
Abstract
We present a new way of dynamically growing 
and breeding structures in 3D space through 
swarming agents. Different agent types and the 
way they evolve over time is specified by a swarm 
grammar similar to Lindenmayer systems. We 
expand common L-system string interpretation 
from a single turtle to a multitude of turtles which 
behave like a swarm. By describing swarm agents 
within the framework of formal grammars, we 
build a bridge from symbolic production systems 
(rewrite systems) to three-dimensional real-time 
construction procedures that are executed by re-
active and interacting agents which move in simu-
lated physical 3D spaces.
We introduce constructor agents, their formal rep-
resentation in swarm grammars and demonstrate 
by examples how (1) the swarm rules, (2) the 
agent parameters and (3) the environment can 
influence the actual construction and growth 
processes that are initiated and directed by the 
swarms.
In order to facilitate exploration of a large variety 
of swarm grammars, we apply interactive evolu-
tionary design methods to create swarm grammar 
sculptures and 3D structures.   

Keywords: swarms, swarm intelligence, swarm 
grammars, design of 3D structures, generative 
design, rewriting systems, Lindenmayer sys-
tems, agent-based design, multi-agent system.

1. Introduction
Looking at life around us, we are immersed in 
a natural world of massively parallel, decen-
tralized biological ‘information processing’ 
systems; a world that exhibits fascinating 
emergent properties in many ways due to de-
velopmental processes, growth, and self-
organization. In fact, our very own bodies are 
the result of emergent patterns, as the devel-
opment of any multi-cellular organism is de-
termined by localized interactions among an 
enormous number of cells – carefully orches-
trated by enzymes, signaling proteins and 
other molecular ‘agents.’ What is particularly 
striking about these highly distributed devel-
opmental processes is that a centralized con-
trol agency is completely missing. This is also 
the case for many other biological systems, 
such as termites which build their nests with-
out an architect that draws a plan, or brain 
cells evolving into a complex ‘mind machine’ 
without an explicit blueprint of a network 
layout. 

Obviously, being able to understand, 
build and harness the emergent properties of 
such systems would be highly beneficial for 
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helping us to create a new generation of de-
sign and manufacturing techniques. Designers 
of complex systems could utilize their adapt-
ability and robustness. Such systems would 
construct themselves, through self-
organization. However, system designers and 
programmers are facing an enormous chal-
lenge. How can we actually build highly dis-
tributed systems of which we have only lim-
ited understanding? We have to invent new 
ways of building, maintaining, and control-
ling such systems.

The Swarm Grammars we are going to 
present here provide a first step towards a 
new methodology for the creation and design 
of 3D forms and shapes. With swarm gram-
mars (SGs) we capture growth processes that 
result from the interactions of swarming 
agents while they create branching structures 
in 3-dimensional space. 

Generative representations of design 
patterns for 3D forms, such as  Lindenmayer 
systems (L-systems), have been used very 
successfully to model growth processes. 
Originally, L-systems were developed to cap-
ture growth in bacterial and yeast cells (Lin-
denmayer 1968; Rozenberg & Lindenmayer 
1986). Soon L-systems were investigated in 
the context of formal languages (Rozenberg 
& Salomaa 1980; Rozenberg et al. 1986). 
Capturing the developmental processes that 
lead to branching patterns in plants became 
another major area of study involving L-
system grammars (Prusinkiewicz & Hanan 
1989; Prusinkiewicz & Lindenmayer 1990; 
Hanan 1992; Prusinkiewicz 2004). Other 
models of branching structures in dendritic 
growth of neurons (Hamilton 1994) and in 
arteries (Zanis 2001) have used L-systems as 
well.

More recently, generative approaches 
using L-systems have explored architectural 
designs (Coates 1999; Hemberg 2001; Jack-

son 2001), to design modular robots (Hornby 
et al. 2001; Hornby & Pollack 2001a), to effi-
ciently encode physical designs (Hornby & 
Pollack 2001b), and to represent evolvable 
hardware (Haddow 2001) and solutions in 
computational mechanics (Alber et al. 2002).

