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Figure 1: The concept of “Motion Passwords” involves XR users verifying their identity by physically spelling out their password
in the air. This screenshot from our VR prototype shows a user writing their Motion Password. This Unity application supports
user enrollment and verification, demonstrating the feasibility of motion-based verification.

Abstract
This paper introduces “Motion Passwords”, a novel biometric au-
thentication approach where virtual reality users verify their iden-
tity by physically writing a chosen word in the air with their hand
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controller. This method allows combining three layers of verifica-
tion: knowledge-based password input, handwriting style analysis,
and motion profile recognition. As a first step towards realizing this
potential, we focus on verifying users based on their motion profiles.
We conducted a data collection study with 48 participants, who per-
formed over 3800 Motion Password signatures across two sessions.
We assessed the effectiveness of feature-distance and similarity-
learning methods for motion-based verification using the Motion
Passwords as well as specific and uniform ball-throwing signa-
tures used in previous works. In our results, the similarity-learning
model was able to verify users with the same accuracy for both
signature types. This demonstrates that Motion Passwords, even
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when applying only the motion-based verification layer, achieve
reliability comparable to previous methods. This highlights the
potential for Motion Passwords to become even more reliable with
the addition of knowledge-based and handwriting style verification
layers. Furthermore, we present a proof-of-concept Unity applica-
tion demonstrating the registration and verification process with
our pretrained similarity-learning model. We publish our code, the
Motion Password dataset, the pretrained model, and our Unity
prototype on https://github.com/cschell/MoPs

CCS Concepts
• Security and privacy → Usability in security and privacy;
Biometrics; Graphical / visual passwords; Multi-factor au-
thentication.
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1 Introduction
Traditional user-verification methods based on username and pass-
word combinations face significant challenges in Virtual, Aug-
mented, and Mixed Reality (VR, AR, MR, or XR: eXtended Reality
for short). Not only do password theft and brute force attacks also
persist for XR, but practical and ergonomic difficulties of using
soft or hardware keyboards for password entry pose unique chal-
lenges [4, 10, 14, 38]. Such interactions may disrupt the immersive
experience fundamental to XR, motivating a need for alternative
verification mechanisms.

In response to these challenges, we introduce and evaluate the
concept of “Motion Passwords”. Motion Passwords are not typed
but written in the air, as demonstrated in Figure 1. This allows three
distinct layers of verification: first, like traditional passwords this ap-
proach enables knowledge-based verification, allowing the system
to verify if the correct word has been entered. Second, in-air writing
can also reflect the user’s accustomed writing style [11], which per-
mits the application of models that verify handwriting characteris-
tics, such as the style and order of strokes. Third, Motion Passwords
capture the user’s unique motion profile, which has been shown to
include highly identifying patterns [19, 26]. Additionally, the in-air
writing approach could reduce the ergonomic and usability issues
associated with using keyboards in immersive environments.

We explore the potential of Motion Passwords, specifically fo-
cusing on the third layer, and develop and evaluate a motion-based
verification model. We compare two motion-based techniques used
by previous works, a feature-distance method used by Li et al. [16]
and a similarity-learning method used by Rack et al. [32]. We evalu-
ated both techniques on a new dataset of 48 users executing Motion
Passwords and an existing dataset from Miller et al. [23], which
includes 41 users performing specific ball-throwing actions. Com-
paring signatures from both datasets allows us to determine if the

increased complexity of ‘writing’ compared to specific and uniform
‘ball-throwing’ actions, which have been shown to provide high
identifying potential [1, 15, 17, 23], affects verification reliability.
Altogether, our contributions include the following:

(1) Introduction of the concept of “Motion Passwords” and re-
lease of our new dataset, featuring 48 participants perform-
ing over 3800 Motion Passwords across two sessions with a
typical VR setup (Meta Quest 2).

(2) Evaluation of Motion Passwords as complex signatures for
motion-based verification in comparison to specific and uni-
form ball-throwing signatures.

(3) Preliminary evaluation of Motion Passwords against shoul-
der surfing attacks.

(4) Release of our proof-of-concept Unity application featuring
our trained similarity-learning model. This application not
only demonstrates the motion-based verification process but
also offers an interactive experience to try it out hands-on.

Our work marks the first step in exploring Motion Passwords
as a reliable method for motion-based user verification in XR. The
results show that Motion Passwords provide verification reliability
comparable to specific ball-throwing signatures, even when using
only motion-based identification techniques. We observed that our
model primarily focuses on the user’s motion profile rather than
the written word itself. This suggests that future work can combine
motion-based verification with models that verify the actual word
or the user’s handwriting to achieve even higher verification relia-
bility. Our Motion Password dataset lays the groundwork for future
investigations into these additional verification approaches. Overall,
Motion Passwords present a promising alternative to both purely
motion-based verification methods, like specific ball-throws, and
purely knowledge-based approaches, such as traditional passwords.

