
Automatic Data Exchange and Synchronization for Knowledge-Based
Intelligent Virtual Environments

Guido Heumer ¹

 AI & VR Lab,
Faculty of Technology,
University of Bielefeld

P.O. Box 10 01 31
33501 Bielefeld, Germany

Malte Schilling ²

AI & VR Lab,
Faculty of Technology,
University of Bielefeld

P.O. Box 10 01 31
33501 Bielefeld, Germany

Marc Erich Latoschik ³

 AI & VR Lab,
Faculty of Technology,
University of Bielefeld

P.O. Box 10 01 31
33501 Bielefeld, Germany

ABSTRACT
Advanced VR simulation systems are composed of several

components with independent and heterogeneously structured
databases. To guarantee a closed and consistent world simulation,
flexible and robust data exchange between these components has
to be realized. This multiple database problem is well known in
many distributed application domains, but it is central for VR
setups composed of diverse simulation components. Particularly
complicated is the exchange between object-centered and graph-
based representation formats, where entity attributes may be
distributed over the graph structure. This article presents an
abstract declarative attribute representation concept, which
handles different representation formats uniformly and enables
automatic data exchange and synchronization between them. This
mechanism is tailored to support the integration of a central
knowledge component, which provides a uniform representation
of the accumulated knowledge of the several simulation
components involved. This component handles the incoming–
possibly conflicting–world changes propagated by the diverse
components. It becomes the central instance for process flow
synchronization of several autonomous evaluation loops.

CR Categories: D.2.11 [Software Engineering]: Software

Architectures—Data Abstraction; H.5.1 [Information Interfaces
and Presentation]: Multimedia Information Systems—Artificial,
Augmented, and Virtual Realities; I.2.4 [Artificial Intelligence]:
Knowledge Representation Formalisms and Methods—Semantic
Networks

Keywords: Knowledge Representation, Intelligent Virtual

Environment, Semantic Network, Data Synchronization, Mediator

1 INTRODUCTION
The design and creation of believable immersive Virtual Reality

(VR) applications and environments is challenging. The diverse
simulation tasks involve the methodical and technical integration
of several different simulation processes. A multitude of projects
nowadays support application design with software tools targeted
at VR development: DIVE [1], NPSNET [2], MASSIVE-3 [3],
VR Juggler [4], GNU/MAVERIK [5], DEVA3 [6], Lightning [7],
AVANGO [8] or commercial game engines–only to name a few–
incorporate a multitude of concepts, methods and solutions for the
diverse tasks of a VR simulation system.

Nevertheless, at a certain point even the most elaborate tool will
lack a required feature; hence most of the VR development tools
provide methods for proprietary extensions, which are widely
utilized for advanced applications. Such applications are often
based on heterogeneous software setups. The resulting complexity
involves application-tailored data exchange, data replication and
process flow synchronization methods between components. This
significantly complicates system maintenance as well as
reusability and exchangeability of once developed and integrated
components. For this reason, in contrast to supporting as many as
possible features out of the box, component-based approaches
explicitly modularize the involved tasks by defining clear
interfaces between the modules to be integrated [9, 10].

Work at our lab focuses at the application of Artificial
Intelligence (AI) techniques to Virtual Environments (VEs).
Projects thematically range from Virtual Construction to Human-
Computer-Interaction (HCI), e.g. including work on multimodal
interaction and on communication setups with our artificial
humanoid communication counterpart called MAX. These
approaches require purpose-built solutions for the technical
integration of AI methods into VR and real-time graphics setups.
For example, we have used several graphics packages from
OpenGL to Open Inventor and SGI’s Performer library as well as
a variety of solutions for collision detection and physics
simulation. Nowadays, we mainly utilize AVANGO [8] as the
high level VR framework.

Regarding the AI side, these tools had and have to be integrated
with an additional diversity of concepts, methods and associated
software tools, e.g. rule-based systems, structural representations
(frames, semantic networks), distributed agent based as well as
connectionistic approaches (neural networks).

AI and knowledge based principles can significantly enrich VR
applications. At a certain point, our VEs have to be intelligent to
be believable since simulating the reality will always be an
approximation and simulation accuracy is costly with respect to

¹ gheumer@techfak.uni-bielefeld.de
² mschilli@techfak.uni-bielefeld.de
³ marcl@techfak.uni-bielefeld.de

the deployed computing resources. Here, techniques from
Artificial Intelligence and knowledge based systems have
frequently proven to be useful as they support e.g. the heuristic
approximation of physical simulations [11]. Furthermore, novel
interaction methods, like multimodal interfaces [12-14], require a
semantic representation of the virtual scene. To understand
multimodal utterances and the user’s intention, the system must
have access to various types of knowledge, including background,
general and specific task knowledge.

