
EvoShelf : A System for Managing and
Exploring Evolutionary Data

Timothy Davison1, Sebastian von Mammen1, and Christian Jacob1,2

1Dept. of Computer Science, Faculty of Science
2Dept. of Biochemistry & Molecular Biology, Faculty of Medicine

University of Calgary, Canada
{tbdaviso,s.vonmammen,cjacob}@ucalgary.ca

Abstract. Systems that utilize evolutionary computation produce large
amounts of data. Quite often, this data has a convenient visual represen-
tation. However, managing and visualizing evolutionary data can be a
difficult and onerous task. By employing techniques used in photo man-
agement software, we have produced a system that helps to visualize
and organize evolutionary data while retaining a complete record of a
simulation. By means of a simple plugin architecture this system can
be extended to import data produced by arbitrary evolutionary systems.
We present the system’s architecture, its features, and we provide a com-
prehensive example, highlighting its advantages in applied research.

1 Introduction

Evolutionary systems produce large amounts of data. Beyond the obvious data
(such as the genotype and phenotype of an individual), there is a considerable
amount of meta-data produced as well. Such data includes the hereditary data,
fitness values, and other attributes of the evolutionary computation approach
being employed.

It is common to manage experimental data by means of a file-system browser,
such as the Finder in Mac OS X, and Windows Explorer in Microsoft Windows.
Searching or organizing individuals according to various criteria is a laborious
task in such systems. Consider a system that organizes the individuals produced
by an experiment into sub-directories by generation, giving each individual its
own file containing its genotype, and phenotype, along with meta-data such
as fitness, or genealogy. Filtering these individuals by fitness value would be a
difficult task with either file-system browser.

An evolutionary system may employ an interface of its own for browsing the
data that it produces. In this case, the visualization procedures and the manage-
ment of the genotype/phenotype data are typically implemented specifically for
the one evolutionary system. However, the universality of evolutionary algorith-
mic approaches renders generic visualization and data management techniques
valuable across various application domains.

In a way, the situation is very similar to managing individual (digitized)
image and music collections. Such libraries can easily consist of thousands of

author's copy



2 T. Davison et al.

items. A number of applications have made the organization and management
of such data much easier for the end user [1, 2, 5, 10]. We propose a system that
can deal with evolutionary data with the same ease of use and flexibility as
provided by these mainstream media management applications.

EvoShelf is an extensible system that allows for the importing and explo-
ration of evolutionary data from evolutionary systems. It solves the challenge of
organizing imported metadata by providing a navigable, and searchable image-
based browser that uses interface design elements from Apple’s photo and music
management software iPhoto [1], and iTunes [2]. Furthermore, it provides a plu-
gin framework for building additional import modules and visualizations.

In Section 2 we explore the topic of visualizing data in evolutionary systems.
Section 3 presents the design of the EvoShelf system and its graphical user
interface. It also touches upon some of the visualization techniques included
in EvoShelf, as well as details about its plugin architecture. In Section 4 we
use EvoShelf in coordination with an existing evolutionary system for semi-
interactive evolutionary computing, and for analyzing the results produced by
that system. We will conclude in Section 5 with a summary of our work, along
with possible directions in which to take it in the future.

2 Related Work

We briefly outline the data management and user-interface approach of vari-
ous software that inspired the EvoShelf visualization and management system.
Secondly, we outline various techniques that have been developed for visually
supporting computational evolutionary experiments.

2.1 Digital Media Libraries

The framework presented in this article was mainly inspired by iPhoto, Apple’s
mainstream photo management application [1]. It is capable of organizing and
browsing thousands of photos. Despite the large amounts of information that
it is capable of presenting to the user, it maintains a very simple and intuitive
interface. It consists of two primary views, an organizer view, and an image
browsing view (Figure 1(a)). Multiple images, up to and including an entire
library of photos, are displayed in the browsing view. The organizer view is used
to filter this view into subsets of photos, such as those represented by a photo
album containing the user’s favorite photos. As photos are imported into the
system they are grouped into events. Pictures taken during a certain period of
time might have all been taken during a vacation and the respective group of
photos could be labeled after the location of the recreational stay.