2 Related Work
2.1 Handwritten Signatures as Biometric Input
Handwritten signatures have long been recognized as a viable bio-
metric input for identity verification [29]. Their uniqueness stems
from the distinct neuromuscular patterns exhibited during the sign-
ing process, which are difficult to replicate [5]. This uniqueness
encompasses both static and dynamic traits, such as the shape of
the signature and the speed, pressure, and rhythm of the signing
motion [12]. Signatures maintain relative consistency over time,
making them reliable for repeated verification [35].

The integration of handwritten signatures into existing work-
flows is straightforward due to their widespread acceptance and
established use in legal and financial contexts. This ease of integra-
tion further supports their viability as a biometric input.

Motion Passwords in virtual reality extend the concept of hand-
written signatures into 3D space, making them potentially stronger
than traditional 2D signatures. First, the additional dimension al-
lows for the emergence of user-specific writing patterns in 3D space,
which should be more complex and hence even harder to replicate.
Second, Motion Passwords capture more data points, including the
position and orientation of the writing hand, off-hand, and head, not
just the position tip of the writing pen. Consequently, Motion Pass-
words leverage the advantages of traditional signatures while intro-
ducing a new level of complexity and source of biometric signals.
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2.2 Motion-Based User Verification in XR
Motion-based user verification extends biometric analysis to a
broader range of human motions, and there is already a sizable
body of literature that discusses using motions for user recognition.
In the following, we focus on the context of typical XR systems
that track the head and at least one hand. We follow the terminol-
ogy defined by Jain et al. [7]: biometric user recognition systems
can serve either identification or verification tasks. Identification in-
volves determining a user’s identity from a set of known identities,
which is typically relevant for access control or surveillance appli-
cations. Verification on the other hand confirms or denies a user’s
claimed identity, like logging into one’s account or checking in on
an airport with a passport. With the concept of Motion Passwords,
we specifically target the verification scenario.

Most of previous works discuss the identification task. Rogers et
al. [34] were the first to use motions from XR users to explore the
feasibility of user identification within a set of 20 users, followed
by Pfeuffer et al. [28] who investigated several controlled VR tasks.
Subsequently, Miller M. et al. [21] demonstrated that individuals
can be re-identified quite accurately even within a larger group of
users (N=511). Up to this point, research had focused on whether
motion data is identifying at all, and the investigated scenarios
were limited to fairly specific and well-defined user actions. Rack
et al. [30] collected a dataset from 71 users playing Half-Life: Alyx.
The authors showed that deep learning models are capable of iden-
tifying users even in contexts, where the user task (i.e., ‘play the
game’) allows a wide spectrum of possible actions and user motions.
Recently, Nair et al. [26] demonstrated that motion-based identi-
fication is possible even within a substantial user base of 50,000
individuals. Altogether, these works demonstrate that motion data
carries a significant identifying signal that can be used as biometric
signature for user recognition tasks.

In the context of motion-based verification, literature is compara-
tively sparse and focused on scenarios with very specific user tasks.
Li et al. [16] designed a system that required users to nod along
to music for a few seconds, wearing Google Glasses, and achieved
an average verification accuracy of about 96%. Miller et al. [20, 22]
evaluated verification performance with different VR devices by
prompting users to throw virtual balls. Both tasks, nodding and
throwing, produce motion sequences, where the resulting move-
ment trajectories are highly constrained and very similar. While
these user tasks are simple and have been shown to work well for
verification, conceptually they may be problematic from a security
perspective. XR users can unknowingly reveal a lot of information
about themselves, either by accident or through malicious appli-
cation design [27], and unintentionally perform their verification
signatures in front of adversaries. This allows attackers to observe
these simple motions and repeat them to gain unauthorized access.

In contrast, by letting users write personalized – potentially more
complex –words, Motion Passwords combine the ideas of biometric-
based and knowledge-based verification: attackers not only have
to know the correct password but also have to somehow infer how
their victim writes that password in 3D space. Lu et al. [18] also
explored verification based on freestyle in-air handwriting, though
it relied on a camera and a glove device for data capture and had
participants write only two words in a single session.

2.3 Verification Methods
Verification requires a method that determines the similarity be-
tween a known and an unknown biometric sample. For motion-
based verification, previous works used two types of methods
to achieve this: feature-distance and similarity-learning methods.
Feature-distancemethods are conceptually simple as they determine
the similarity — or distance — between two samples directly in the
feature space, hence they do not require any sort of training phase.
Li et al. [16] evaluated three different feature-distance methods and
found that Dynamic Time Warping (DTW) worked best for verify-
ing users based on their head nodding. However, in the context of
motion sequences, this can only be expected to work if the under-
lying user action of the two samples is the same, e.g., both samples
show a throwing motion. If the underlying actions are different, the
distances of the resulting trajectories in the feature space become
too large, even if the actions were performed by the same user.

