
Automatic Data Exchange and Synchronization for Knowledge-Based 
Intelligent Virtual Environments 

 
 

Guido Heumer ¹ 

 AI & VR Lab,  
Faculty of Technology,  
University of Bielefeld  

P.O. Box 10 01 31  
33501 Bielefeld, Germany 

Malte Schilling ² 

AI & VR Lab,  
Faculty of Technology,  
University of Bielefeld  

P.O. Box 10 01 31 
33501 Bielefeld, Germany 

Marc Erich Latoschik ³ 

 AI & VR Lab,  
Faculty of Technology,  
University of Bielefeld  

P.O. Box 10 01 31  
33501 Bielefeld, Germany

 

 

ABSTRACT 
Advanced VR simulation systems are composed of several 

components with independent and heterogeneously structured 
databases. To guarantee a closed and consistent world simulation, 
flexible and robust data exchange between these components has 
to be realized. This multiple database problem is well known in 
many distributed application domains, but it is central for VR 
setups composed of diverse simulation components. Particularly 
complicated is the exchange between object-centered and graph-
based representation formats, where entity attributes may be 
distributed over the graph structure. This article presents an 
abstract declarative attribute representation concept, which 
handles different representation formats uniformly and enables 
automatic data exchange and synchronization between them. This 
mechanism is tailored to support the integration of a central 
knowledge component, which provides a uniform representation 
of the accumulated knowledge of the several simulation 
components involved. This component handles the incoming–
possibly conflicting–world changes propagated by the diverse 
components. It becomes the central instance for process flow 
synchronization of several autonomous evaluation loops. 
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1 INTRODUCTION 
The design and creation of believable immersive Virtual Reality 

(VR) applications and environments is challenging. The diverse 
simulation tasks involve the methodical and technical integration 
of several different simulation processes. A multitude of projects 
nowadays support application design with software tools targeted 
at VR development: DIVE [1], NPSNET [2], MASSIVE-3 [3], 
VR Juggler [4], GNU/MAVERIK [5],  DEVA3 [6], Lightning [7], 
AVANGO [8] or commercial game engines–only to name a few–
incorporate a multitude of concepts, methods and solutions for the 
diverse tasks of a VR simulation system. 

Nevertheless, at a certain point even the most elaborate tool will 
lack a required feature; hence most of the VR development tools 
provide methods for proprietary extensions, which are widely 
utilized for advanced applications. Such applications are often 
based on heterogeneous software setups. The resulting complexity 
involves application-tailored data exchange, data replication and 
process flow synchronization methods between components. This 
significantly complicates system maintenance as well as 
reusability and exchangeability of once developed and integrated 
components. For this reason, in contrast to supporting as many as 
possible features out of the box, component-based approaches 
explicitly modularize the involved tasks by defining clear 
interfaces between the modules to be integrated [9, 10]. 

Work at our lab focuses at the application of Artificial 
Intelligence (AI) techniques to Virtual Environments (VEs). 
Projects thematically range from Virtual Construction to Human-
Computer-Interaction (HCI), e.g. including work on multimodal 
interaction and on communication setups with our artificial 
humanoid communication counterpart called MAX. These 
approaches require purpose-built solutions for the technical 
integration of AI methods into VR and real-time graphics setups. 
For example, we have used several graphics packages from 
OpenGL to Open Inventor and SGI’s Performer library as well as 
a variety of solutions for collision detection and physics 
simulation. Nowadays, we mainly utilize AVANGO [8] as the 
high level VR framework. 

Regarding the AI side, these tools had and have to be integrated 
with an additional diversity of concepts, methods and associated 
software tools, e.g. rule-based systems, structural representations 
(frames, semantic networks), distributed agent based as well as 
connectionistic approaches (neural networks). 

AI and knowledge based principles can significantly enrich VR 
applications. At a certain point, our VEs have to be intelligent to 
be believable since simulating the reality will always be an 
approximation and simulation accuracy is costly with respect to 
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the deployed computing resources. Here, techniques from 
Artificial Intelligence and knowledge based systems have 
frequently proven to be useful as they support e.g. the heuristic 
approximation of physical simulations [11]. Furthermore, novel 
interaction methods, like multimodal interfaces [12-14], require a 
semantic representation of the virtual scene. To understand 
multimodal utterances and the user’s intention, the system must 
have access to various types of knowledge, including background, 
general and specific task knowledge. 

The required knowledge and the simulation system’s internal 
representations are tightly correlated. For example, RGBA values 
of an entity correspond to a color, which under the given lighting 
parameters would be described in communication as “green”; a 
given 4x4 transformation that defines position and orientation of 
an entity would be interpreted from a humanoid’s frame of 
reference as being e.g. on the left side for a given time span. The 
AI and VR representations of a given scene are more precisely 
described as different views of the same domain–the virtual scene. 
This motivates a common representation layer, which includes 
knowledge and data required by all deployed simulation modules. 
Such a knowledge representation layer (KRL) then becomes the 
central knowledge- and database and would inherently support the 
design of Intelligent Virtual Environments (IVEs) [15] that 
include semantic information [16, 17] as well as simulation 
specific data in a central knowledge base. 