iTunes is another application from Apple Inc. that manages a large amount
of data in a similar fashion to iPhoto. Unlike iPhoto, whose interface is focused
on visualizing and managing photos, iTunes is targeted towards playing music
and organizing large digital music collections. Visual cover art often decorates
individual music files, but the iTunes library is mainly organized by sorting and



EvoShelf : A System for Managing and Exploring Evolutionary Data 3

searching through textual meta-data such as artist name, music category, or
album name (Figure 1(b)). Together, iPhoto and iTunes suggest an interface
that combines visualization and meta-data management techniques that could
be very powerful for organizing evolutionary data.

(a) (b)

Fig. 1. The user interfaces of the media management applications (a) iPhoto and (b)
iTunes.

2.2 Evolutionary Visualization Techniques

Various data visualization techniques have been presented in the context of evo-
lutionary computing. On the one hand, individuals can be compared at a glance
based on their multi-dimensional genotypes, independent of the respective in-
terpretation or phenotype. On the other hand, methods of visualization have
been developed that capture characteristics of whole populations, allowing one
to visually track the evolutionary process.

Pohlheim, for instance, presented a toolkit of convergence diagrams, 3D line
plots, and 2D image plots, to visualize the evolution of fitness values and other
individual attributes. Hart and Ross introduced a tree-based visualization to
trace the ancestry of the best individual produced by an evolutionary run [6].
Daida et al. unfold genetic ancestry onto concentric circles on a 2D plane to cre-
ate a compact and highly scalable visualization [4]. Wu et al. represent genotypes
as sequences of color coded stripes whose colors correspond to different genes
[12]. Keim et al. designed a system to visualize search queries on a (relational)
database [8]. Data items that match the query most closely are arranged in the
center of a spiral arrangement. This visualization technique can be used to re-
late individuals in an evolutionary system in arbitrary ways, e.g. by comparing
fitnesses or individual attributes. In [9], Khemka and Jacob have closely inves-
tigated the possibilities to visualize population-based optimization processes at
various levels of scale—from the individual to sets of experiments. They pro-



4 T. Davison et al.

vide an easily adaptable user interface with various interactive manipulators to
explore optimization processes across these scales.

3 The EvoShelf System

The interface of EvoShelf is divided into three window panes (Figure 2). The
organization view on the left-hand side is used for selecting and grouping im-
ported experimentation data (Section 3.1). The user’s selection is shown in the
browser view in the center pane. An inspector view (right-hand side) shows fur-
ther details about an individual or an experiment. In addition to importing and
inspecting functions, the toolbar at the top of the window gives access to built-
in visualization methods which are explained in Section 3.2. Typically, a user of
EvoShelf writes a plugin to import and visualize data for his respective evolu-
tionary system, if it does not already exist. We provide details about plugins in
Section 3.3.

EvoShelf makes use of lazy fetching of data. That is, images and attributes
of an individual are not loaded until they are needed (such as when the user
scrolls to them). When individuals go off screen, their data is unloaded. In this
way, we have manipulated data sets with over 40, 000 individuals. Conceivably,
EvoShelf can work with even larger datasets. To further increase the scalability
of EvoShelf, high resolution images of individuals are loaded on demand—if no
zoom is required, a low resolution image is displayed instead.

Fig. 2. The graphical user interface of EvoShelf.

3.1 Individuals, Experiments, and Groups

The organizational view to the left of Figure 2 is divided into a library section
and a groups section. In the library section, the user can select either Individuals



EvoShelf : A System for Managing and Exploring Evolutionary Data 5

or Experiments. In particular, the Individuals selection displays the images of all
the individuals in the library, whereas Experiments shows representative thumb-
nails of all the imported experiments. The user can browse through the set of
individuals of any experiment by hovering with the mouse over its thumbnail.
The individuals of an experiment are revealed when the user double clicks on
the experiment.