Similarity-learning models use machine learning to learn the
motion profile of individuals even within complex and arbitrary
motions [22, 32]. Subsequently, the similarity calculation between
two samples is done within the representation space learned by
the neural networks instead of the feature space. This method can
identify users even on arbitrary motions, as demonstrated by Rack
et al. [32], but comes at the cost of requiring a pretraining phase.

Against this backdrop, we compare feature-distance and simi-
larity-learning as foundation for the verification task in our analy-
ses. Feature-distance approaches offer themselves as a simple and
resource effective method for the verification task, yet have only
been evaluated on specific motions. Similarity-learning is a more
sophisticated technique that requires pretraining on larger datasets
but may yield better results on the comparatively more complex
patterns of Motion Passwords.

3 Datasets
We utilized three distinct datasets for our research: our newly cre-
ated “Motion Passwords” (MoP) dataset, the Ball-Throwing (BaT)
dataset fromMiller et al. [23], and the “Who Is Alyx?” (WiA) dataset
from Rack et al. [30]. Each dataset provides spatial (x, y, z) and ro-
tational (quaternion: x, y, z, w) tracking data of the head-mounted
display (HMD) and both hand controllers of the VR users.

3.1 Motion Passwords
We conducted a data collection study to create a dataset of Motion
Password inputs. Participants were required to attend two separate
sessions where theywere instructed towrite specific wordsmultiple
times with either hand. For this, we created a virtual environment
with Unity to guide participants through the study. The study has
been approved by the Research Ethics Committee of our faculty.

3.1.1 Main Data Collection Study. We recruited 48 participants (9
males, 39 females), aged between 18 and 27 years (average age: 22),
via our institute’s student participant system. Most participants
were right-handed, and only two were left-handed.

Participants were fully briefed on the concept of Motion Pass-
words and the study’s goals and the data collection process. In the
VR environment, they followed instructions displayed on a virtual
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Figure 2: Example 2D projections of signatures from our Motion Password (MoP) dataset and from the Ball-Throwing (BaT)
dataset from Miller et al. The black lines in MoP signatures represent trigger button presses.

blackboard using a Meta Quest 2 headset and controllers. Partici-
pants attended two separate sessions, writing specific words five
times with each hand. The words included ‘Motion‘ (both sessions),
‘Secure‘ (first session), ‘Password‘ (second session), and two random
words (same two across both sessions). Participants pressed the
trigger button on the controller to write and used virtual buttons
within the scene to repeat or proceed with their writing tasks. This
resulted in a total of 4 words × 5 repetitions × 2 hands × 2 ses-
sions = 80 individual writing sequences per participant. In total,
we collected 3840 Motion Passwords, retaining 3800 after remov-
ing non-meaningful inputs (e.g., incomplete words). The average
length of a Motion Password was 6.2 seconds, with a minimum of
2.1 seconds and a maximum of 18.2 seconds. To determine when a
Motion Password started and when it ended we selected the frames
between the first and last trigger button presses. Figure 2 visualizes
resulting Motion Passwords from sample users. Note that we did
not use the button presses as input for our models in this work.

3.1.2 Fully Informed Attack Data Collection Study. In addition to
the previously mentioned attack types, we aimed to include a fully
informed attack scenario. To achieve this, we designed a shoulder
surfing attack setup within the Unity scene. In this setup, partic-
ipants watched videos of a hypothetical victim performing their
Motion Password. They were then instructed to carefully observe
and mimic the victim’s password.

However, our initial attempts highlighted several issues. Par-
ticipants required more detailed instructions and training to un-
derstand which aspects to focus on and to apply the necessary
diligence expected of a real attacker. For instance, many partici-
pants took significantly longer to complete the Motion Password
than the victim or failed to notice details such as the order of strokes.
These shortcomings indicated that our simulated attacks did not

accurately reflect a real-world scenario, leading us to exclude this
part of the study from our main analyses.

Despite this, we sought to provide some insight into the system’s
sensitivity to fully informed attacks. We conducted a follow-up
study with six colleagues (1 female, 5 male, all right-handed) from
our research group. Before the study, we thoroughly instructed
them on the concept of Motion Passwords, showing example videos
and explaining key aspects attackers should focus on: matching the
writing speed and order of strokes and paying attention to letter
size and hand inclination.

We included two victims (both male and right-handed) who
wrote the words ‘Motion’, ‘Secure’, and ‘Motion Password’. Each
attacker was tasked with mimicking each word three times using
their right hand. While we acknowledge that the small sample size
limits the generalizability of our findings, we believe the results are
still valuable and can provide first insights into the robustness of
Motion Passwords for motion-based verification.

