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Abstract

BOODLE (BiOlOgical DeveLopment Environment) is a
long-term project to complement morphometric empirical
studies in the field of developmental biology by means of
interactive modelling and simulation techniques. BOODLE
aims at providing viable behaviour models of cells that fit
recorded time series of morphogenetic stages. This informa-
tion is critical for driving empirical studies and for simulat-
ing the emergence of pathological abnormalities. In this pa-
per, we present a BOODLE prototype that covers the whole
functionality of the envisioned system. The application usage
cycle starts with importing scan data of embryos of model or-
ganisms. Next, it allows the user/experimenter to work with
the imported model, for instance to add meta data, to re-
fine annotations, and even to automatically or manually pop-
ulate the captured volumes with virtual cells. Finally, the
user/experimenter is given the opportunity to run simulation
experiments. To outline how the pipeline works in particular,
we have setup a mockup toy experiment that optimises cell
parameters such that a population of cells develops in accor-
dance with several preset transient states. For all stages of the
modelling and simulation process, BOODLE provides acces-
sible interfaces and visualisations. These include visual pro-
gramming and configuration of individual cells’ behaviours
and physical properties. In this paper, we show how all these
aspects together realise a prototype for a Biologist-in-the-
Loop simulation for the creation, automated optimisation and
analysis of cellular behaviour models.

Introduction

Ever-growing capabilities of modern microprocessors, vast
improvements in multi-core system designs and their avail-
ability as well as raw computing powers offered by cloud
services and according algorithmic solutions are becom-
ing ever more accessible. Computational simulation ex-
periments bear several important advantages over lab work.
They can shed light on critical modelling issues, for in-
stance, by providing the means to run comparisons between
alternative hypotheses, by optimising sets of model parame-
ters, or even by generating whole new hypotheses for empir-
ically captured data. They can be run over long periods of
time, arbitrarily re-run, easily adjusted and their realisation
is comparably cheap. The ability to interact directly with
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a subject of scientific interest often can provide insight and
understanding that requires far more abstraction work when
it has to be obtained through retrospective, static analysis.
Such interactive simulations need to be fed by raw power,
and their flexibility often requires compromise in accuracy
or model complexity. We feel that the gains obtained from
real time interactive in-silico laboratories can be substantial.
However, next to the great demand for computing power, a
multitude of complex computer science challenges obstructs
the path to harnessing these benefits. Computational models
need to be found that capture different kinds of interactions
and at different levels of abstraction. An according infras-
tructure needs to be provided that can integrate empirically
compiled data, both structural and behavioural, according
multi-physics models, algorithmic entanglement of multiple
scales and computational representations of different speci-
ficities. Once these aspects are in place, efficient heuristic
optimisation approaches, such as evolutionary algorithms,
can serve to generate and hone fitting behavioural models.
Apt user interfaces and visualisations need to be in place
to render the envisioned computing framework accessible.
They need to facilitate model building and verification by
domain experts from the life sciences.

In this paper, in analogy to Human-in-the-Loop simula-
tions (Narayanan and Kidambi, 2011), we present our ap-
proach to an according Biologist-in-the-Loop system for in-
teractive modelling and simulation of biological develop-
mental processes (BOODLE). It provides a vast range of
user-centred functionalities tailored specifically to support
work by developmental biologists. Its primary goal is to sup-
port them in testing model hypotheses but also, in the longer
run, to have the BOODLE system generate solutions to hard
problems such as suggesting plausible cell behaviours that
retrace empirically observable phenomena. To these ends,
BOODLE not only makes it possible to import and visu-
alise CT data at interactive speeds but also to proactively
work with this data, for instance to label certain areas or sub-
volumes, or to define optimisation constraints that are then
considered by the aforementioned optimisation engines. For
the prototype presented in this paper we placed great empha-





sis on the accessibility of the functionality of various stages
of the BOODLE application usage cycle. Hence, we have
realised according visualisations and interaction tasks.

The remainder of this work is structured as follows. In
the next section, we present seminal related works regard-
ing cell-based simulations, technologies that BOODLE has
been built upon, and the inherent challenge of guiding self-
organising processes, which is essential for generating and
honing computational models that are aligned with empir-
ically retrieved data. Afterwards, we present the design,
functionalities and workflows of BOODLE, whereas a con-
crete example of its intended use is demonstrated. We con-
clude with a summary and an outline of potential future
work.