The required knowledge and the simulation system’s internal
representations are tightly correlated. For example, RGBA values
of an entity correspond to a color, which under the given lighting
parameters would be described in communication as “green”; a
given 4x4 transformation that defines position and orientation of
an entity would be interpreted from a humanoid’s frame of
reference as being e.g. on the left side for a given time span. The
AI and VR representations of a given scene are more precisely
described as different views of the same domain–the virtual scene.
This motivates a common representation layer, which includes
knowledge and data required by all deployed simulation modules.
Such a knowledge representation layer (KRL) then becomes the
central knowledge- and database and would inherently support the
design of Intelligent Virtual Environments (IVEs) [15] that
include semantic information [16, 17] as well as simulation
specific data in a central knowledge base.

2 VR SYSTEM DESIGN
This article describes the foundation of our approach for an IVE

platform. Its overall architectural design is illustrated in figure 1
and will be described in detail in subsection 2.2. This platform
provides application designers with interconnection methods for
required simulation modules, which are arranged around a central
KRL. For compatibility and performance reasons, the diverse
modules are not forced to work on a central data representation. In
contrast, they are synchronized with the KRL and with each other
in a predefined and determined way. Hence, as critical features
such a platform has to provide data exchange and synchronization
facilities.

As mentioned before, creating a Virtual Reality comprises
diverse simulation tasks. If they do not support these tasks out-of-
the-box, most VR frameworks at least provide several extension
mechanisms. For example, the VR framework AVANGO is built

on top of OpenGL Performer for rendering purposes and adopts
the scene graph as a central database. The Performer scene graph
is extended by a field concept that provides a dataflow network of
field connections similar to VRML.

AVANGO provides built-in concepts for display abstraction,
3D user interaction and network distribution. Additional
functionality (e.g. a dynamics simulation), can be realized via
AVANGO’s extension concept, e.g. by utilizing the scripting
facility or by creating new node types, which provide the required
functionality. These extension nodes are integrated into the scene
graph. However, as illustrated in [18], the scene graph as a data
structure has been conceived for graphics display purposes and
often is inappropriate for certain other simulation tasks.

2.1 Component-based Approach
Another promising and reasonable architecture for a VR-system

is the interconnection of stand-alone components for the diverse
simulation tasks. Here “stand-alone” denotes the components’
usability and functionality outside of the context of the whole
system. Prominent simulation tasks include, e.g. graphics, audio
and haptic rendering, user interaction, simulation of physical
properties, distribution support as well as advanced tasks, like e.g.
AI reasoning. The most significant advantages of such a
component-based approach are:

1. Reusability: Components that are functional on their own
can be used in multiple differently structured overall
systems. This reduces effort for development. Results of
completed projects can be integrated in new projects
without the need for redesigns.

2. Exchangeability: In case one component does not fulfill
its function in a satisfactory way or a more appropriate
component becomes available, a component can be
exchanged with relatively little adaptation effort.

3. Modularity: The functionality of the overall system can
be extended in a flexible way by adding new components.
On the other hand, a component can be omitted, should its
functionality not be necessary. For example, an application
that only presents a simple walkthrough in most cases does
not need a full dynamics simulation etc. By omitting
unnecessary components resources are saved, which
benefits the other components.

However, this component-based approach also implies one

Figure 1 – Represented knowledge and interconnected domains in the FESN. Identical attributes are shared between components as
illustrated with the position concept in the lower left area. Mediators control the mapping between differently structured attributes connoting
the same concept or thing.

Table CG

Ledge

CG

 SG-child-of

is-a

Unit

Thing

Table

is-a is-a

inst-of

Ledge CG

has_cg_rep

ledge_2

inst-of

Ledge CG

has_cg_rep

inst-of

sg_child

has_mass

has_material

M
e
d

ia
to

r

 Ledge-Object
material
mass
position
…

dynamics simulation

scene graph /VRledge_1
mass

material

M
e
d

ia
to

r

Ledge

position

has_pos

Cut-out of the knowledge
base represented in the
functionally extendable

semantic network

significant problem. Each of the stand-alone components has its
own specialized world representation, which is customized and
restricted to the particular functional aspect of the virtual
environment simulated by the component (e.g. graphics, sound,
dynamics etc.). The structure of this representation is optimized
for the specific demands and peculiarities of the component’s
functional domain: For example, a hierarchical scene graph has
proven to be useful for computer graphics whereas object-
centered formats based on world coordinates are often favored in
dynamics simulations (the different formats are illustrated in more
detail in section 4.1).

Some of the data in the different components is only relevant
for the specific simulation domain of the respective component
such as sampled audio files for the audio output component, mass
and density properties for the dynamics component etc. Other data
however is relevant for several of the participating components.
For example, the spatial position and orientation of an object is
relevant for the graphical display as well as for dynamics
simulation, for audio output and more.

Thus, the knowledge about world entities is partly kept
redundantly in the different world representations of the particular
components. In a dynamic world where objects undergo changes
over time, this redundant data has to be constantly aligned
(synchronized) for the jointly simulated world to be consistent.
The big challenge in this database synchronization lies in the
structural heterogeneity of the particular world representations,
which are mostly incompatible. Our proposed approach for a
unified handling of heterogeneous representation formats will be
discussed in section 4.