3.2 Ball-Throwing Dataset from Miller et al.
We used the Ball-Throwing (BaT) dataset from Miller et al. [23]
to compare the verification reliability of Motion Passwords with
very specific motion patterns. This dataset comprises motion data
from 41 users, recorded over two sessions using three different
VR systems, the HTC Vive, the Oculus Quest, and the HTC Vive
Cosmos. For our analyses, we select the signatures recorded with
the Oculus Quest to match the device of our Motion Password study.
Each user performed a ball-throwing action 10 times per session
and device, with each session taking place on a separate day. The
task involved throwing a virtual ball at a target, with consistent
physical characteristics and locations of the ball, target, and pedestal
across sessions. Data was recorded at 90 frames per second and
each throwing sequence was cut to be exactly three seconds long.
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3.3 Who Is Alyx?
We use the “Who Is Alyx?” (WiA) [30] dataset to pretrain the
similarity-learning model, following Rack et al [32]. The dataset
contains 71 users who play the VR game “Half-Life: Alyx” over two
sessions for about 45 minutes per user and session with a HTC Vive
Pro. The game introduces a wide array of different user motions,
ranging from calm and subtle motions when users try to solve
puzzles or explore the virtual world, to extensive and even hectic
motions when users get startled by enemies and have to fight their
way out. User motions were recorded with 90 frames per second.

We selected this dataset since it can be used to train versatile
similarity-learning models that become able to identify new users
from different datasets [32]. The high variety of user motions in
“Who Is Alyx?” is the foundation for models to accurately learn user-
specific motion signatures amidst a wide array of potential actions.
Moreover, since the dataset includes two sessions from different
days for each user, models can learn to separate the variance that
is specific to individual sessions from the identifying signal.

3.4 Dataset Alignment
When working with motion data from more than one dataset, it is
important to align all recordings to use the same coordinate system,
representation of rotations, time encoding, and units of measure-
ment [33]. While all datasets use quaternions, they use different
coordinate systems and units of measurement, as WiA had been
recorded with Steam OpenVR and MoP and BaT both with Unity.
Hence, we pay attention to ensuring the same format by convert-
ing recordings from the MoP Dataset to use the Steam OpenVR
coordinate system (X: right, Y: up, Z: forward) and ‘centimeters’ for
positions. After these preprocessing steps, we inspected recordings
from both datasets with the visualization tool from Rack et al. [33]
to visually verify the correct alignment of all datasets.

4 Methodology
In this section, we describe our methodology for motion-based
verification, focusing on specific signatures from the BaT dataset
and Motion Passwords from the MoP dataset.

4.1 Input Data
The input data to our verification models is a motion sequence
representing the user’s entered signature, as visualized in Figure 2.
This sequence consists of frames containing 3D coordinates for
positions (x, y, z), as well as quaternions (x, y, z, w) for each pe-
ripheral (HMD, left & right controller). Since the original framerate
can vary, we resample every sequence to a constant framerate of
30 frames per second (fps). This framerate balances computational
costs and fidelity, retaining sufficient information without exces-
sive data size [31]. For Motion Passwords, the final sequence length
varies according to the duration of the user input. The ball-throwing
signatures from the BaT dataset are all exactly 90 frames (i.e., 3
seconds) long.

Next, we convert the resampled motion data with the Body-
Relative Acceleration (BRA) encoding from Rack et al. [30, 31]. This
encoding removes irrelevant information (e.g., user’s position or
orientation within the scene), preventing overfitting by ensuring
models focus on actual identifying signals. First, we transform the

motion sequences into the body-relative (BR) encoding, making
each frame’s positions and rotations relative to the HMD’s local
coordinate system. This step also removes the HMD’s position, as it
is always the origin (0,0,0) in its local coordinate system. Then, we
compute the second derivative between the frames, producing the
positional and angular accelerations based on the BR data. After
these steps, the preprocessed input sequence consists of 18 features
per frame: (pos-x, pos-y, pos-z, rot-x, rot-y, rot-z, rot-w) for each
controller (left and right) and (rot-x, rot-y, rot-z, rot-w) for the HMD.

4.2 Feature-Distance Model
For the feature-distance approach, we utilize Dynamic Time Warp-
ing (DTW) [36]. DTW measures the similarity between two tempo-
ral sequences thatmay vary in speed or timing. The algorithm aligns
sequences in the time dimension using a dynamic programming
approach that minimizes the cumulative distance between them.

DTW calculates an optimal match by adjusting the time indices
of the points in one sequence to align with the corresponding points
in another sequence. This involves constructing a distance matrix
where each element represents the distance between points in the
two sequences. From this matrix, DTW determines the shortest
path that best aligns the sequences, corresponding to the minimum
cumulative distance, which provides the degree of similarity.

4.3 Similarity-Learning Model
Our similarity-learning model employs Deep Metric Learning [24],
which learns a function that maps input data to an embedding space
where distances reflect semantic similarities between samples. The
model is trained to reduce the distance between embeddings of
samples from the same class (i.e., the same user) while increasing the
distance between embeddings from different classes. This approach
facilitates effective measurement of similarity directly from the
learned embeddings. We followed the methodology from Rack et
al. [32] but implemented an updated architecture.