Related Work

There have been numerous computational models of com-
plex cellular behaviours. However, the majority of the ex-
isting models are often either overly abstracted (von Mam-
men et al., 2012) or specialised (Santos et al., 2004) for the
simulation of tissue formation. In fact, with respect to de-
velopmental biological models and simulations, especially
the importance of physical interactions has recently been
stressed. For example, the formation of supply networks
or the growth and differentiation of plant stems cannot suf-
ficiently be retraced without considering physical stresses
(Drasdo et al., 2007; Hamant et al., 2008; Uyttewaal et al.,
2010). Therefore, computational models of developmental
processes ideally account for biological as well as for physi-
cal interactions. An example is provided by (Disset et al.,
2014), where cells are modelled as elastic spherical bod-
ies. The cells can establish fine-tuned adhesive forces among
each other, which can break based on external stresses, and
which serve as a basis for forming tissue layers. In gen-
eral, it is important that cell-centered biological develop-
mental models retrace the fundamental interactions listed by
(Salazar-Ciudad et al., 2003). They include division, induc-
tion, adhesion, apoptosis, migration, contraction and matrix
modification (swelling, decomposition, or loss).

CellSys (Swat et al., 2012) is an exemplary framework for
modelling and simulating developmental processes, and also
provides components for visualisation and analysis. Again,
each cell is represented as a spherical, elastic body that can
divide, grow, and migrate. Deformation, compression and
adhesion are implemented following the Johnson-Kendall-
Roberts (JKR) model, which defines the contact mechanics
between elastic spheres. It has been proven that the JKR
model applies to the domain of living cells for as long as the
cytoskeletons are not disrupted (Chu et al., 2005). Explicit
Euler integration drives the equations for diffusion across
discrete grids and consumption of nutrients and growth fac-
tors. Cell parameters that CellSys supports include, for in-
stance, their elasticity, diameter, the diffusion rate of mor-
phogens, surface adhesion, initial orientation of cells. As

a visual outcome of a simulation, the modeller can spec-
ify the colour spectra to highlight areas of pressure, con-
tact, growth and deformation within the simulated cell pop-
ulations. In addition, visualised components can be filtered
based on attributes such as the activity or orientation of cells.
CellSys employs several third-party libraries and interfaces
such as OpenGL, PovRay, OpenMP (in order to parallelise
algorithms), SuperLU (in order to parallelise calculations in
the context of shared-memory systems) and GLUI (for the
development of graphical user interfaces).

Based on these deliberations and preceding works, we have
decided to design BOODLE to integrate established and
continuously extended and improved third-party libraries.
Beyond the fundamental features introduced above, our
work strives for real-time interactivity. To achieve a more
fine-grained, real time interactive physical cell model, we
use the particle-based physics engine FLEX (Macklin et al.,
2014). FLEX considers all physical objects of a simulation
to be composed of numerous particles. Local constraints
among the particles determine the global physical properties
of the resultant objects. This approach allows one to con-
sider soft bodies, deformable bodies, rigid bodies, and fluids
within a single simulation context. FLEX makes heavy use
of GPUs and there are several techniques in place to im-
prove the robustness of physical calculations. Furthermore,
it is subject to ongoing development efforts.

In order to efficiently import and work with volumetric data
sets, we rely on the Point Cloud Library (PCL) (Aldoma
et al., 2012). The technologies we utilise all support real-
time calculations or may be run offline to efficiently fetch
and make use of their results while the simulation is run-
ning. In terms of BOODLE’s front end, we rely on differ-
ent visualisation techniques pursuing novelty, informative-
ness, efficiency and aesthetics (Steele and Iliinsky, 2010)
and to present the imported voxel data in 3D space (Jeong
et al., 2010). Next to third-party libraries that provide func-
tionalities for user interface designs and modalities, visual-
isation techniques, data preprocessing steps and rendering
pipelines, BOODLE also needs to address the grand chal-
lenge of approximating empirically identified structures and
constraints based on individual cellular behaviours.