2.2 Overall Architecture
Another critical implication of the component-based approach

for a VR system is the loss of a central controlling instance or
rather the possible existence of several autonomous simulation
processes. Since these processes do not have knowledge about
each other, conflicting world changes are prone to occur. For
example, the dynamics component might move an object
downward due to the force of gravity while the user interaction
component reports the object to be moved upward, because the
interacting user drags it. Therefore a central data representation
instance is required, which resolves conflicts in world changes as
generated by the participating components.

Here, we propose a central knowledge representation layer
(KRL) that handles conflicting world modifications and
guarantees consistency of the overall simulation. Additionally it
provides a base formalism for AI content.

This base formalism has to be powerful enough to subsume the
formats of all the connected simulation components. Graph
representations have shown to be appropriate for modeling
knowledge. They are easy to use and the representation of
relations is straightforward as part of the formalism. Furthermore,
commonly used representation formalisms of VEs, e.g. scene
graph structures or objects with attributes, are seamlessly
integrated in such graph representations. Hence, we have
developed a graph-based representation as the base formalism for
the KRL: A functionally extendable semantic network (FESN).

In addition to its purpose as a central facility to resolve
conflicting world changes, the FESN base formalism is
characterized by the following features:

1. It provides a central representation for inferences.
Reasoning processes can access the full context
represented in a virtual scene. This includes background
knowledge provided by connected simulation components.

2. It provides one central place for the definition and design
of a VE. Designers do not have to separately create, e.g.

graphics content, a dynamics database, interaction rules
etc. but these can be directly modelled using the FESN.

3. It provides a basis for high-level definitions of interaction
patterns. This includes abstract specifications of desired
direct manipulation metaphors as well as of advanced
multimodal interfaces.

Technically, the component-based architecture requires a
mediator layer between the particular simulation components and
their respective data representation formats. From the mediator
layer’s point of view, the FESN is a component like any other,
whose data has to be synchronized with the other components.
However, the connection pattern in our approach sets the FESN as
the central point of a star-like topology, so all other components
are connected with it in a point-to-point manner. This enables the
FESN for its role to supervise overall attribute value changes and
to resolve conflicting events.

Figure 1 illustrates the overall architecture of the resulting VR
platform. In a first implementation we are using the AVANGO
VR framework and the commercial Vortex dynamics engine as
simulation components. These are connected through the mediator
layer to the central KRL, which will be explained in detail in the
following section.

3 FUNCTIONALLY EXTENDABLE SEMANTIC NET

Lexicon

"rotor
blade" "ledge"

. . .

Scene / A-Box

ledge_2

table_1

ledge_1

graphics box

Table CG

Ledge CG Ledge CG

inst-of

Ledge-
Frame

size
friction
…

supports supports

is-a

Ledge

Unit

Thing

is-ais-a

Propeller

Rotor blade

Role-of

part-of

o
b

je
c

tt
y

p
e

ro
le

ty
p

e

fills-role
lex_entry

lex_entry

has_cg_rep

Figure 2 – The several different knowledge areas that comprise the
knowledge in an IVE. The concrete instances in the current scene
or A-Box (since it represents assertional knowledge) are connected
to concepts of different domains (graphics, physics, lexicon etc.).

Information in the FESN is stored—as typically known from
semantic nets—in nodes and relations (the base constructs). Nodes
denote individuals in case of instances or concepts in case of
abstract knowledge. They are explained through their relations
and the related nodes. The background knowledge distinguishes
several parts specific to the simulation modules. The concept
knowledge also disperses into different parts corresponding to the
different domains. Instead of solely distinguishing knowledge
between assertional box (A-Box) and terminological box (T-Box)
we further subdivide the T-Box into a physics box, a graphics box,
an audio box, etc (see figure 2) [19]. Their data and knowledge
representations are connected to the present assertions, where
simulation specific components add assertions strongly bound to
their domain and the corresponding semantics.

In the integration of the different knowledge domains—
considering VR as the field of application regarding semantics—
the perceivable VE is represented as a whole inside the FESN.
Consequently, the FESN holds knowledge about all visible

objects, their possible relations and qualities as well as (inter-)
actions suitable in the simulated situation.

Since the FESN is acting as the central knowledge base for an
IVE, it has to be real-time capable. Our implementation fulfills
this requirement by storing information locally inside the nodes
and relations as well as globally—indexed in a global lookup
table. Therefore requests can be answered efficiently in two
ways—querying a fact directly at a node or traversing the graph—
which both have proven to work efficiently.

The FESN has its origin in classic semantic nets, but its
utilization for IVEs requires the extension of the semantic network
formalism. The main aspects to this extension, which will be
explained in detail in the following subsections, are:

1. Frame-like node structure
2. Functional extensibility of the base constructs
3. Event system
4. Open and persistent exchange format

3.1 Frame-like Node Structure
Simulation components that have object-centered representation

formats represent simulated entities as objects containing a set of
attributes and values defining these entities’ properties.
Representing such facts in a graph can be awkward and confusing.
For this reason, the FESN offers an object-centered view of
objects and concepts. Corresponding to the AI concept of frames,
nodes can have attributes or slots, so they contain sets of slot-
name-value-pairs. The values can be of any type, including
complex object structures, which are then wrapped inside the slot.
Slots are also augmented with information about value inheritance
to instances. The instantiation relation has to be functionally
extended (see below) to consider these markings and to process
the inheritance of values accordingly.