4.3.1 Architecture. Our architecture processes input sequences
through a Gated Recurring Unit (GRU) layer first, followed by a
transformer encoding unit before the final output layer. This archi-
tecture yielded superior results in our preliminary experiments on
the WiA dataset compared to the original architecture from Rack et
al. [32], who used a single GRU unit with several layers. Our archi-
tecture exposes several hyperparameters and given the variability
of optimal configurations for individual use cases, we implemented
a hyperparameter search (see Section 4.3.3). Detailed documenta-
tion of the model architecture and the exposed hyperparameters
can be found in the code repository.

4.3.2 Pretraining. We pretrained the similarity-learning model on
the WiA dataset. Notably, the WiA and our MoP datasets do not
share any users. Our training procedure generally aligns with the
methods outlined by Rack et al. [32], reserving 11 users for valida-
tion purposes and the remainder for training. Throughout training,
we monitored the ‘R Precision’, measuring retrieval accuracy by
quantifying the rate of relevant items retrieved within the top posi-
tions of the ranking. Training checkpoints were saved upon achiev-
ing new high scores in R Precision. The process was terminated
when no improvement was observed for several consecutive epochs.
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4.3.3 Hyperparameter Search. Our similarity-learning model’s ar-
chitecture involves several hyperparameters. Given the unpre-
dictability of optimal configurations, a hyperparameter search was
conducted. This search employed the ‘sweeps’ function of the ma-
chine learning monitoring service “Weights and Biases”, using the
Bayesian search strategy. We iteratively refined our search parame-
ters, expanding or narrowing the search space based on interme-
diate results on the WiA validation set, and initiated new sweeps
accordingly. Ultimately, we performed 2,750 individual trainings
and selected the model configuration yielding the highest R Preci-
sion on the validation set. The investigated search space, the final
hyperparameter configuration, and the trained model can be found
in the code repository.

4.4 Model Implementations
All code was implemented in Python and can be found in the ac-
companying repository. For the similarity-learning model, we used
PyTorch Lightning [6] together with the PyTorch Metric Learning
library [25]. For the feature-distance model, we used the ‘tslearn’
package [39].

4.5 User Verification
Our verification system comprises two primary stages: registration
and verification. In the registration stage, users submit their refer-
ence signature, for the system to store as template for their identity.
During verification, a user claims their supposed identity, and the
system assesses the authenticity of this claim. This involves the
user providing their query signature, which the system then com-
pares against the stored reference template of the claimed identity.
The query is exclusively compared to the reference of the claimed
identity, ignoring any other references in the database – otherwise,
this would be considered identification, not verification [8].

The feature-distance and the similarity-learning method both
yield a similarity score between any two given items. For final
verification, this score is compared against a predefined threshold to
determine acceptance or rejection. Using DTW, the feature-distance
approach directly compares the query’s temporal sequence with the
reference and immediately generates a distance value that quantifies
the dissimilarity between the two sequences.

Unlike the feature-distance approach, the similarity-learning
method initially processes references and queries independently
and requires a second step to retrieve a similarity score. During
registration, the user provides one or more reference signatures,
each of which gets encoded as an embedding. For instance, in our
MoP dataset, each user provided five iterations per session of the
same word with the same hand, resulting in five reference embed-
dings, and five query embeddings. To create a single, representative
reference embedding, we compute the kernel embedding, which
is positioned at the center of all provided reference embeddings.
This accounts for variations in the user’s reference signatures, aim-
ing to capture a more robust and representative motion profile.
Then, in the verification phase, the retrieved query embedding is
compared to the reference embedding. This comparison yields a
similarity score, which is evaluated against a predefined threshold

to determine whether the user’s identity is verified. Since our train-
ing approach uses the ArcFace loss, we use the cosine similarity
between the two embeddings as the similarity score.

5 Experimental Setup
In our experimental setup, we first compared feature-distance (FD)
and similarity-learning (SL) models both in combination with signa-
tures from the MoP and the BaT dataset, so we ended up with four
conditions: FD+BaT, SL+BaT, FD+MoP, and SL+MoP. Subsequently,
we analyzed the potential of Motion Passwords using the SL+MoP
condition. This section explains the setup and how we evaluate the
verification performances.

5.1 Verification Scenario
We simulated the following scenario: users register on their first day
using our hypothetical XR application by providing their signature,
either a ball throw or a Motion Password. After a few days, users
attempt to log in and get verified by the system, either as themselves
(genuine) or as another user (impostor). For genuine cases, reference
and query signatures are from the same user. For impostor cases,
they are from different users. The system should ideally accept
genuine attempts and reject impostor attempts.

5.2 Performance Measures
To measure the performance of our verification system, we are
interested in the ratio of genuine verification successes (i.e., True
Acceptance Rate (TAR)) and the ratio of impostor verification suc-
cesses (i.e., False Acceptance Rate (FAR)). For example, a TAR of 95%
and a FAR of 1% indicates that the system succeeds in accepting 95 in
100 genuine attempts, and fails to reject 1 in 100 impostor attempts.

