefx.com/products/houdini/
https://altermesh.com/
https://www.youtube.com/watch?v=hG9SzQxaCm8&t=461s
https://www.youtube.com/watch?v=hG9SzQxaCm8&t=461s

	Introduction
	Related Work
	Methodology
	The player character
	The level

	Analysis
	Gathering data from other games
	Comparing movement parameters

	Evaluation
	Conclusion & Future Work
	References