2 VR SYSTEM DESIGN 
This article describes the foundation of our approach for an IVE 

platform. Its overall architectural design is illustrated in figure 1 
and will be described in detail in subsection 2.2. This platform 
provides application designers with interconnection methods for 
required simulation modules, which are arranged around a central 
KRL. For compatibility and performance reasons, the diverse 
modules are not forced to work on a central data representation. In 
contrast, they are synchronized with the KRL and with each other 
in a predefined and determined way. Hence, as critical features 
such a platform has to provide data exchange and synchronization 
facilities. 

As mentioned before, creating a Virtual Reality comprises 
diverse simulation tasks. If they do not support these tasks out-of-
the-box, most VR frameworks at least provide several extension 
mechanisms. For example, the VR framework AVANGO is built 

on top of OpenGL Performer for rendering purposes and adopts 
the scene graph as a central database. The Performer scene graph 
is extended by a field concept that provides a dataflow network of 
field connections similar to VRML.  

AVANGO provides built-in concepts for display abstraction, 
3D user interaction and network distribution. Additional 
functionality (e.g. a dynamics simulation), can be realized via 
AVANGO’s extension concept, e.g. by utilizing the scripting 
facility or by creating new node types, which provide the required 
functionality. These extension nodes are integrated into the scene 
graph. However, as illustrated in [18], the scene graph as a data 
structure has been conceived for graphics display purposes and 
often is inappropriate for certain other simulation tasks. 

2.1 Component-based Approach 
Another promising and reasonable architecture for a VR-system 

is the interconnection of stand-alone components for the diverse 
simulation tasks. Here “stand-alone” denotes the components’ 
usability and functionality outside of the context of the whole 
system. Prominent simulation tasks include, e.g. graphics, audio 
and haptic rendering, user interaction, simulation of physical 
properties, distribution support as well as advanced tasks, like e.g. 
AI reasoning. The most significant advantages of such a 
component-based approach are: 

1. Reusability: Components that are functional on their own 
can be used in multiple differently structured overall 
systems. This reduces effort for development. Results of 
completed projects can be integrated in new projects 
without the need for redesigns. 

2. Exchangeability: In case one component does not fulfill 
its function in a satisfactory way or a more appropriate 
component becomes available, a component can be 
exchanged with relatively little adaptation effort. 

3. Modularity: The functionality of the overall system can 
be extended in a flexible way by adding new components. 
On the other hand, a component can be omitted, should its 
functionality not be necessary. For example, an application 
that only presents a simple walkthrough in most cases does 
not need a full dynamics simulation etc. By omitting 
unnecessary components resources are saved, which 
benefits the other components. 

However, this component-based approach also implies one 

Figure 1 – Represented knowledge and interconnected domains in the FESN. Identical attributes are shared between components as 
illustrated with the position concept in the lower left area. Mediators control the mapping between differently structured attributes connoting 
the same concept or thing. 
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significant problem. Each of the stand-alone components has its 
own specialized world representation, which is customized and 
restricted to the particular functional aspect of the virtual 
environment simulated by the component (e.g. graphics, sound, 
dynamics etc.). The structure of this representation is optimized 
for the specific demands and peculiarities of the component’s 
functional domain: For example, a hierarchical scene graph has 
proven to be useful for computer graphics whereas object-
centered formats based on world coordinates are often favored in 
dynamics simulations (the different formats are illustrated in more 
detail in section 4.1). 

Some of the data in the different components is only relevant 
for the specific simulation domain of the respective component 
such as sampled audio files for the audio output component, mass 
and density properties for the dynamics component etc. Other data 
however is relevant for several of the participating components. 
For example, the spatial position and orientation of an object is 
relevant for the graphical display as well as for dynamics 
simulation, for audio output and more. 

Thus, the knowledge about world entities is partly kept 
redundantly in the different world representations of the particular 
components. In a dynamic world where objects undergo changes 
over time, this redundant data has to be constantly aligned 
(synchronized) for the jointly simulated world to be consistent. 
The big challenge in this database synchronization lies in the 
structural heterogeneity of the particular world representations, 
which are mostly incompatible. Our proposed approach for a 
unified handling of heterogeneous representation formats will be 
discussed in section 4. 

2.2 Overall Architecture 
Another critical implication of the component-based approach 

for a VR system is the loss of a central controlling instance or 
rather the possible existence of several autonomous simulation 
processes. Since these processes do not have knowledge about 
each other, conflicting world changes are prone to occur. For 
example, the dynamics component might move an object 
downward due to the force of gravity while the user interaction 
component reports the object to be moved upward, because the 
interacting user drags it. Therefore a central data representation 
instance is required, which resolves conflicts in world changes as 
generated by the participating components.  