The data in the browser view can be sorted or filtered by the experiments’
and individuals’ attributes. Once the user has formed a suitable selection he
can save his selection in a group, which would be equivalent to photo albums
or playlists (as in[1, 2]). In Figure 2, a group labelled Interesting is selected,
which hosts individuals from multiple experiments that the authors found of
interest. Groups can be organized hierarchically. That is, one can form groups
containing groups. When such a group is selected a union is formed from all of
the individuals contained within the subgroups.

The controls at the bottom of the interface allow the user to remove individu-
als from a group or from the library, to sort individuals, to search for individuals
according to arbitrary attributes (such as fitness value or generation), to scale
the size of the images displayed, and to change the display mode. One display
mode shows individuals as a collection of images, another one lists them in tab-
ular format. The latter view is convenient for sorting and searching through
individuals based upon numeric or textual attributes.

One individual is selected in the browser view in Figure 2. The image repre-
senting the individual was generated by the evolutionary system used as a test
run for EvoShelf (see Section 4). In the given case, a play button (a right point-
ing arrow) allows one to re-run the simulation that produced and/or evaluated
the selected individual. The button is not shown if the plugin for the particular
evolutionary system does not support this option, and it only appears when the
user hovers the mouse over the image.

Below the images in the browser view in Figure 2, blue bars represent the
individuals’ fitnesses. The bar is scaled to the minimum and maximum fitness of
all the individuals currently displayed in the browser view. The higher the fitness,
the brighter and longer the bar. No image is provided for Swarm35 indicating
that the genotype data was successfully imported but no image was found—in
the given case, the simulation was terminated before a screenshot would have
been taken.

The inspector view displays several default properties about the imported
data, such as the file name of an individual or experiment. A custom interface
for the inspector can be defined via the plugin architecture (Section 3.3).

3.2 Built-in Visualization Techniques

EvoShelf employs two basic built-in visualization techniques: star plots of name-
value pairs [9] and FitnessRiver, a derivative of the ThemeRiverTM method,
which integrates local numeric values with global trends [7].

A star plot in EvoShelf visualizes a set of name-value pairs as a series of
radially arranged line segments (Figure 3(a)). The length of a line segment is



6 T. Davison et al.

representative of an attribute’s value and it is normalized to the attribute’s
maximum value in respect to the selected individuals. An attribute’s line segment
will consistently appear at the same location in a star plot to render individuals
comparable.

The ThemeRiverTM visualization method produces a stream diagram that is
read from left to right. Currents in the stream represent individual themes that
occur, grow and decay over time. Instead of separating equivalent attributes into
individual currents of a stream diagram, our FitnessRiver visualization method
stacks the fitness values of individuals on top of each other. The fitness of an
individual is proportional to the width of its current. Different colors are used
to distinguish between successive individuals. Discontinuing currents indicate
the removal of an individual from the evolutionary process. In the FitnessRiver
visualization the x-axis represents the sequence of generations. A flat baseline
is used so that the user has a greater sense of the progression of the fitness
evolution (Figure 3(b)).

In Figure 3(b) we can see a large jump in the overall fitness at about the
middle generation. When we look closely, we see that there are a few very suc-
cessful individuals in the previous generation. We can see how these individuals
likely contributed to the next generation. Furthermore, the majority of individu-
als in the new generation have noticeably more fitness than those in the previous
generation.

(a) (b)

Fig. 3. (a) Individuals are comparable based on their star plots. (b) The FitnessRiver
visualization shows the evolution of local and the global fitness. It is an adaptation of
ThemeRiverTM [7].

3.3 Plugins

A user can define additional import modules, visualization modules, data mod-
els, and finally custom inspector views for custom data models1. A few basic
classes are provided for these modules and models that serve as plugin tem-
plates. The importing process, including control over import dialogue windows,
can be adapted and alternative visualization modules can be subclassed from
theEvoShelf visualization view controller class.
1 EvoShelf plugins are written in Objective-C and should use the Cocoa API [3].



EvoShelf : A System for Managing and Exploring Evolutionary Data 7

Page 1 of 1

Untitled 1/21/10 9:33 AM

EVIndividual
Attributes

fitness
generation
identifier
rawDataPath
Relationships

attributes
experiment
fullResImage
lowResImage

EVExperiment
Attributes

date
parameters
rawDataPath
systemName
Relationships

individuals

EVAttribute
Attributes

name
value
Relationships

EVImage
Attributes

image
Relationships

Fig. 4. The default data model for import-
ing and managing EvoShelf data.