Adjusting the similarity threshold facilitates a trade-off: a stricter
system enhances security by requiring higher similarity, resulting
in lower TAR and FAR, whereas a more lenient system increases
both TAR and FAR, reducing security. To analyze and compare
this trade-off we employ the ‘Receiver Operating Characteristic’
(ROC) curve. The ROC curve plots the TAR against the FAR at
various threshold settings, providing a visualization of the trade-
offs between sensitivity and specificity.

Additionally, we evaluate overall verification accuracy using the
corresponding ‘Area Under the Curve’ (AUC). The AUC provides
a single scalar value that summarizes the performance across all
possible threshold settings. A higher AUC value indicates a better
overall ability of the system to distinguish between genuine and
impostor attempts, irrespective of any specific threshold. An AUC
of 1.0 represents a perfect system that completely separates genuine
and impostor samples, while an AUC of 0.5 suggests a performance
no better than random guessing.

Another metric often used in the verification context is the Equal
Error Rate (EER), which is the point at which the FAR and the False
Rejection Rate are equal. Like the AUC, EER provides a single value
that summarizes the overall accuracy of the system. A lower EER
indicates better performance.

5.3 Verification Thresholds
The choice of a verification threshold depends on the individual use
case. To demonstrate system performance across different levels of
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verification strictness, we determined four exemplary thresholds
that yield the following FARs in our initial analysis in Section 6.1: we
selected a strict threshold at FAR = 0.1%, amoderate threshold at FAR
= 1%, a lenient threshold at FAR = 10%, and a permissive threshold at
FAR = 25%. We used these threshold values in subsequent analyses
to compare how different conditions, such as attacks, impact FAR
and TAR when either threshold is applied for verification. Overall,
these four thresholds are intended to demonstrate the verification
system’s performance across different levels of strictness.

6 Results
6.1 Genuine Attempts & Uninformed Attacks
In this section, we evaluate the verification accuracy using genuine
attempts and uninformed attacks across four conditions: FD+BaT,
SL+BaT, FD+MoP, and SL+MoP. The primary goal is to determine
the efficacy of our Motion Passwords in comparison to traditional
ball-throwing signatures under different verification models.

For Motion Passwords, we included the three words each partic-
ipant wrote in both sessions (i.e., ‘Motion’ and two random words).
For genuine attempts, we paired the same words from the same user
as reference and query. For impostor attempts, we paired different
words from different users, representing an uninformed attack sce-
nario where the attacker does not know the correct word or the
victim’s writing style.

The ROC curves for these conditions are shown in Figure 3. The
SL model outperformed the FD model for both signature types. For
the BaT dataset, the SL model achieved an AUC of 0.941, slightly
higher than the FD model’s AUC of 0.931. However, the perfor-
mance gap widened for Motion Passwords, with the SL model
achieving an AUC of 0.93 compared to the FD model’s 0.75. This
indicates that the DTW algorithm struggles to find similarities in
Motion Passwords when they originate from the same user. The
scored EERs are 12.4% for SL+BaT, 14.5% for SL+MoP, 14.6% for
FD+BaT, and 32.3% for FD+MoP.

Figure 3 also provides a detailed view at four FAR values selected
for the exemplary thresholds discussed in 5.3. The TARs achieved
by SL+MoP, SL+BaT, and FD+BaT lie within each other’s confi-
dence intervals, suggesting that differences between these three
conditions are insignificant at the selected thresholds. When the
verification threshold is set to allow 1% of impostor attempts to
succeed, approximately half of the genuine attempts are accepted,
indicating that genuine users typically need two attempts for suc-
cessful verification with the FD+BaT and SL+BaT/MoP approaches.
The FD+MoP combination performs significantly worse, requir-
ing a more lenient threshold that accepts around 25% of impostor
attempts to achieve a similar TAR.

6.2 Correct vs. Incorrect Passwords
In this subsection, we examine the impact of using correct ver-
sus incorrect passwords on the verification performance. The goal
is to understand how the similarity-learning model handles gen-
uine attempts with incorrect passwords and attacks with correct
passwords.

In our previous experiment, we paired the same words for gen-
uine users and different words for attacks. In this experiment, we
reversed the setup by pairing different words for genuine users

Figure 3: Trade-offs between TAR and FAR for the four com-
binations of model types (Similarity-Learning (SL), Feature-
Distance (FD)) and signature types (Motion Passwords (MoP),
Ball-Throws (BaT)). The right figure provides a detailed view
of the ROC curve on the left for the FARs discussed in Sec-
tion 5.3.

Table 1: Resulting TARs and cosine similarities of the
SL+MoP condition based on the results in Section 6.1 for
the four representative thresholds we selected in Section 5.3.