3.2 Functional Extensibility of the Base Constructs
Some of the defined concepts have an extended meaning in a

specific application context. This direct semantics binds the
meaning of a node or relation to the specific functionality in a
simulation component.

For example, a “supports” relation may denote that an object is
lying on another object. If the supporting object moves, the
supported object should move accordingly. Regarding a scene
graph based visualization component, this semantics would
normally be implemented by a hierarchical scene graph grouping.
To reflect this, the supports relation in the FESN can be extended
by a function, which—in case of an instantiation of a supports
relation between two objects—automatically generates the
required scene graph structures inside the visualization
component. Nodes and relations in the FESN can be functionally
extended to fulfill the extended meaning or function in the
corresponding application. On the one hand, these base constructs
have their semantics given through the semantic net by their
relations or related constructs. On the other hand, they are bound
to the specific functionality in a simulation component, which is
defined in a procedural way.

Other examples are the instantiation and subsumption relations
which, among other things, define the inheritance of certain
attributes and structures (relations to other nodes) along these
relations. Does an attribute of a certain concept mean that for a
concept's instance such an attribute exists—or does it mean that
all instances inherit the value itself? The inheritance of attributes
and structures has to be regulated and the special meaning of these
relations has to be addressed. Again, the described extension
mechanism is utilized to define additional functions for the
instantiation and subsumption relations. These functions now
implement how the regulated inheritance is applied to the
involved concepts and individuals.

3.3 Event System
Different domains and applications work on the FESN

concurrently. Modifications of structures or attribute values inside
the central knowledge representation have to be supervised. The
FESN offers a synchronized event system, allowing the
propagation of modifications automatically. It collects all
modifications from the different simulation components (for a
detailed explanation of the synchronization process see section 5).
Receiving more than one event for an attribute may cause a
conflict inside the base construct. The base construct itself must
decide which event to accept or how to integrate the collected
events. Therefore, the concept of event filters has been introduced.
An event filter encapsulates a heuristic how to deal with
conflicting or concurrent events, collected during a simulation
cycle in a base construct of the FESN. The event filter can just
choose one of the events (e.g. the most recent one), can have
several preferences (e.g. events from a specific simulation domain
should be preferred), or can implement any other heuristic (e.g.
interpolate a new result event out of all the events).

3.4 Open and Persistent Exchange Format
Graph representations generally benefit from their easy and

straightforward way of representation. The meaning of objects and
concepts is expressed by describing their relations and
interconnections. Thus, the FESN is accessible in a suitable and
human understandable way. Existing knowledge can easily be
maintained and new knowledge can easily be added. For this
purpose, the structure of the semantic net and attribute values are
expressed in an XML-Format similar to ontology description
formats as OIL or OWL—making it possible to exchange
knowledge and to connect to common knowledge expressed in an
ontology description.

4 AUTOMATIC DATA EXCHANGE
As has been illustrated, the overall goal is the design of a VR

platform, which composes diverse stand-alone components and
which aligns their respective databases through a central data
exchange and synchronization mechanism. The need arises for a
mediator layer between the components that automatically keeps
the redundant data in the databases of the participating
components synchronized. To achieve this, the mediator layer
needs a formalism to represent all the different representation
formats in an abstract, uniform and declarative way and to provide
a means to convert attribute information from one format to
another. Furthermore, the mediator layer has to be extendable to
support the integration of new components or the replacement of
old ones without a complete redesign of the overall application or
the mediator layer. As mentioned before the main challenge lies in
the structural heterogeneity of the different representation formats.
In this section we introduce a concept for an abstract formalism
that integrates all these formats in a uniform way and thus enables
automated data exchange between them.

4.1 Structural Heterogeneity
Essentially two large groups of representation formats can be

distinguished. One group comprises the object-centered formats
and the other the graph-based or structural formats. In the first
group the world is represented by a loose collection of entities or
objects and all data relevant to an object is kept locally in its
attributes. This kind of representation format is often found in
dynamics simulation engines or computer game engines.

In graph-based representation formats the objects or world
entities are arranged in an integrative overall graph structure. This
group can be subdivided further, according to the type of graph-
structure used. Classic scene graph structures use a hierarchical

acyclic graph with a defined root node whereas more general
graph structures like semantic networks may contain cycles and
have no defined root or starting point. Object properties in this
group of formats are also defined by attributes of the single nodes.
The crucial difference to the object-centered formats however, is
the possible distribution of attribute information. Attribute
information does not have to be only locally defined but can be
spread over parts of the graph structure. A classic example for this
is the global transformation information of geometry in a scene
graph structure, which usually is not only specified by a single
transformation matrix in one node, but by the combination of
several matrices along a certain path through the scene graph.