The default data model (Figure
4) is well suited for evolutionary al-
gorithms (EA) and other forms of
heuristic computation, such as par-
ticle swarm optimization (PSO). For
instance, each step in a PSO simula-
tion could correspond to a generation
in an EA. This could however, gener-
ate a significant amount of individu-
als, in which case one might prefer to
only import the final individuals from the system. In order to adapt the data
model for differently organized information, the EvoShelf data model needs to be
adapted. For instance, the attributes for the classes EVExperiment and EVIn-
dividual need to be adjusted to fit the given experiment. The new attributes
automatically determine the searching and sorting options in EvoShelf, as well
as the information provided by the inspector view. In case a more elaborate in-
spector view is desired, an interface constructed in Apple’s WYSIWG Interface
Builder application can be loaded.

4 Example Scenario

In this section, we explore the use of EvoShelf with a preexisting evolutionary
system. In the evolutionary system of choice, Swarm Grammars (SGs) are bred
by means of a Genetic Programming algorithm to produce architectural idea
models [11]. SGs are a swarm-based developmental model in which production
and interaction rules guide the movements, constructions and the reproduction
of agents in 3D space.

In a subdirectory for each generation, the genotypes are stored as text files
and snapshots of the corresponding phenotypes as images. Fitness evaluations
for the individuals are stored in an additional file. When importing all the indi-
viduals, including their image representations and their meta-data into EvoShelf,
the original directory structure is automatically copied into EvoShelf ’s database.

Figure 5(a) shows a set of interesting SG specimens. We want to emphasize
that due to their partially very low fitness values (swarms 3, 6, 7, and 18),
we would have very likely not inspected these phenotypes without relying on
EvoShelf ’s visual browsing functionality. Based on these undervalued, interesting
phenotypes, we were able to improve the fitness function that drives the SG
evolution. In particular, we shifted the geometrical focus of the fitness evaluation
in respect to the SGs’ constructions to better suit the favored ones.

We also used EvoShelf for a semi-interactive evolutionary process by re-
peatedly selecting and exporting interesting individuals, modifying the fitness
function and parameters to the GA, breeding their offspring for a fixed number
of generations and importing the outcome (Figure 5).

We discovered that the SG GP evolution usually converged prematurely after
at most several hundred iterations. Figure 6 shows the FitnessRiver plot over



8 T. Davison et al.

(a) (b)

Fig. 5. (a) 20 interesting individuals are selected from an experiment and served as
the initial generation for a (b) follow-up experiment.

300 generations. Overall 20, 000 individuals were computed and imported into
EvoShelf. We noticed that the overall fitness of our individuals had stagnated
by the 100th generation (there is a very slight improvement in fitness past this
point). Figure 7 confirmed our assumption of over-fitting: Up to the fitness stag-
nation at around generation 100, we randomly chose and plotted one of the ten
best individuals every ten generations. For the period afterwards, we plotted
one of the ten best individuals at random every 20 generations. And indeed, the
phenotype images in combination with the star plots reveal a one-sided develop-
ment, most easily recognizable by the inverted T-shaped star plots. Upon closer
investigation, this similarity corresponds to the deployed amounts of two out of
three construction elements provided to the SG agents (rods and layers), and the
amount of construction elements that were placed outside of the intended tar-
get area. As the latter construction elements reduce the fitness of an individual,
their increase might explain the fitness fluctuation as observed in Figure 6.

0 50 100 150 200 250 300

Fig. 6. The FitnessRiver plot shows stagnating and fluctuating fitness development
after about 100 generations. The vertical lines denotes each 50th generation.



EvoShelf : A System for Managing and Exploring Evolutionary Data 9

0 10 20 30 40

50 60 70 80 90

100 120 140 160 180

200 220 240 260 280

Fig. 7. First, every ten generations, then (2nd half) every 20 generations, a star plot
and phenotype of a randomly selected individual is shown.