In artificial life research, this challenge coined the term
guided self-organisation, or GSO. Generally speaking, GSO
aims at models that result in a well-directed increase of or-
ganisational structure or functionality without providing ex-
plicit instructions. Until today, self-organising construction
is a prospering field of research, see, e.g. (Werfel et al.,
2014; Napp and Nagpal, 2014; Soleymani et al., 2015). It
has been broadly acknowledged that guiding self-organi-
sation is an important concept to mastering complex sys-
tems. An overview of guided self-organisation is provided
by (Prokopenko, 2014). GSO draws from formal methods
to describe and effectively guide self-organising processes
(Prokopenko et al., 2014). To this end, measures of organ-



isation and complexity play a crucial role, as do means to
capture the sensitivity of self-organising systems to various
inputs (Prokopenko et al., 2015). Along these lines, empow-
erment, which expresses an agent’s means to handle differ-
ent situations is another important measure to inform GSO
(Salge et al., 2014). In general, tracking, understanding and
predicting the flow of information in self-organising systems
are the foundations to successfully guiding them. Ay and Za-
hedi (2014), for instance, trace the flow between agents’ sen-
sors and their motor activities and draw conclusions about
the system behaviour probabilisitically. Alternatively, one
can influence a self-organising system by setting constraints
or by means of functionals (Gros, 2014) which define gen-
eral goals rather than clear-cut target states relying on prob-
ability functions. Any attempts to let bottom-up calculations
and top-down specifications converge can be pursued to im-
plement an effective GSO. Interactive evolutionary compu-
tation (IEC) realises this idea very directly. Simulations are
run bottom-up, the results are presented to and evaluated
by an operator in such that globally desirable features are
preferred. As an example, an IEC was presented to breed
swarm chemistries, in which swarms of particles are config-
ured to exhibit different movement patterns and spatial for-
mations (Sayama, 2014). Taking interaction out of the loop,
evolutionary computing itself can also guide self-organising
processes as, for instance, presented by (Lobo and Levin,
2015). Here, inner-cellular gene expression pathways in tan-
dem with parameters concerning inter-cellular communica-
tion were optimised to retrace processes of tissue regenera-
tion.

Design and Functionality of BOODLE

In this section, we first lay out the cell model that we have
currently integrated into BOODLE. Second, we elaborate on
its functionality with respect to data imports, editing and or-
ganisation.

The Cell Model

Like any simulator, accuracy and efficiency are both funda-
mental factors in BOODLE’s success. Hence, we are contin-
uously improving our model of the virtual cells. Currently,
our virtual cell is represented as a spherical mesh surface
covered with 64 virtual physical particles as seen in Fig-
ure 1. Different scenarios may require for more or less fine
grained representations, which can be achieved by changing
the number of particles used. As can be seen in Figure 1, the
constraints among the physics particles determine, among
other aspects, the sizes of the cells. A mesh is wrapped
around the particles for visualisation purposes. Different
from approaches where the mesh itself would encode the
physical shape of an object, such a particle-based approach
provides for a far more flexible solution as the particle con-
straints can be changed during the simulations.

Cohesion, division and diffusion of the virtual cells are de-

Figure 1: Nine virtual cells, each of which is comprised of
64 physics particles. The constraints between that hold the
particles in a spherical shape can be adjusted during the sim-
ulation, for instance to simulate cell growth.

Figure 2: A visual programming Blueprint that determines
the population of embryonic volumetric data based on grey
values.

termined by according parameters, which can be defined
by the modeller utilising visual programming scripts called
Blueprints (Figure 2). Blueprints are a part of the Unreal
Engine, a development environment for interactive realtime
systems that we use for content integration and interactive
visualisation.

Figure 3 shows an experiment where aspects of tissue main-
tenance under stress is simulated. A spherical rigid body
(pink) is populated on its surface by virtual cells which ad-
here to each other and divide if the tensile stress they expe-
rience exceeds a certain limit. The cells were not configured
to actively fill void spaces. This is a basic example of the ca-
pabilities of combined soft and rigid body physics possible
with our approach.

BOODLE Workflows

A big part of the work conducted by developmental bio-
logists is characterised by taking measures of morphologic
structures in combination with the underlying gene expres-



Figure 3: Simulated cells, based on a variant of our cell
model, are subjected to tensile stress in an early experiment.
Images ordered in sequence from top-left to bottom right.
Tissue cells, colored from white to red depending on the ex-
perienced tensile stress, placed on a spherical body (pink),
divide when the tensile stress exceeds a set threshold. The
sphere increases its volume continuously, whereas the cells
maintain a low stress level by dividing accordingly.

sions (Zelditch et al., 2012) and inferring according, general
laws, e.g. (Xu et al., 2015). The basis for these inquiries
is provided by series of volumetric data sets that capture
model organisms such as mice and chicks at different de-
velopmental stages (Schambach et al., 2010). In order to
accommodate this empiric methodology, BOODLE allows
to import CT scan data and meta data into the simulation
contexts, to mark surfaces and volumes, to populate specific
areas with virtual cells and to observe, measure and log sim-
ulated model alterations.