T1'

T2'

T3'

T4'

scene graph conceptual representation dynamics simulation

T = T1' • T2' • T3' • T4'

Tn' relative transformation
T global transformation
 value synchronization

 Ledge-Object

 mass
 material
 dimension
 …

positionT

Figure 3 – Attribute value exchange between a scene graph based
and an object-centered representation format. A conceptual
representation is needed to define how the distributed
transformation information in the SG is combined to the global
transformation.

To be able to exchange such distributed attribute information
with a representation format where this information is kept locally
(or even a differently structured representation), a conceptual
representation is needed (see figure 3) where the contributing
attributes and rules for their combination to a total value are
declared.

4.2 Composite Attributes
To unify all the representation formats mentioned above under

one formalism, we propose the concept of a composite attribute
(or short CA). Generally, a CA is a data structure that defines how
several partial attributes are combined to calculate a total attribute
value. Structurally a CA consists of a sequence of (container-)
objects that are connected pair wise by relations. In each of the
objects one attribute is marked respectively for being relevant for
total attribute value calculation. The resulting structure is a linear
chain of relations, which connects objects that contain attributes
(see figure 4).

ID: CA1

O1 O2 O3

a1 a2 a3

R 1

 ObjectChangeHandler

 AttributeChangeHandler

 RelationChangeHandler

R 2

Figure 4 – Example for a CA structure corresponding to a path
through a scene graph. Objects, attributes and relations are
represented and have references to their counterparts in the
original SG. Event handlers record changes.

The constituents of the CA structure (objects, attributes and
relations) contain references to the concrete implementation
instances of the respective simulation component. In the
transformation example each of the objects in the CA (O1, O2 and
O3) correspond to nodes in the scene graph, the attributes (a1, a2
and a3) are the transformation-fields in these nodes containing
transformation matrices and the relations between the objects (R1
and R2) refer to the parent-child relation between the nodes. Thus,
a CA structure essentially corresponds to a path through the
structural graph of the simulation component’s database.

4.2.1 Evaluation Algorithm
To calculate the total value of a composite attribute the relation

chain of the CA structure is iterated. A certain arithmetic (or
calculation rule) is determined per relation, which is defined by
the types of the structural components involved - namely the
connecting relation, the two connected objects and their marked
attributes (see figure 5). Technically, the arithmetics are kept in a
central arithmetics-table and are addressed by a key, which is
generated from the five types. An arithmetic combines two
attribute values of a given type to a new composite value. For the
first relation the values of the attributes in the first two objects
(w(a1) and w(a2) in figure 5) are used as parameters and an
intermediate value is calculated. For all following relations the
current intermediate value is used as the first parameter, the value
of the second object’s attribute is used as the second parameter,
and a new intermediate value is calculated. This procedure is
repeated for each relation in the chain, and finally the result of the
last calculation step delivers the total value of the composite
attribute: w(CA1)

Generally, the evaluation process is a linear chaining of freely
definable calculations, which corresponds to a traversal of the
partial graph described by the CA structure and the accumulation
of a state value from the partial attributes.

 f1
 f2
 f3: W1 x W2 –> W2
 f4
 f5
 f6: W2 x W3 –> W3

arithmetic table

 fn

ID: CA1

O1 O2 O3

a1 a2 a3

R 1 R 2

: W1

Iteration:

: W2 : W3

tmp := f3(w(a1), w(a2)) tmp := f6(tmp, w(a3)) =: w(CA1)

step 1

type(O1), type(O2), type(a1), type(a2), type(R1)

step 2

Figure 5 – Evaluation of the CA structure to its total value. Iteration
over the relation chain is performed, determining an arithmetic for
each relation. This arithmetic determines how the partial attribute
values are combined to a total value.

It has to be regarded that the value types of the arithmetics’
parameters have to be compatible to the value types of the
attributes (W1 to W3 in figure 5). In the global transformation
example, the corresponding arithmetic would be the matrix
multiplication combining the relative transformation matrices in
the fields of the scene graph nodes to the global transformation
matrix.

Whenever one of the participating attribute values changes, the
composite attribute’s total value has to be recalculated by the
mediator layer. This value can then be synchronized with the other
participating simulation components (for details on this see
section 5).

It is important to keep in mind that a composite attribute
changes its value not only if one or more of its partial attributes
change their values. The total value might also change if the
constituting structure as such is changing (e.g. parts of the scene
graph are regrouped). To ensure robustness against this type of
value changes the CA representation in the mediator layer has to
be kept informed about all structural changes in the underlying
native structure as well and has to be modified accordingly.

A CA structure representing an attribute in an object-centered
representation format is a special case, because in this case an
attribute is not composed of several partial attributes but
completely locally defined. In this case the CA structure consists
of only one object with a marked attribute. The mediator layer
now only has to detect value changes in this attribute and inform
the other connected components about this, while converting the
values between the different formats.