Here, we propose a central knowledge representation layer 
(KRL) that handles conflicting world modifications and 
guarantees consistency of the overall simulation. Additionally it 
provides a base formalism for AI content. 

This base formalism has to be powerful enough to subsume the 
formats of all the connected simulation components. Graph 
representations have shown to be appropriate for modeling 
knowledge. They are easy to use and the representation of 
relations is straightforward as part of the formalism. Furthermore, 
commonly used representation formalisms of VEs, e.g. scene 
graph structures or objects with attributes, are seamlessly 
integrated in such graph representations. Hence, we have 
developed a graph-based representation as the base formalism for 
the KRL: A functionally extendable semantic network (FESN). 

In addition to its purpose as a central facility to resolve 
conflicting world changes, the FESN base formalism is 
characterized by the following features: 

1. It provides a central representation for inferences. 
Reasoning processes can access the full context 
represented in a virtual scene. This includes background 
knowledge provided by connected simulation components. 

2. It provides one central place for the definition and design 
of a VE. Designers do not have to separately create, e.g. 

graphics content, a dynamics database, interaction rules 
etc. but these can be directly modelled using the FESN.  

3. It provides a basis for high-level definitions of interaction 
patterns. This includes abstract specifications of desired 
direct manipulation metaphors as well as of advanced 
multimodal interfaces. 

Technically, the component-based architecture requires a 
mediator layer between the particular simulation components and 
their respective data representation formats. From the mediator 
layer’s point of view, the FESN is a component like any other, 
whose data has to be synchronized with the other components. 
However, the connection pattern in our approach sets the FESN as 
the central point of a star-like topology, so all other components 
are connected with it in a point-to-point manner. This enables the 
FESN for its role to supervise overall attribute value changes and 
to resolve conflicting events. 

Figure 1 illustrates the overall architecture of the resulting VR 
platform. In a first implementation we are using the AVANGO 
VR framework and the commercial Vortex dynamics engine as 
simulation components. These are connected through the mediator 
layer to the central KRL, which will be explained in detail in the 
following section. 

3 FUNCTIONALLY EXTENDABLE SEMANTIC NET 
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Figure 2 – The several different knowledge areas that comprise the 
knowledge in an IVE. The concrete instances in the current scene 
or A-Box (since it represents assertional knowledge) are connected 
to concepts of different domains (graphics, physics, lexicon etc.). 

Information in the FESN is stored—as typically known from 
semantic nets—in nodes and relations (the base constructs). Nodes 
denote individuals in case of instances or concepts in case of 
abstract knowledge. They are explained through their relations 
and the related nodes. The background knowledge distinguishes 
several parts specific to the simulation modules. The concept 
knowledge also disperses into different parts corresponding to the 
different domains. Instead of solely distinguishing knowledge 
between assertional box (A-Box) and terminological box (T-Box) 
we further subdivide the T-Box into a physics box, a graphics box, 
an audio box, etc (see figure 2) [19]. Their data and knowledge 
representations are connected to the present assertions, where 
simulation specific components add assertions strongly bound to 
their domain and the corresponding semantics. 

In the integration of the different knowledge domains—
considering VR as the field of application regarding semantics—
the perceivable VE is represented as a whole inside the FESN. 
Consequently, the FESN holds knowledge about all visible 



objects, their possible relations and qualities as well as (inter-) 
actions suitable in the simulated situation. 

Since the FESN is acting as the central knowledge base for an 
IVE, it has to be real-time capable. Our implementation fulfills 
this requirement by storing information locally inside the nodes 
and relations as well as globally—indexed in a global lookup 
table. Therefore requests can be answered efficiently in two 
ways—querying a fact directly at a node or traversing the graph—
which both have proven to work efficiently. 

The FESN has its origin in classic semantic nets, but its 
utilization for IVEs requires the extension of the semantic network 
formalism. The main aspects to this extension, which will be 
explained in detail in the following subsections, are: 

1. Frame-like node structure 
2. Functional extensibility of the base constructs 
3. Event system 
4. Open and persistent exchange format 

3.1 Frame-like Node Structure 
Simulation components that have object-centered representation 

formats represent simulated entities as objects containing a set of 
attributes and values defining these entities’ properties. 
Representing such facts in a graph can be awkward and confusing. 
For this reason, the FESN offers an object-centered view of 
objects and concepts. Corresponding to the AI concept of frames, 
nodes can have attributes or slots, so they contain sets of slot-
name-value-pairs. The values can be of any type, including 
complex object structures, which are then wrapped inside the slot. 
Slots are also augmented with information about value inheritance 
to instances. The instantiation relation has to be functionally 
extended (see below) to consider these markings and to process 
the inheritance of values accordingly. 