5 Summary and Future Work

We presented EvoShelf, an easy-to-use application for managing experimental
data produced by arbitrary evolutionary systems. EvoShelf ’s user interface is
similar in its simplicity to mainstream media-browsers. Fast browsing of supple-
mentary images associated with each specimen or of generic visualizations of the
individuals, for instance by means of star plots, enables the user to retrace and
interactively explore vast amounts of data produced evolutionary experiments.
Storing, retrieving and ordering experimental data is facilitated by a simple yet
powerful search function that considers the specimens’ attributes and meta-data
(generation, fitness, etc.). Hierarchical grouping structures further facilitate the
management of large amounts of experimental data. In addition to the built-in
management and visualization methods, EvoShelf can be extended by plugins
that implement the required import, visualization or introspection functionali-
ties. According programming templates are provided that can be easily adjusted
or majorly extended, depending on the user’s demands.

We applied EvoShelf on an evolutionary application that breeds Swarm Gram-
mars to generate architectural idea models [11]. Due to the convenient and



10 T. Davison et al.

fast browsing functionality of EvoShelf, we have been able to identify speci-
mens that received low fitness values despite their appeal. As a consequence,
EvoShelf helped us to adjust the fitness function of the SG GP system to better
suit our expectations. By means of the visualization techniques that come with
EvoShelf, FitnessRiver and star plots, we have been able to track and investigate
an over-fitting process in our evolutionary runs. Finally, by using the selection
and storing capabilities of EvoShelf, we have been able to introduce interactivity
into an otherwise autonomous evolutionary process.

In the future, we would like to add more visualization plugins, as well as
extend the current visualizations. Several improvements are possible in respect
to the deployed visualization techniques. For instance, it should be possible to
overlay different individual-based visualizations as we have done in Figure 7.
The star plot visualization that we applied should be extended to improve its
readability— possibly by an underlying, grayed out, partitioned circle, different
coloring schemes, or line strengths. Overall, we found it would be useful to auto-
matically associate representative specimens with global trends, as attempted by
the combination of Figures 6 and 7. The FitnessRiver visualization could possi-
bly be extended to also track the application of genetic operators and the course
of inheritance. We would also like to explore importing data from an evolution-
ary system as it runs. Taking this a step further, one could also use EvoShelf as
the basic user interface for controlling a system that uses interactive evolution
as found in [9].

References

1. Apple Inc. Apple - iphoto. http://www.apple.com/ilife/iphoto/, April 2010.
2. Apple Inc. Apple - itunes. http://www.apple.com/itunes/, April 2010.
3. Apple Inc. The cocoa framework for mac os x. http://developer.apple.com/

cocoa/, April 2010.
4. J. Daida, A. Hilss, D. Ward, and S. Long. Visualizing tree structures in genetic

programming. Genetic Programming and Evolvable Machines, Jan 2005.
5. Google. Picasa photo editing. http://picasa.google.com/, April 2010.
6. E. Hart and P. Ross. Gavel-a new tool for genetic algorithm visualization. Evolu-

tionary Computation, Jan 2001.
7. S. Havre, B. Hetzler, and L. Nowell. Themeriver tm: In search of trends, patterns,

and relationships. IEEE Transactions on Visualization and Computer Graphics,
Jan 2002.

8. D. Keim and H. Kriegel. Visdb: Database exploration using multidimensional
visualization. IEEE Computer Graphics and Applications, Jan 1994.

9. N. Khemka and C. Jacob. Visplore: a toolkit to explore particle swarms by visual
inspection. In GECCO ’09: Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 41–48, New York, NY, USA, 2009. ACM.

10. Nullsoft. Winamp media player. http://www.winamp.com/, April 2010.
11. S. von Mammen and C. Jacob. Evolutionary swarm design of architectural idea

models. GECCO ’08: Proceedings of the 10th annual conference on Genetic and
evolutionary computation, Jul 2008.

12. Wu. Visual analysis of evolutionary algorithms. Evolutionary Computation, 1999.
CEC 99. Proceedings of the 1999 Congress on, 2, 1999.