4.2.2 Assignment of Values
A more complicated case is the reverse direction, i.e. the

insertion of a new total value into the CA structure (from right to
left in figure 3). The problem here is to determine which of the
partial attributes have to change their values so that the total value
of the CA structure yields the desired new value. In most cases,
where two or more partial attributes are involved, there would be
an infinite number of possibilities to distribute the values that
would result in the same total value. Hence, there is no single
defined solution to calculate. In our approach, a certain designated
attribute is defined during setup of the CA structure. This
particular attribute and only this one is the attribute that value
changes are applied to while all other partial attributes in the CA
are left unchanged.

Determining the target value for the designated attribute
requires two inverse functions for a given arithmetic: the left-
inverse, which calculates the first parameter given the result and
the second parameter of the original arithmetic and the right-
inverse, which yields the second parameter given the result and
the first parameter. Hence, if the arithmetic evaluates to
f (w1, w2) = wR the left-inverse delivers f –L (wR, w2) = w1 and the
right-inverse f –R (wR, w1) = w2. These inverses are also kept in the
arithmetics-table and are addressed by object types, attribute types
and relation type, analogous to the arithmetic itself.

ID: CA2

O1 O2 O3

a1 a2 a3

R 1 R 2

Iteration:

tmpV := f1(tmpV, w2) tmpV := f2(tmpV, w3)

step 3

O4

a4

R 3

w'(a4) := f3-R (tmpH, tmpV)

step 5

O5

a5

R 4

tmpH := f4-L (tmpH, w5)

O6

a6

R 5

tmpH := f5-L (tmpH, w6)

tmpV := w(a1)Initialisation:

Result:

tmpH := w'(CA2)

step 4 step 2 step 1

Figure 6 – Reverse direction of the evaluation algorithm of a CA
structure. The attribute a4 is the designated attribute, whose new
value has to be calculated. Two iterations are performed,
accumulating the temporary values tmpH and tmpV. These are
combined to the desired value of the designated attribute in the last
step. The value of a2 w(a2) is abbreviated with w2 etc.

Figure 6 illustrates the algorithm for the reverse direction.
Generally, two iterations are performed. The first iteration works
backwards over the relation chain, accumulating a temporary
value tmpH using the left-inverse. tmpH is initialized with the
new desired value for the CA: w’(CA2). This iteration terminates

when the designated attribute ades (a4 in this case) is reached, i.e.
it is contained in the first object of the currently processed
relation. The second iteration works from the beginning of the
relation chain forward, using the original arithmetic, and
accumulating a second temporary value tmpV, which is initialized
with the value of the first attribute w(a1). When the second
iteration reaches the designated attribute (i.e. it is contained in the
second object of the currently iterated relation), the desired value
of the designated attribute is calculated from the temporary values
by using the right-inverse: w’(ades) = f –R (tmpH, tmpV)

4.2.3 Conclusion
With the formalism introduced here, arbitrary combinations of

attribute values along a linear path through a graph can be
described. Total values of such composite attributes can be
calculated from the structure and new values assigned to the
structure. This permits the exchange of graph-based representation
formats with object-centered formats. By allowing the free
definition of arithmetics in an arithmetics table, which is
addressed by the types of the involved objects, extensibility
towards arbitrary combinations of objects, attributes and relations
is granted.

4.3 Extendable Mediator Layer
For our VR simulation platform the described data exchange

formalism has been implemented as an extendable mediator layer.
To facilitate the integration of future components into the system,
a design was chosen that conceives the separation into a main
mediator component and component-specific wrapper layers (see
figure 7).

dynamics simulation

…

…

semantic net

mediator layer

 …
…
…
…

 …
…
…
…

 …
…
mass
…

scene graph / VR

CA1

?

CA1

CA2

CA3

CA1

CA1

future component

w
rapper

w
rapper w

ra
pp
er

w
ra
pp
er

Figure 7 – Software engineering view on the mediator framework
and connected components. Components are connected through
specific wrapper layers, which implement a common interface,
ensuring extendibility.

The main component implements the structural exchange
mechanism, using the CA concept, and manages the connected
wrappers. A wrapper layer realizes the part of the mediation
process that is specific to its connected component, like the
mapping between the CA structure and the component’s
implementation instances. The advantage of this wrapper-based
approach is, that a wrapper layer has to be developed only once
for a given component. From then on, it can exchange values with
all simulation components that wrappers will be written for at a
later point of time.

For each attribute that is to be synchronized between two or
more simulation components, a CA structure is defined in the
wrapper layers of each of the participating components. Each CA
structure defines how the attribute value is calculated for this
individual component. By assigning a global ID (e.g. CA1 in
figure 7) for each composite attribute, the mediator layer knows
which CA structures it has to synchronize in which wrappers. The
wrapper layer registers the CA structures with the event system of
the connected component to keep it informed about value as well

as structural changes. In case no event system exists for a given
component, the wrapper layer has to poll the component’s
database for value changes—however this only has to be
performed for the relevant attributes.

Another function of the wrapper layers is the conversion of
values between the formats of the simulation components. To
ensure extensibility here, the wrapper has to provide methods to
convert values from the native format of the simulation
component to a general format the mediator layer defines and vice
versa. Therefore, the mediator layer has an extensible type system
to identify types of values from the different connected
components uniquely.

