
Autonomous Self-Integration in Interwoven
Systems

Jörg Hähner, Sebastian von Mammen, and Sven Tomforde

Universität Augsburg, Organic Computing Group, Augsburg, Germany,
joerg.haehner@informatik.uni-augsburg.de

1 Introduction

Nowadays, the vision of Ubiquitous Computing as formulated by Marc Weiser
in 1991 [4] becomes increasingly realistic. Information and communication tech-
nology (ICT) has become a fundamental part of human lives and supports us
embedded in the environments that we encounter on a daily basis – it already
pervades every aspect of our daily lives. This inclusion fundamentally changes our
way to control and manage technical systems; but it also dramatically changes
the way we design and integrate these utilised systems – which resulted in a
tremendous complexity that evolves over long periods of time.

Compared to the status of technical equipment one or two decades back in
time, we can observe a large number of distributed and tightly coupled systems
that we are using routinely today – partly without even noticing that these
systems are there and serving us in a ubiquitous manner. From household ap-
pliances or cars to logistics and public infrastructures: Everything works on the
foundation of being connected to distributed communication services, such as
the Internet. These “hidden” technical helpers are working in addition to the
obvious traditional IT-driven devices (i.e. web-technology driven platforms). As
a result, we have build up a technical network of interwoven structures that
are no longer isolated entities but more and more interfere with each other (see
[2] for a definition of “Interwoven Systems”). We can already observe that this
networked structure is far too complex for being able to predict its behaviour
and the (transitive and indirect) mutual influences between the coupled entities.

2 Idea: System Self-Integration

Obviously, it is not an option to reverse this trend to counter the resulting com-
plexity issues – e.g. by trying to build isolated systems again. Hence, we have
to accept the fact that we are facing novel challenges; and that these challenges
have to be addressed appropriately. We argue that current approaches to de-
sign, develop, and engineer systems are not applicable any more - or at least
that they come with intrinsic drawbacks preventing them from solving the cor-
responding issues and consequently entailing failures and outages resulting from
the interwoven system structure.

The general idea to counter these negative effects is to move design-time deci-
sions to runtime. As a result, systems themselves take over the responsibility for
their integration decisions. Thereby, self-integration consists of several aspects:

author's copy



1. Self-adaptation of behaviour: The internal control mechanism of the sys-
tem alters the configuration of the productive strategy according to observed
changes in the environmental and internal conditions. Here, e.g. concepts
from the Organic Computing domain are utilised [3].

2. Self-management of relationships: The system itself decides about its
cooperation partners – by adding and removing relations to other systems,
the overall system is re-organised. As a result, the structure of the system is
adapted at runtime.

3. Quantification of success: Besides performance-related metrics, subsys-
tems need a quantification method to estimate the success of the integration
status. Further influences have to be taken into account, e.g. reliability of in-
teraction partners, availability of resources, or redundancy to avoid outages.

4. Self-modelling: As basis for the decision process, subsystems have to gener-
ate and update models of themselves, their surroundings, and their (possible)
interaction partners, including dependencies and transitive processes among
them (e.g. extending the Models@Runtime concept [1]).

5. Technical trust: Closely related to modelling is the capability to establish
(technical) trust relationships. Based on observations of historical behaviour,
estimations are derived how interaction partners will behave on future situ-
ations. This is especially important in open, heterogeneous systems.

6. Flexibility and goal adaptation: Subsystems need the freedom to reflect
about their current goal and strategy – also allowing them to accept non-
optimal states for a certain period.

3 Advantages and Challenges

Large-scale distributed systems consisting of self-integrating subsystems will be
characterised by a high degree of adaptivity and robustness against disturbances.
Implicit and explicit dependencies will be detected autonomously by the subsys-
tems themselves using e.g. concept such as self-modelling and dependency detec-
tion. Besides the advantage of enabling autonomous and more accurate reactions,
malfunctions and oscillating effects can be prevented. This poster demonstrates
the challenges concerned with developing fully self-integrating subsystems.

References

1. G. Blair, N. Bencomo, and R. B. France. Models@Runtime. IEEE Computer,
42(10):22 – 27, 2009.

2. S. Tomforde, J. Hähner, and B. Sick. Interwoven Systems. Informatik-Spektrum,
37(5):483–487, 2014. Aktuelles Schlagwort.

3. Sven Tomforde, Holger Prothmann, Jürgen Branke, Jörg Hähner, Moez Mnif, Chris-
tian Müller-Schloer, Urban Richter, and Hartmut Schmeck. Observation and Con-
trol of Organic Systems. In Organic Computing - A Paradigm Shift for Complex
Systems, pages 325 – 338. Birkhäuser Verlag, 2011.

4. Mark Weiser. The computer for the 21st century. Scientific American, 265(3):66–75,
September 1991.