Threshold FAR TAR Similarity

strict 0.1% 28% 0.903
moderate 1% 52% 0.850
lenient 10% 81% 0.746
permissive 25% 91% 0.660

Figure 4: Comparison of TAR and FAR if the query word is
correct or incorrect, i.e., equal or unequal to the reference.
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and the same words for attacks. The results of this experiment are
shown in Figure 4.

For genuine users, the TAR drops significantly when the refer-
ence and query words do not match. The TAR decreases by 14 to 24
percentage points for the strict, moderate, and lenient thresholds, in-
dicating a substantial impact on verification accuracy. Despite these
reductions, themodel still detects genuine users to some extent, indi-
cating that the model can still pick up on the users’ motion profiles.

For impostors, the TAR does not change when they attack using
the correct word. This result implies that merely knowing the cor-
rect word does not significantly increase the impostor’s chances
of success. In other words, attackers cannot improve their success
rate solely by knowing the correct word without replicating the
victim’s writing style.

Additionally, we paired reference and query signatures of the
same words written with different hands. In this scenario, the SL
model’s performance comes close to random guessing, with an
AUC score near 0.5. This result indicates that the attackers must
use the correct hand to have any chance of success.

6.3 Fully Informed Attack with Motion
Passwords

With our preliminary attack study, we investigated the robustness
of the similarity-learning model against fully informed attacks,
where attackers are aware of both the correct password and the
victim’s writing style. Participants were tasked to replicate the Mo-
tion Passwords of the two victims after observing video recordings
of the correct writing actions. The results of these fully informed
attacks are depicted in Figure 5, which shows the ranking of each
verification attempt by both genuine users and attackers for the
three passwords: ‘Motion’, ‘Secure’, and ‘Motion Password’.

Overall, the similarity-learning model achieved an AUC score
of 0.95 across all three words, indicating a slight improvement
in performance compared to scenarios with partially informed or
completely uninformed attacks. A5 was the only attacker able to
achieve higher similarity scores than victim V2 for two of the words
and very similar scores across all attempts. In contrast, attacks
on victim V1 were significantly less successful, with no attacker
reaching the average similarity scores of V1.

Figure 5 also illustrates the different verification thresholds dis-
cussed in Section 5.3. The ‘strict’ and ‘moderate’ thresholds were
breached only by attacker A5 when imitating V2: the ‘strict’ thresh-
old was surpassed once with the word “Motion Password”, and the
‘moderate’ threshold with the other two words. The AUC scores
remained consistent across the three passwords, indicating that the
length of the word did not significantly affect verification reliability.

7 Discussion
In this work, we explored the efficacy of Motion Passwords for user
verification in XR environments, focusing on the motion-based
layer of security. Our findings indicate that Motion Passwords,
when combined with a similarity-learning model, can achieve a
level of verification reliability on par with previous methods using
specific motion signatures. The similarity-learning model demon-
strated robust performance by effectively distinguishing genuine
users from impostors, leveraging the unique motion profiles of

users. This performance was consistent across various attack sce-
narios, highlighting the potential of Motion Passwords as a viable
biometric verification method.

We observed that the similarity-learning model can effectively
handle the complexity of Motion Passwords. The model focuses
on the user’s underlying motion profile rather than the specific
trajectory of the motion. This capability was demonstrated by the
model’s high verification success rate for genuine users, even when
paired with a wrong word. This finding suggests that Motion Pass-
words can encapsulate uniquemotion profiles, making them a viable
biometric signature for motion-based user verification.

One significant advantage of Motion Passwords seems to be
their potential resistance against shoulder-surfing attacks as demon-
strated by our preliminary fully informed attack study. The overall
achieved similarity scores of these attacks were predominantly be-
low the scores of genuine attempts and the AUC was comparable
to the AUC of the uninformed impostor scenarios. Particularly, the
‘strict’ and ‘moderate’ thresholds were just breached by one attacker.
While these findings are promising, they are based on a limited
number of participants and should be interpreted with caution.

The comparison ofMotion Passwords with specific ball-throwing
signatures revealed that the latter could be effectively verified using
both feature-distance and similarity-learning models. However,
the feature-distance model failed with the more complex Motion
Passwords. This failure underscores the necessity of more advanced
techniques, such as similarity-learning models, to handle complex
and individualized motion patterns.

8 Future Work
We believe that our current Motion Password dataset represents a
conservative estimate of the potential similarity of genuine verifica-
tion attempts between reference and query signatures. In trials with
our proof-of-concept application, we observed that the consistency
of signatures improved with practice. This observation suggests
that with increased experience and muscle memory, users will be
able to produce more consistent Motion Passwords over time. As
users develop more consistent signatures, the similarity between
registration and verification signatures for genuine users is ex-
pected to increase. If future work can confirm this learning effect, it
would allow for higher verification thresholds, thereby reducing the
likelihood of impostor success. To improve the learning process of
users, implementing feedback mechanisms during the registration
phase providing measures of similarity between entered and stored
signatures could be beneficial. This allows users to refine their Mo-
tion Passwords and could lead to more consistent and distinctive
motion profiles, potentially improving verification accuracy.