5 TEMPORAL SYNCHRONIZATION
After a solution for the structural aspect of synchronizing

heterogeneous databases has been presented in the preceding
section, now a concept for the temporal integration of the process
flow in the overall system is introduced.

Generally, all simulation components are running in
independently timed evaluation loops comprised of several update
steps. For the integrated VR system, we propose to call the
different update steps and loops from a central synchronization
facility. This facility also triggers the propagation of value
changes through the mediator layer.

It is important for data synchronization that the local database
of a component is in a consistent state at the time of a global
synchronization step. This normally is the case only between two
update-cycles. However, the mediator layer has no knowledge
about when such points in time are reached. For this reason, the
wrapper layers define a synchronization method that is called by
the synchronization facility when the simulation component has
finished its update cycle. This call prompts the component to
propagate its value changes via the mediator layer to all other
components, which subscribed for the CAs in question. The
mediator layer provides two mechanisms to handle the value
changes in the receiving components. Either they can be collected
in form of value change events in dedicated event loops for later
processing or they can be applied directly to the local database.
Which mechanism is used depends on the overall synchronization
policy.

The temporal flow of the synchronization process in our
integrated VR system is divided into three stages, which are
repeated in a loop (see figure 8):

1. Collect stage: All value changes in the databases of
connected components are determined and sent in form
of value change events to dedicated event-queues in the
FESN, where they are collected. To achieve this, an
update cycle of the participating components is executed
and the synchronization methods of the respective
wrapper layers are called.

2. Sync stage: The collected events are processed in the
FESN and an update step of the FESN is executed.
Event filters that are attached to the nodes and relations
in the FESN resolve conflicting events.

3. Propagate stage: Finally, the events adjusted by the
event filters in the FESN are propagated to all connected
components, where they are applied directly to the
databases. For this purpose, the synchronization method
of the FESN wrapper layer is called.

For this approach to be viable, the evaluation loops and update
steps of the different components have to be controllable
externally. In our case, this is given for the Vortex dynamics
simulation and for the knowledge representation layer. The
AVANGO VR framework originally does not allow external
control of its main loop. However, due to the open-source status
of the AVANGO project, we were able to integrate custom-made
mechanisms, which made the integration possible. Future versions
of our VR platform, however, may include components that do
not allow external control or modification of their evaluation
loops. In this case, several evaluation loops have to be run
concurrently. For this reason, a more sophisticated
synchronization mechanism that can handle real concurrency of
the evaluation loops is subject of our current research. Such a
scheduling system has to take the complex interrelations and
interdependencies of the single components of an interactive VR
system into account.

6 CONCLUSIONS AND FUTURE WORK
This paper presented a method for automatic data

synchronization of redundant data in interconnected autonomous
simulation components. It proposed a concept of composite
attributes, which allows the integration of heterogeneous
representation formats in an abstract, uniform and declarative
way. This concept facilitates the description of arbitrary
calculation rules for attribute values along linear paths through

Figure 8 – The three synchronization stages of the automatic data exchange mechanism: 1. Collect – Value change events from the
connected components are collected in the FESN. 2. Sync – Conflicting events are resolved through event filters. 3. Propagate – Resolved
value changes are propagated to the connected simulation components.

central knowledge
representation layer

mediator
dynamics

 Ledge-Object
position
mass
material
…

1.collect

{ . . . }
3.propagate

dynamics
simulation

T T

scene graphmediator SG

T1'

T2'

T3'

T4'

T

T1'

T2'

T3'

T4'

is-a

inst-of

Ledge CG

has_cg_rep

ledge_2

inst-of

has_cg_rep

has_mass
has_friction

ledge_1mass

friction Ledge

position

has_pos

event 1
event 2

2.sync

1.collect

graph structures (i.e. including scene graphs and semantic nets).
Thus, it overcomes the structural heterogeneity of simulation
components and enables data exchange between e.g. graph-based
and object-centered representation formats.

The structural aspect of data synchronization is supplemented
by a concept for the temporal synchronization of data flow in
component-based simulation architectures. It introduces a central
knowledge representation layer, which is implemented by a
functionally extendable semantic net as the base formalism. This
KRL integrates the various types of knowledge kept in the
simulation components. It handles and resolves conflicting world
changes propagated by these components through freely definable
event filters.

The mediator layer and the FESN have been developed in [20]
and [21] respectively. An initial prototype connects the AVANGO
VR framework with the Vortex dynamics engine and realizes
automatic data-exchange of object transformation information
between them. The knowledge representation layer is already used
to define intelligent simulation operations and advanced
interaction methods in multimodal virtual construction scenarios.

The introduced synchronization framework and knowledge
representation component are the foundation for a knowledge
based VR platform. Its open and extendible architecture is now
used to integrate additional components, e.g. to implement a
stand-alone multimodal interaction component, which is currently
closely attached to the AVANGO framework.