3.2 Functional Extensibility of the Base Constructs 
Some of the defined concepts have an extended meaning in a 

specific application context. This direct semantics binds the 
meaning of a node or relation to the specific functionality in a 
simulation component.  

For example, a “supports” relation may denote that an object is 
lying on another object. If the supporting object moves, the 
supported object should move accordingly. Regarding a scene 
graph based visualization component, this semantics would 
normally be implemented by a hierarchical scene graph grouping. 
To reflect this, the supports relation in the FESN can be extended 
by a function, which—in case of an instantiation of a supports 
relation between two objects—automatically generates the 
required scene graph structures inside the visualization 
component. Nodes and relations in the FESN can be functionally 
extended to fulfill the extended meaning or function in the 
corresponding application. On the one hand, these base constructs 
have their semantics given through the semantic net by their 
relations or related constructs. On the other hand, they are bound 
to the specific functionality in a simulation component, which is 
defined in a procedural way. 

Other examples are the instantiation and subsumption relations 
which, among other things, define the inheritance of certain 
attributes and structures (relations to other nodes) along these 
relations. Does an attribute of a certain concept mean that for a 
concept's instance such an attribute exists—or does it mean that 
all instances inherit the value itself? The inheritance of attributes 
and structures has to be regulated and the special meaning of these 
relations has to be addressed. Again, the described extension 
mechanism is utilized to define additional functions for the 
instantiation and subsumption relations. These functions now 
implement how the regulated inheritance is applied to the 
involved concepts and individuals. 

3.3 Event System 
Different domains and applications work on the FESN 

concurrently. Modifications of structures or attribute values inside 
the central knowledge representation have to be supervised. The 
FESN offers a synchronized event system, allowing the 
propagation of modifications automatically. It collects all 
modifications from the different simulation components (for a 
detailed explanation of the synchronization process see section 5). 
Receiving more than one event for an attribute may cause a 
conflict inside the base construct. The base construct itself must 
decide which event to accept or how to integrate the collected 
events. Therefore, the concept of event filters has been introduced. 
An event filter encapsulates a heuristic how to deal with 
conflicting or concurrent events, collected during a simulation 
cycle in a base construct of the FESN. The event filter can just 
choose one of the events (e.g. the most recent one), can have 
several preferences (e.g. events from a specific simulation domain 
should be preferred), or can implement any other heuristic (e.g. 
interpolate a new result event out of all the events). 

3.4 Open and Persistent Exchange Format 
Graph representations generally benefit from their easy and 

straightforward way of representation. The meaning of objects and 
concepts is expressed by describing their relations and 
interconnections. Thus, the FESN is accessible in a suitable and 
human understandable way. Existing knowledge can easily be 
maintained and new knowledge can easily be added. For this 
purpose, the structure of the semantic net and attribute values are 
expressed in an XML-Format similar to ontology description 
formats as OIL or OWL—making it possible to exchange 
knowledge and to connect to common knowledge expressed in an 
ontology description. 

4 AUTOMATIC DATA EXCHANGE 
As has been illustrated, the overall goal is the design of a VR 

platform, which composes diverse stand-alone components and 
which aligns their respective databases through a central data 
exchange and synchronization mechanism. The need arises for a 
mediator layer between the components that automatically keeps 
the redundant data in the databases of the participating 
components synchronized. To achieve this, the mediator layer 
needs a formalism to represent all the different representation 
formats in an abstract, uniform and declarative way and to provide 
a means to convert attribute information from one format to 
another. Furthermore, the mediator layer has to be extendable to 
support the integration of new components or the replacement of 
old ones without a complete redesign of the overall application or 
the mediator layer. As mentioned before the main challenge lies in 
the structural heterogeneity of the different representation formats. 
In this section we introduce a concept for an abstract formalism 
that integrates all these formats in a uniform way and thus enables 
automated data exchange between them. 

4.1 Structural Heterogeneity 
Essentially two large groups of representation formats can be 

distinguished. One group comprises the object-centered formats 
and the other the graph-based or structural formats. In the first 
group the world is represented by a loose collection of entities or 
objects and all data relevant to an object is kept locally in its 
attributes. This kind of representation format is often found in 
dynamics simulation engines or computer game engines. 

In graph-based representation formats the objects or world 
entities are arranged in an integrative overall graph structure. This 
group can be subdivided further, according to the type of graph-
structure used. Classic scene graph structures use a hierarchical 



acyclic graph with a defined root node whereas more general 
graph structures like semantic networks may contain cycles and 
have no defined root or starting point. Object properties in this 
group of formats are also defined by attributes of the single nodes. 
The crucial difference to the object-centered formats however, is 
the possible distribution of attribute information. Attribute 
information does not have to be only locally defined but can be 
spread over parts of the graph structure. A classic example for this 
is the global transformation information of geometry in a scene 
graph structure, which usually is not only specified by a single 
transformation matrix in one node, but by the combination of 
several matrices along a certain path through the scene graph. 
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Figure 3 – Attribute value exchange between a scene graph based 
and an object-centered representation format. A conceptual 
representation is needed to define how the distributed 
transformation information in the SG is combined to the global 
transformation. 