In Figures 4 and 5, the main menu is visible at the top of
the screen, offering access to the simulation’s main features.
From left to right, it allows to load CT scan data (Import),
place and modify landmarks (Landmarks), populate the sim-
ulation with virtual cells (Cells), start end stop the simula-
tion (Simulate) and save the simulation state (Save).

Importing Volumetric Data We can import CT scan data
as point clouds into BOODLE. The raw data is used to de-
fine the simulation model as volumetric data points (voxels),
and an additional mesh-based visual representation is gener-
ated from it. Here, PCL (see the Section on Related Work)
provides numerous efficient algorithms used in the prepro-

Landmarks ior Simulate

Q
Load Dicom data from following folder X
C:\Users\Melanie\Desktop\Embryo
Downsample data with grid size
State number of saved data ProjectXSerie 1.0~

Load

Figure 4: User interface dialogue for importing a volumetric
data set to be considered in the context of a specific simula-
tion state.

Figure 5: Visualisation of four simulation states that com-
prise the volumetric data from individual CT scans, meta-
data such as landmarks as well as data about the involved
virtual cells.

cessing, e.g. for segmenting volumetric data, filtering, mesh
generation or model adaption. The voxel data then allows
to automatise the process of populating large regions of the
model space with specifically configured, virtual cells. Fur-
thermore, the user can import full series of CT data sets
and order them with respect to the lifetime of the scanned
specimen. Imported, pre-processed data is stored to ensure
that the time-consuming pre-processing step of the volumet-
ric data (including filtering, removal of outliers, and down-
sampling) only has to be performed once.

The import process is controlled from the main menu (see
Figure 4). Beyond specifying the path to the data set, only
two parameters are exposed to the user: Determining (a)
the rate of down-sampling of the volumetric data set (value
range between 1.2 and 2.2), and (b) the association with and
the order within a specific import series (project name and
index). We refer to a single imported data set as a specific
simulation state. A time series of simulation states is exem-
plarily shown in Figure 5. Landmark data, as well as the data
to define and initialise initial populations of virtual cells, is
stored at the granularity of such simulation states.



11 Landmarks (x, y, 2)
LM1 (585, 2904, 2353)
LM2 (585, 2004, 2353)
LM3 (3297, 1380, 2782)
LM4 (3233, 1602, 2754)
LM5 (2820, 1432, 2674)
LM6 (3212, 1483, 2312)
LM7 (3233, 1180, 2413)
LM8 (3196, 1206, 2624)
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Figure 6: The user can mark areas by (a) drawing polygons
and (b) select the voxels underlying these areas.

Editing Landmarks In order to effectively trace the cellu-
lar developments throughout an experiment, biologists seg-
ment and mark certain areas of the scanned data by means
of morphometric software toolkits. They pin landmarks at
specific spatial locations. As an example, consider the work
by Hu et al. who have successfully traced and formalised
the crano-facial development in chick embryos (Hu et al.,
2003; Hu and Marcucio, 2009). Therefore, and for the pur-
pose of evolutionary optimisation, our environment allows
the user to import according landmark data sets, to set them
up in the context of the simulation, to remove, edit and store
them, and to activate/deactivate their visualisation. It fur-
ther provides the means to translate one or two-dimensional
landmarks into spatial, three-dimensional selections of the
underlying voxel data. More specifically, individual land-
mark points can be augmented by local spherical volumes
to select voxel data. To this end, the user can adjust the
selection sphere’s radius. Alternatively, the user can deter-
mine that exactly the k-nearest voxels to a landmark should

be selected, again leaving only one parameter to be adjusted
by the user. The most generic way that BOODLE offers is
voxel selection based on polygons. This is realised by se-
quentially drawing lines to place new pins until the first pin
is re-selected. Then, the polygon is completed and all the
voxels captured are visualised as seen in Figure 6.

Populating Volumes with Virtual Cells Based on the se-
lected volumes or voxels, the user may introduce virtual
cells into a simulation state. Beyond manually placing cells
individually by clicking on the targeted voxels, he can popu-
late large volumes automatically. If desired, he may even in-
troduce a distinction regarding the cell type to occupy voxels
of different grey values. The user can adjust the respective
thresholds and introduce new types of cell configurations by
means of the Blueprint script shown in Figure 2. The auto-
mated population of volumes with virtual cells takes place
as follows. First, a random voxel within the target set is cho-
sen. Second, the chosen voxel is assigned all those neigh-
bouring voxels that are closer or equal to a given cell radius
parameter. The average grey value of all the selected voxels
is then considered for initialising a virtual cell of a specific,
pre-defined type. Its initialisation location equals the geo-
metric centre of mass of the selected voxels. A mix of man-
ual and automated population ensures that the modellers can
design, control and edit large numbers of virtual cells and
align their initialisation with empirically retrieved volumet-
ric data. A domain expert can extend the cells’ behaviours
based on Blueprint programmes as illustrated in Section III
and also deploy different cell types in a single simulation
scenario.