Technical advancements also offer avenues for future research.
While our study focused on the fundamental evaluation of Motion
Passwords, exploring optimal deep-learning architectures and more
sophisticated input sequence encodings could yield better results.
Additionally, training methodologies that include fine-tuning with
specialized datasets might further enhance the model’s ability to
identify unique motion patterns.

Future work should also investigate further potential failure
modes to enhance the robustness and reliability of Motion Pass-
words. This includes examining other attack vectors, system errors
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Figure 5: Similarity scores between reference and query for fully informed attacks on Motion Passwords. The three subplots
represent each of the three passwords we included in the study. Victims (V1, V2) are shown on the left, followed by attackers
(A1-A7). Note that V1 and V2 are also A1 and A2, which is why they only have scores shown for the other victim. Thresholds
are indicated by shaded areas. Higher similarity scores indicate more successful attempts.

such as tracking failures or hardware malfunctions, and user errors,
such as inconsistent motion due to fatigue or stress. Mitigation
strategies could involve incorporating error-correction algorithms
and designing fallback methods, like traditional keyboard-based
passwords.

Lastly, our motion-based verification model represents only one
layer of security for Motion Passwords. Incorporating a knowledge-
based approachwith anOptical Character Recognition (OCR)model
allows comparison of the actual words between reference and query
signatures, thereby preventing impostor success when the correct
password is not known. OCR is a well-established field with mature
techniques and readily available solutions for 2D handwriting such
as Tesseract [37], OCRopus [2], or Kraken [13]. The challenge of
applying OCR in this context lie in adapting these solutions from 2D
to 3D space. Additionally, training a model to specifically recognize
handwriting styles can complement the motion-based approach.
This might seem redundant to the motion-based verification used
in this work because this approach also analyzes how a word has
been written. However, analyzing false positives from our SL+MoP
condition revealed that many confused signatures do not actually
look the same if visualized side by side. Therefore, incorporating
techniques that focus on writing style and stroke order should
significantly reduce the FAR. Recent studies have successfully used
machine learning techniques for handwriting verification [3, 9],
indicating the feasibility of this approach for Motion Passwords.
Similar to OCR, the challenge here is to extend these 2D solutions
to 3D space. By combining these three methods, an attacker would
need to replicate the victim’s motion profile, know the correct
password, and accurately mimic their handwriting style, including
the order of strokes and fine details, to succeed. Future work should
investigate integrating these multi-layered verification methods to
fully exploit the potential of Motion Passwords in 3D space.

9 Limitations
Despite these promising results, our work has several limitations
that need addressing in future research.

Firstly, the small scale of our attack study limits the generaliz-
ability of our findings regarding security against shoulder-surfing.
Future studies should include a larger number of victims and at-
tackers to obtain more robust insights.

Secondly, the narrow set of ethnicities represented in our datasets
may not capture the full diversity of motion profiles across differ-
ent cultures and populations. Including a more diverse participant
pool will help to understand how cultural differences may affect
motion-based verification.

Finally, our study primarily focused on technical feasibility with-
out extensive consideration of user experience factors, such as
ease of use and user acceptance, which are crucial for practical
deployment. Future research should explore these aspects to ensure
broader applicability and effectiveness of the proposed verification
system.

10 Unity Prototype
To demonstrate the feasibility of motion-based verification in XR
environments, we developed a prototype Unity application. This
prototype integrates our similarity-learning model, as used in the
analyses presented in this paper. To our knowledge, this repre-
sents the first published application incorporating motion-based
recognition in an XR setting.

The prototype supports two primarymodes. In registrationmode,
new users can be created, and they provide multiple repetitions of
the same signature to build a robust profile for future verification
attempts. In verification mode, a user can claim a registered identity
and make verification attempts. The system displays the achieved
similarity score and, based on the selected threshold, either confirms
or rejects the attempt.

The application comprises two main components: a Python
server and the Unity application. The Python server manages user
data and handles the registration and verification of motion se-
quences through an HTTP API. It executes the similarity-learning
model and processes the motion data accordingly. The Unity scene
provides the VR environment and communicates with the Python
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server. Detailed setup and usage instructions are available in the
accompanying Readme file in the code repository.

11 Conclusion
In this study, we have demonstrated the viability of using Motion
Passwords for user verification in XR environments. Our findings
show that motion-based verification works effectively with Mo-
tion Passwords. The similarity-learning model, in particular, has
proven to be a reliable method for distinguishing genuine users
from impostors, even under various attack scenarios.

However, while the motion-based layer has shown promising
results, there remains significant potential for enhancing verifica-
tion reliability by integrating additional layers of security, like OCR
or handwriting style recognition techniques. These enhancements
can further establish Motion Passwords as a robust and versatile
verification method, combining ease of use with additional security.
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