To be able to exchange such distributed attribute information 
with a representation format where this information is kept locally 
(or even a differently structured representation), a conceptual 
representation is needed (see figure 3) where the contributing 
attributes and rules for their combination to a total value are 
declared. 

4.2 Composite Attributes 
To unify all the representation formats mentioned above under 

one formalism, we propose the concept of a composite attribute 
(or short CA). Generally, a CA is a data structure that defines how 
several partial attributes are combined to calculate a total attribute 
value. Structurally a CA consists of a sequence of (container-) 
objects that are connected pair wise by relations. In each of the 
objects one attribute is marked respectively for being relevant for 
total attribute value calculation. The resulting structure is a linear 
chain of relations, which connects objects that contain attributes 
(see figure 4). 

 

ID: CA1

O1 O2 O3

a1 a2 a3

R 1

 ObjectChangeHandler

 AttributeChangeHandler
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Figure 4 – Example for a CA structure corresponding to a path 
through a scene graph. Objects, attributes and relations are 
represented and have references to their counterparts in the 
original SG. Event handlers record changes. 

The constituents of the CA structure (objects, attributes and 
relations) contain references to the concrete implementation 
instances of the respective simulation component. In the 
transformation example each of the objects in the CA (O1, O2 and 
O3) correspond to nodes in the scene graph, the attributes (a1, a2 
and a3) are the transformation-fields in these nodes containing 
transformation matrices and the relations between the objects (R1 
and R2) refer to the parent-child relation between the nodes. Thus, 
a CA structure essentially corresponds to a path through the 
structural graph of the simulation component’s database. 

4.2.1 Evaluation Algorithm 
To calculate the total value of a composite attribute the relation 

chain of the CA structure is iterated. A certain arithmetic (or 
calculation rule) is determined per relation, which is defined by 
the types of the structural components involved - namely the 
connecting relation, the two connected objects and their marked 
attributes (see figure 5). Technically, the arithmetics are kept in a 
central arithmetics-table and are addressed by a key, which is 
generated from the five types. An arithmetic combines two 
attribute values of a given type to a new composite value. For the 
first relation the values of the attributes in the first two objects 
(w(a1) and w(a2) in figure 5) are used as parameters and an 
intermediate value is calculated. For all following relations the 
current intermediate value is used as the first parameter, the value 
of the second object’s attribute is used as the second parameter, 
and a new intermediate value is calculated. This procedure is 
repeated for each relation in the chain, and finally the result of the 
last calculation step delivers the total value of the composite 
attribute: w(CA1) 

Generally, the evaluation process is a linear chaining of freely 
definable calculations, which corresponds to a traversal of the 
partial graph described by the CA structure and the accumulation 
of a state value from the partial attributes. 
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 f6: W2 x W3 –> W3

arithmetic table

 fn

ID: CA1

O1 O2 O3

a1 a2 a3

R 1 R 2

: W1

Iteration:
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step 1

type(O1), type(O2), type(a1), type(a2), type(R1)

step 2

 
Figure 5 – Evaluation of the CA structure to its total value. Iteration 
over the relation chain is performed, determining an arithmetic for 
each relation. This arithmetic determines how the partial attribute 
values are combined to a total value. 

It has to be regarded that the value types of the arithmetics’ 
parameters have to be compatible to the value types of the 
attributes (W1 to W3 in figure 5). In the global transformation 
example, the corresponding arithmetic would be the matrix 
multiplication combining the relative transformation matrices in 
the fields of the scene graph nodes to the global transformation 
matrix. 

Whenever one of the participating attribute values changes, the 
composite attribute’s total value has to be recalculated by the 
mediator layer. This value can then be synchronized with the other 
participating simulation components (for details on this see 
section 5).  



It is important to keep in mind that a composite attribute 
changes its value not only if one or more of its partial attributes 
change their values. The total value might also change if the 
constituting structure as such is changing (e.g. parts of the scene 
graph are regrouped). To ensure robustness against this type of 
value changes the CA representation in the mediator layer has to 
be kept informed about all structural changes in the underlying 
native structure as well and has to be modified accordingly. 

A CA structure representing an attribute in an object-centered 
representation format is a special case, because in this case an 
attribute is not composed of several partial attributes but 
completely locally defined. In this case the CA structure consists 
of only one object with a marked attribute. The mediator layer 
now only has to detect value changes in this attribute and inform 
the other connected components about this, while converting the 
values between the different formats. 