Guided Self-Organisation The promise of interactive bi-
ological simulation frameworks such as BOODLE is (a) the
inexpensive, automated and incessant search for accurate
and complete models that backup empirically retrieved data,
(b) the discovery of misalignments in theories and of those
aspects that need to be investigated most urgently, and, in
the long run, (c) the comprehensive prediction of biologi-
cal development and evolution at micro and macro scales.
Albeit important, the integration of volumetric data, making
it accessible and interactively editable is far from fulfilling
these ambitious goals. In order to reach them, small, careful
steps need to be taken first. For now, we resort to a heuristic
optimisation technique called genetic algorithms (Goldberg
and Holland, 1988). Inspired by evolutionary biology, the
overarching class of evolutionary optimisation approaches
makes use of the concepts of fitness-based selection, mu-
tation and recombination to breed a pool of well-adapted
solutions. To account for time series data as found in se-
quential CT scans, we integrated time-dependency into the
genetic algorithm similar to (von Mammen and Déschinger,
2015). The configuration of a simulation state’s cell popu-
lation represents a single solution and so-called target states



at predefined simulation time steps determine the fitness of a
solution by computing the difference between the achieved
configuration and the target configuration.

Approximation of Tissue Growth

In order to demonstrate the potential workflow of the BOO-
DLE framework, we created a small mockup example based
on a volumetric data set that we retrieved from a chick
embryo. The overview of this experiment is presented
in (Diaschinger et al., 2017). Currently, the embryonic
data set only serves to illustrate the work pipeline, as we
have not imported and worked with comprehensive devel-
opment series, yet. The mockup experiments show how the
user/experimenter may utilise the BOODLE framework to
optimise cell models which, starting from an initial popula-
tion, allow to retrace the development of specific tissue re-
gions defined by annotated CT data over several time steps.
For each one out of four target states, we manually intro-
duced changes in the shape and the spatial dimensions of
four independent target surfaces. Afterwards, we populated
the initial surfaces with two types of virtual cells (purple and
green) as seen in Figure 7.

Cell Representation

The cells’ configuration space is based on the model pre-
sented above, whereas both their biological and their physi-
cal behaviours are fully determined by sets of parameter val-
ues as opposed to complex interaction rules. We divide the
cells’ genotype in alleles of three main categories: (1) Cohe-
sion, (2) division, (3) chemical communication. Cohesion-
specific alleles determine: The minimal distance between
two cells to stick together (cohesion distance), the stiff-
ness/deformability of a cell (cell stiffness), and the max-
imal number of sticking neighbours of a cell (max. clus-
ters). Division-specific alleles specify: Whether a cell di-
vides based on physical stresses from its neighbours (stress-
based division), the respective stress level that triggers di-
vision, and whether such stress-based division applies to
both involved cells (bi-direction division). Alleles revolving
around chemical communication determine: Whether cells
divide based on chemical signals (chemically-induced divi-
sion), the minimal chemical value to trigger division (divi-
sion signal strength), whether a cell reacts to morphogens
(morphogen reactivity), the rate of morphogen signal emis-
sion of a cell per simulation tick (morphogen emission rate),
and the way the cell reacts to morphogen gradients in its en-
vironment (morphogen reaction).

Table 1 lists all the considered variables that define the geno-
type of a cell, including parameter ranges. They either de-
termine the activation/deactivation of the respective ability,
or represent numeric intervals that we have empirically de-
termined to support the respective interactions. Overall, the
genotype is comprised of 12 parameters and 40 bits. For
the given experiments, we omitted the cells’ means of mor-

Parameter Range

Cohesion distance [54; 85]
Cohesion threshold [43; 58]
Cell stiffness [0.01;1.0]
Max. clusters [1;16]
Stress-based division true/ false
Stress level [1.2;1.5]
Bi-directional division true/ false
Chemically-induced division  true/ false
Division signal strength [5; 36]
Morphogen emission rate [0;127]
Morphogen reactivity true/ false

Morphogen reaction attraction/repulsion

Table 1: Parameter ranges of the alleles that determine the
behaviour of a cell of a specific type.

phogenetic communication as the domain experts were in-
terested to see shape and dimensions be retraced without it.