Future work will additionally provide alternative components
for audio, graphics and physics simulation, e.g. by integrating
OpenSG or Open Dynamics (ODE). Future work on the KRL
includes research on declarative semantics for the base formalism
as well as exploration and implementation of alternative AI
representation methods, e.g. to incorporate neural networks as
additional base formalisms. In its completion, the projected
platform will support convenient development of Intelligent
Virtual Environments. It will support AI-based methods not as
additional features but instead as central representation facilities.
These representations will provide an enhanced expressiveness of
world content and behavior for the design of intelligent VR
applications.

REFERERENCES
[1] C. Carlsson and O. Hagsand. DIVE - A Multi-User Virtual Reality

System. in VRAIS'93, IEEE Virtual Reality Annual International
Symposium. 1993.

[2] M.R. Macedonia, M.J. Zyda, D.R. Pratt, P.T. Barham, and S.
Zeswitz. Npsnet: A Network Software Architecture For Large Scale
Virtual Environments. Presence, 1994. 3(4): p. 265-287.

[3] C. Greenhalgh, J. Purbrick, and D. Snowdon. Inside massive-3:
flexible support for data consistency and world structuring. in Third
international conference on Collaborative virtual environments.
2000: ACM Press.

[4] A.D. Bierbaum. VR Juggler: A Virtual Platform for Virtual Reality
Application Development, Master thesis, 2002.

[5] R. Hubbold, J. Cook, M. Keates, S. Gibson, T. Howard, A. Murta, A.
West, and S. Pettifer. GNU/MAVERIK: a microkernel for large-
scale virtual environments. in ACM symposium on Virtual Reality
software and technology. 1999: ACM Press.

[6] S. Pettifer, J. Cook, J. Marsh, and A. West. DEVA3: Architecture for
a Large-Scale Distributed Virtual Reality System. in ACM
Symposium on Virtual Reality Software and Technology VRST'00.
2000. Seoul, Korea.

[7] R. Blach, J. Landauer, A. Rösch, and A. Simon. A highly flexible
virtual reality system. Future Generation Computer Systems, 1998.
14(3-4): p. 167-178.

[8] H. Tramberend. A distributed virtual reality framework. in IEEE
Virtual Reality Conference. 1999.

[9] K. Watsen and M. Zyda. Bamboo - A Portable System for
Dynamically Extensible, Real-time, Networked, Virtual

Environments. in IEEE Virtual Reality Annual International
Symposium. 1998. Atlanta, Georgia.

[10] A. Kapolka, D. McGregor, and M. Capps. A Unified Component
Framework for Dynamically Extensible Virtual Environments. in
Fourth ACM International Conference on Collaborative Virtual
Environments. 2002.

[11] P. Biermann and I. Wachsmuth. Non-Physical Simulation of Gears
and Modifiable Connections in Virtual Reality. in Proceedings Fifth
Virtual Reality International Conference (VRIC 2003). 2004. Laval,
France.

[12] M. Billinghurst. Put that where? voice and gesture at the graphics
interface. ACM SIGGRAPH Computer Graphics, 1998. 32(4): p. 60-
63.

[13] R. Arangarasan and G.N.J. Phillips. Modular Approach of
Multimodal Integration in a Virtual Environment. in Fourth IEEE
International Conference on Multimodal Interfaces ICMI'02. 2002.
Pittsburgh, Pennsylvania: IEEE.

[14] M.E. Latoschik. Designing Transition Networks for Multimodal VR-
Interactions Using a Markup Language. in Fourth IEEE
International Conference on Multimodal Interfaces ICMI'02. 2002.
Pittsburgh, Pennsylvania: IEEE Press.

[15] M. Luck and R. Aylett. Applying Artificial Intelligence to Virtual
Reality: Intelligent Virtual Environments. Applied Artificial
Intelligence, 2000. 14(1): p. 3-32.

[16] M. Soto and S. Allongue. Modeling methods for reusable and
interoperable virtual entities in multimedia virtual worlds.
Multimedia Tools Appl., 2002. 16(1-2): p. 161-177.

[17] S. Peters and H. Shrobe. Using semantic networks for knowledge
representation in an intelligent environment. in PerCom'03: 1st
Annual IEEE International Conference on Pervasive Computing and
Communications. 2003. Ft. Worth, TX, USA: IEEE.

[18] W. Bethel. Scene Graph APIs: Wired or Tired? in SIGGRAPH'99
Conference Abstracts and Applications. 1999.

[19] M.E. Latoschik and M. Schilling. Incorporating VR Databases into
AI Knowledge Representations: A Framework for Intelligent
Graphics Applications. in Sixth IASTED International Conference on
Computer Graphics and Imaging. 2003: ACTA Press.

[20] G. Heumer. Framework zum Datenaustausch zwischen heterogen
strukturierten Simulationskomponenten (A Data Exchange
Framework for Heterogeneously Structured Simulation
Components), Diplom (MSc) thesis, Faculty of Technology,
University of Bielefeld, 2003.

[21] M. Schilling. Ein Framework für funktional erweiterbare
Semantische Netzwerke in der Virtual Reality (A Framework for
Functionally Extendable Semantic Networks in Virtual Reality),
Diplom (MSc) thesis, Faculty of Technology, University of
Bielefeld, 2003.