4.2.2 Assignment of Values 
A more complicated case is the reverse direction, i.e. the 

insertion of a new total value into the CA structure (from right to 
left in figure 3). The problem here is to determine which of the 
partial attributes have to change their values so that the total value 
of the CA structure yields the desired new value. In most cases, 
where two or more partial attributes are involved, there would be 
an infinite number of possibilities to distribute the values that 
would result in the same total value. Hence, there is no single 
defined solution to calculate. In our approach, a certain designated 
attribute is defined during setup of the CA structure. This 
particular attribute and only this one is the attribute that value 
changes are applied to while all other partial attributes in the CA 
are left unchanged. 

Determining the target value for the designated attribute 
requires two inverse functions for a given arithmetic: the left-
inverse, which calculates the first parameter given the result and 
the second parameter of the original arithmetic and the right-
inverse, which yields the second parameter given the result and 
the first parameter. Hence, if the arithmetic evaluates to 
f (w1, w2) = wR the left-inverse delivers f –L (wR, w2) = w1 and the 
right-inverse f –R (wR, w1) = w2. These inverses are also kept in the 
arithmetics-table and are addressed by object types, attribute types 
and relation type, analogous to the arithmetic itself. 
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Figure 6 – Reverse direction of the evaluation algorithm of a CA 
structure. The attribute a4 is the designated attribute, whose new 
value has to be calculated. Two iterations are performed, 
accumulating the temporary values tmpH and tmpV. These are 
combined to the desired value of the designated attribute in the last 
step. The value of a2 w(a2) is abbreviated with w2 etc. 

Figure 6 illustrates the algorithm for the reverse direction. 
Generally, two iterations are performed. The first iteration works 
backwards over the relation chain, accumulating a temporary 
value tmpH using the left-inverse. tmpH is initialized with the 
new desired value for the CA: w’(CA2). This iteration terminates 

when the designated attribute ades (a4 in this case) is reached, i.e. 
it is contained in the first object of the currently processed 
relation. The second iteration works from the beginning of the 
relation chain forward, using the original arithmetic, and 
accumulating a second temporary value tmpV, which is initialized 
with the value of the first attribute w(a1). When the second 
iteration reaches the designated attribute (i.e. it is contained in the 
second object of the currently iterated relation), the desired value 
of the designated attribute is calculated from the temporary values 
by using the right-inverse: w’(ades) = f –R (tmpH, tmpV) 

4.2.3 Conclusion 
With the formalism introduced here, arbitrary combinations of 

attribute values along a linear path through a graph can be 
described. Total values of such composite attributes can be 
calculated from the structure and new values assigned to the 
structure. This permits the exchange of graph-based representation 
formats with object-centered formats. By allowing the free 
definition of arithmetics in an arithmetics table, which is 
addressed by the types of the involved objects, extensibility 
towards arbitrary combinations of objects, attributes and relations 
is granted. 

4.3 Extendable Mediator Layer 
For our VR simulation platform the described data exchange 

formalism has been implemented as an extendable mediator layer. 
To facilitate the integration of future components into the system, 
a design was chosen that conceives the separation into a main 
mediator component and component-specific wrapper layers (see 
figure 7). 
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Figure 7 – Software engineering view on the mediator framework 
and connected components. Components are connected through 
specific wrapper layers, which implement a common interface, 
ensuring extendibility. 

The main component implements the structural exchange 
mechanism, using the CA concept, and manages the connected 
wrappers. A wrapper layer realizes the part of the mediation 
process that is specific to its connected component, like the 
mapping between the CA structure and the component’s 
implementation instances. The advantage of this wrapper-based 
approach is, that a wrapper layer has to be developed only once 
for a given component. From then on, it can exchange values with 
all simulation components that wrappers will be written for at a 
later point of time. 

For each attribute that is to be synchronized between two or 
more simulation components, a CA structure is defined in the 
wrapper layers of each of the participating components. Each CA 
structure defines how the attribute value is calculated for this 
individual component. By assigning a global ID (e.g. CA1 in 
figure 7) for each composite attribute, the mediator layer knows 
which CA structures it has to synchronize in which wrappers. The 
wrapper layer registers the CA structures with the event system of 
the connected component to keep it informed about value as well 



as structural changes. In case no event system exists for a given 
component, the wrapper layer has to poll the component’s 
database for value changes—however this only has to be 
performed for the relevant attributes. 

Another function of the wrapper layers is the conversion of 
values between the formats of the simulation components. To 
ensure extensibility here, the wrapper has to provide methods to 
convert values from the native format of the simulation 
component to a general format the mediator layer defines and vice 
versa. Therefore, the mediator layer has an extensible type system 
to identify types of values from the different connected 
components uniquely. 

5 TEMPORAL SYNCHRONIZATION 
After a solution for the structural aspect of synchronizing 

heterogeneous databases has been presented in the preceding 
section, now a concept for the temporal integration of the process 
flow in the overall system is introduced. 

Generally, all simulation components are running in 
independently timed evaluation loops comprised of several update 
steps. For the integrated VR system, we propose to call the 
different update steps and loops from a central synchronization 
facility. This facility also triggers the propagation of value 
changes through the mediator layer. 