Experiment: Setup & Results

Our experiment defines several target states that are con-
sidered about 12h apart (actual time). The average time
between the target states was compressed to 20 simulation
seconds. For each target state, we defined a measure for
the difference between the target volume’s convex hull and
the convex hull of the simulated volume based on a random
sample of points on the two hulls. Lower differences im-
ply better approximations of the target volumes, and, as a
consequence, better fitnesses of the respective solutions. Let
us point out, though, that this is only one potential dimen-
sion for calculating fitness values. Factors such as structural
properties of emerging tissues, the ordering of cells, or a
multitude of additional constraints could define additional
fitness criteria. Not only is our first experiment limited in
terms of fitness criteria, we also constrain ourselves in terms
of the size of the targeted area and focus only on a small part
of the embryo.

Figure 8 exemplarily shows four rather different mor-
phologies at the last evaluation step ¢3. The shortest dis-
tances (green lines) between the convex hull of the mor-
phologies and the target volumes (red) are highlighted. The
first phenotype (a) exhibited the lowest fitness of the four
examples. Here, the total distance to the target morpholo-
gies increased over time as the simulated cells kept contract-
ing and did not proliferate at all. The second phenotype (b)
performed better; Here, the cells expanded in all directions.
Despite the lack of proliferation, the target volumes were
approximated more closely. Phenotype (c) reached a similar
number of cells as the target state (1187 out of 1296). Yet,
the generated cells migrated in the wrong direction which
diminished its success. The best fitness was achieved by (d),
but it required a rather large amount of simulated cells.



to: 219 cells t1: 518 cells

to: 889 cells t3: 1296 cells

Figure 7: A series of four pre-defined target states at fixed
points in time.

(a) F(t3) = 0.09, 219 cells 0.15, 219 cells

(b Fts) =

(c) F(ts) = 0.17, 1187 cells (d) F(t3) = 0.19, 8392 cells

Figure 8: Different initial cell configurations resulted in dif-
ferent numbers of cells and different fitness values at ¢53.

Conclusion

Despite its early state, BOODLE, a framework for interac-
tive modelling and simulation tailored to the needs of de-

velopmental biologists, covers a comprehensive set of func-
tionality. It allows the user/experimenter to import and an-
notate embryonic morphologies retrieved by means of CT
scans. Landmarks and annotations introduced by external
softwares are automatically adapted, additional information
can be added. The CT data can, in principle, be utilised to
stage biologically relevant experiments, for instance to gen-
erate or optimise model hypotheses that retrace empirically
observable phenomena. The volumetric voxel information
from CT data is maintained to inform the model building
processes and mesh surfaces are generated for visualisation
purposes. In addition, BOODLE allows the researcher to
make use of landmark data for automated initialisation of
in-silico cell populations. The transition from point loca-
tions and surface areas to the selection of volumetric voxels
is facilitated by means of adjusting the dimensions of selec-
tion volumes, the reach of nearest-neighbour searches, or by
manually drawing polygons to select voxel subsets. Storage
and retrieval of series of simulation states, including differ-
ent volumetric data sets as well as cell configurations, rep-
resent the foundation for tracing and re-engineering devel-
opmental processes over time. In combination, these func-
tionalities and their respective interfaces empower the user
to setup and run simulation and optimisation experiments.
In addition to introducing BOODLE and detailing the dif-
ferent interaction tasks that define the usage cycle of the ap-
plication, we presented a small mockup toy problem. It is
meant to show how the components of the BOODLE frame-
work can contribute towards supporting biologists in their
efforts of model refinement. To this end, we deployed a ge-
netic algorithm that identified configurations of cell clusters
to let them successfully approximate four morphological tar-
get states.

There are four different research directions that need at-
tention. First, the underlying simulation technologies have
to be improved—in terms of efficiency and accuracy. Sec-
ond, the user interfaces need to be systematically evaluated
with respect to user experience and usability and honed ac-
cordingly. Third, large and diverse data sets of developmen-
tal time series need to be prepared for BOODLE and utilised.
Only then, we will be able to discover shortcomings of the
data processing and manipulation pipeline. Fourth, in or-
der to address relevant research questions of developmen-
tal biologists, optimisers, such as the genetic algorithm de-
ployed in the mockup experiment in this paper, need to be
designed and adapted more rigorously, potentially also har-
nessing calculations that run on high-throughput hardware
such as GPUs or distributed across computer clusters.
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