It is important for data synchronization that the local database 
of a component is in a consistent state at the time of a global 
synchronization step. This normally is the case only between two 
update-cycles. However, the mediator layer has no knowledge 
about when such points in time are reached. For this reason, the 
wrapper layers define a synchronization method that is called by 
the synchronization facility when the simulation component has 
finished its update cycle. This call prompts the component to 
propagate its value changes via the mediator layer to all other 
components, which subscribed for the CAs in question. The 
mediator layer provides two mechanisms to handle the value 
changes in the receiving components. Either they can be collected 
in form of value change events in dedicated event loops for later 
processing or they can be applied directly to the local database. 
Which mechanism is used depends on the overall synchronization 
policy. 

The temporal flow of the synchronization process in our 
integrated VR system is divided into three stages, which are 
repeated in a loop (see figure 8): 

1. Collect stage: All value changes in the databases of 
connected components are determined and sent in form 
of value change events to dedicated event-queues in the 
FESN, where they are collected. To achieve this, an 
update cycle of the participating components is executed 
and the synchronization methods of the respective 
wrapper layers are called. 

2. Sync stage: The collected events are processed in the 
FESN and an update step of the FESN is executed. 
Event filters that are attached to the nodes and relations 
in the FESN resolve conflicting events. 

3. Propagate stage: Finally, the events adjusted by the 
event filters in the FESN are propagated to all connected 
components, where they are applied directly to the 
databases. For this purpose, the synchronization method 
of the FESN wrapper layer is called. 

For this approach to be viable, the evaluation loops and update 
steps of the different components have to be controllable 
externally. In our case, this is given for the Vortex dynamics 
simulation and for the knowledge representation layer. The 
AVANGO VR framework originally does not allow external 
control of its main loop. However, due to the open-source status 
of the AVANGO project, we were able to integrate custom-made 
mechanisms, which made the integration possible. Future versions 
of our VR platform, however, may include components that do 
not allow external control or modification of their evaluation 
loops. In this case, several evaluation loops have to be run 
concurrently. For this reason, a more sophisticated 
synchronization mechanism that can handle real concurrency of 
the evaluation loops is subject of our current research. Such a 
scheduling system has to take the complex interrelations and 
interdependencies of the single components of an interactive VR 
system into account. 

6 CONCLUSIONS AND FUTURE WORK 
This paper presented a method for automatic data 

synchronization of redundant data in interconnected autonomous 
simulation components. It proposed a concept of composite 
attributes, which allows the integration of heterogeneous 
representation formats in an abstract, uniform and declarative 
way. This concept facilitates the description of arbitrary 
calculation rules for attribute values along linear paths through 

Figure 8 – The three synchronization stages of the automatic data exchange mechanism: 1. Collect – Value change events from the 
connected components are collected in the FESN.  2. Sync – Conflicting events are resolved through event filters.  3. Propagate – Resolved 
value changes are propagated to the connected simulation components. 
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graph structures (i.e. including scene graphs and semantic nets). 
Thus, it overcomes the structural heterogeneity of simulation 
components and enables data exchange between e.g. graph-based 
and object-centered representation formats. 

The structural aspect of data synchronization is supplemented 
by a concept for the temporal synchronization of data flow in 
component-based simulation architectures. It introduces a central 
knowledge representation layer, which is implemented by a 
functionally extendable semantic net as the base formalism. This 
KRL integrates the various types of knowledge kept in the 
simulation components. It handles and resolves conflicting world 
changes propagated by these components through freely definable 
event filters. 

The mediator layer and the FESN have been developed in [20] 
and [21] respectively. An initial prototype connects the AVANGO 
VR framework with the Vortex dynamics engine and realizes 
automatic data-exchange of object transformation information 
between them. The knowledge representation layer is already used 
to define intelligent simulation operations and advanced 
interaction methods in multimodal virtual construction scenarios. 

The introduced synchronization framework and knowledge 
representation component are the foundation for a knowledge 
based VR platform. Its open and extendible architecture is now 
used to integrate additional components, e.g. to implement a 
stand-alone multimodal interaction component, which is currently 
closely attached to the AVANGO framework.  

Future work will additionally provide alternative components 
for audio, graphics and physics simulation, e.g. by integrating 
OpenSG or Open Dynamics (ODE). Future work on the KRL 
includes research on declarative semantics for the base formalism 
as well as exploration and implementation of alternative AI 
representation methods, e.g. to incorporate neural networks as 
additional base formalisms. In its completion, the projected 
platform will support convenient development of Intelligent 
Virtual Environments. It will support AI-based methods not as 
additional features but instead as central representation facilities. 
These representations will provide an enhanced expressiveness of 
world content and behavior for the design of intelligent VR 
applications. 

REFERERENCES 
[1] C. Carlsson and O. Hagsand. DIVE - A Multi-User Virtual Reality 

System. in VRAIS'93, IEEE Virtual Reality Annual International 
Symposium. 1993. 

[2] M.R. Macedonia, M.J. Zyda, D.R. Pratt, P.T. Barham, and S. 
Zeswitz. Npsnet: A Network Software Architecture For Large Scale 
Virtual Environments. Presence, 1994. 3(4): p. 265-287. 

[3] C. Greenhalgh, J. Purbrick, and D. Snowdon. Inside massive-3: 
flexible support for data consistency and world structuring. in Third 
international conference on Collaborative virtual environments. 
2000: ACM Press. 

[4] A.D. Bierbaum. VR Juggler: A Virtual Platform for Virtual Reality 
Application Development, Master thesis, 2002. 

[5] R. Hubbold, J. Cook, M. Keates, S. Gibson, T. Howard, A. Murta, A. 
West, and S. Pettifer. GNU/MAVERIK: a microkernel for large-
scale virtual environments. in ACM symposium on Virtual Reality 
software and technology. 1999: ACM Press. 

[6] S. Pettifer, J. Cook, J. Marsh, and A. West. DEVA3: Architecture for 
a Large-Scale Distributed Virtual Reality System. in ACM 
Symposium on Virtual Reality Software and Technology VRST'00. 
2000. Seoul, Korea. 

[7] R. Blach, J. Landauer, A. Rösch, and A. Simon. A highly flexible 
virtual reality system. Future Generation Computer Systems, 1998. 
14(3-4): p. 167-178. 

[8] H. Tramberend. A distributed virtual reality framework. in IEEE 
Virtual Reality Conference. 1999. 

[9] K. Watsen and M. Zyda. Bamboo - A Portable System for 
Dynamically Extensible, Real-time, Networked, Virtual 

Environments. in IEEE Virtual Reality Annual International 
Symposium. 1998. Atlanta, Georgia. 

[10] A. Kapolka, D. McGregor, and M. Capps. A Unified Component 
Framework for Dynamically Extensible Virtual Environments. in 
Fourth ACM International Conference on Collaborative Virtual 
Environments. 2002. 

[11] P. Biermann and I. Wachsmuth. Non-Physical Simulation of Gears 
and Modifiable Connections in Virtual Reality. in Proceedings Fifth 
Virtual Reality International Conference (VRIC 2003). 2004. Laval, 
France. 

[12] M. Billinghurst. Put that where? voice and gesture at the graphics 
interface. ACM SIGGRAPH Computer Graphics, 1998. 32(4): p. 60-
63. 

[13] R. Arangarasan and G.N.J. Phillips. Modular Approach of 
Multimodal Integration in a Virtual Environment. in Fourth IEEE 
International Conference on Multimodal Interfaces ICMI'02. 2002. 
Pittsburgh, Pennsylvania: IEEE. 

[14] M.E. Latoschik. Designing Transition Networks for Multimodal VR-
Interactions Using a Markup Language. in Fourth IEEE 
International Conference on Multimodal Interfaces ICMI'02. 2002. 
Pittsburgh, Pennsylvania: IEEE Press. 

[15] M. Luck and R. Aylett. Applying Artificial Intelligence to Virtual 
Reality: Intelligent Virtual Environments. Applied Artificial 
Intelligence, 2000. 14(1): p. 3-32. 

[16] M. Soto and S. Allongue. Modeling methods for reusable and 
interoperable virtual entities in multimedia virtual worlds. 
Multimedia Tools Appl., 2002. 16(1-2): p. 161-177. 

[17] S. Peters and H. Shrobe. Using semantic networks for knowledge 
representation in an intelligent environment. in PerCom'03: 1st 
Annual IEEE International Conference on Pervasive Computing and 
Communications. 2003. Ft. Worth, TX, USA: IEEE. 

[18] W. Bethel. Scene Graph APIs: Wired or Tired? in SIGGRAPH'99 
Conference Abstracts and Applications. 1999. 

[19] M.E. Latoschik and M. Schilling. Incorporating VR Databases into 
AI Knowledge Representations: A Framework for Intelligent 
Graphics Applications. in Sixth IASTED International Conference on 
Computer Graphics and Imaging. 2003: ACTA Press. 

[20] G. Heumer. Framework zum Datenaustausch zwischen heterogen 
strukturierten Simulationskomponenten (A Data Exchange 
Framework for Heterogeneously Structured Simulation 
Components), Diplom (MSc) thesis, Faculty of Technology, 
University of Bielefeld, 2003. 

[21] M. Schilling. Ein Framework für funktional erweiterbare 
Semantische Netzwerke in der Virtual Reality (A Framework for 
Functionally Extendable Semantic Networks in Virtual Reality), 
Diplom (MSc) thesis, Faculty of Technology, University of 
Bielefeld, 2003. 

 
 