In L-systems, a formal grammar speci-
fies rules that capture the step-by-step growth 
process by rewriting a string of symbols, 
which are subsequently translated into 
graphical objects through a turtle interpreta-
tion. A turtle is a virtual drawing device that 
is navigated in 3D space following the sym-
bolic commands of the string. In swarm 
grammars we substitute the turtle interpreta-
tion by a swarm interpretation. Instead of a 
single turtle following the path described by 
an L-system, a swarm of ‘turtle agents’ inter-
pret the grammar rules. This simple expan-
sion from one interpreting turtle to a swarm 
reveals new dimensions in performance, dy-
namics and complexity of the resulting struc-
tures. The swarm agents are not only con-
trolled by the grammar rules, but have the po-
tential to interact among each other and with 
their environment. In fact, collision resolution 
among branching structures can be accounted 
for quite easily through parallel swarm-based 
turtle interpretation.  This does not only lead 
to more interesting designs emerging from the 
swarm’s dynamics, but also engages the de-
signer in an interactive dialog with the crea-
tive process, by introducing alternate swarms 
or other static and dynamic environmental 
components that can influence a swarm’s de-
velopmental processes.

Describing the swarm grammar ap-
proach in more detail, we proceed in the fol-
lowing manner: In Section 2 we define swarm 
grammar systems and their associated build-
ing agents. Examples of building processes 
implicitly described by swarm grammars are 
illustrated in Section 3. Here we also show 
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which effects the rewrite rules and the agent 
parameters have on the actual swarm-driven 
building process. In Section 4 we show how 
swarm grammar agents encounter other enti-
ties within their environment and how these 
interactions influence the building dynamics 
and the resulting compositions. We describe 
the exploration of new swarm grammar rules 
and agent parameters through an evolutionary 
system in Section 5. A brief comparison to L-
systems—with respect to parallel turtle inter-
pretation, in particular—is presented in Sec-
tion 6. A short outline of future expansion 
possibilities of swarm grammar systems in 
Section 7 concludes this contribution. 

Figure 1. Example of a swarm grammar system 
with two rewrite rules, a start symbol, and a 
set of attributes for agent types A and B 
(see Section 2.2 for more details).

2. Swarm Grammar System
In this section we describe the two key parts 
of a swarm grammar system: (1) a set of re-
write rules, which determine the composition 
of agent types over time, and (2) a set of 
agent specifications, which define agent type 

specific parameters that govern the agents’ 
interactions.

2.1. The Swarm Grammar

A swarm grammar system SG = (SL, ∆) con-
sists of a rewrite system SL = (α, P) and a set 
of agents ∆ = {a1, a2, ..., an}. The rewrite sys-
tem SL is an L-system with axiom α and pro-
duction rules P (Jacob 2001). In the simplest 
form of  context-free 0L-systems, each rule 
has the form p ➝ s, where p is a single sym-
bol over an alphabet Ω, and s is either the 
empty symbol (λ) or a word over Ω. Each 
agent ai is characterized by a set of attributes, 
which can include its geometrical shape, 
color, mass, vision range, radius of perception 
and other parameters such as separation or 
cohesion urges that determine its behavior 
while encountering its environment. Figure 1 
gives an example of such a swarm grammar 
with two types of agents. The rewriting pro-
cess begins with start symbol A. In the first 
iteration of applying any matching rules, only  
the first rule is applicable, hence A is rewrit-
ten into AB. At the next iteration, both rules 
apply: A is rewritten into AB, and B is rewrit-
ten into A. The resulting string is ABA. Fur-
ther rewriting will result in the following 
word sequence:
 t0:  A 
 t1:  AB
 t2:  ABA
 t3:  ABAAB
 t4:  ABAABABA
  ...

Here each ti represents a decision point1 
where an agent triggers the application of the 
next SL-system iteration with the string de-
scribing the current composition of the 

3 of 16

1 In the following examples a decision point coincides with the iteration number of the SL-system.



swarm. In the example above we have five 
type-A and three type-B swarm agents after 
decision point t4. Figure 2 shows the first 
steps of the swarm interpretation in 3D space. 
The single type-A agent starts its vertical as-
cent, building a cylindrical shape on its way. 
At decision point t1 agent A is replaced by a 
new agent of type A and a type-B agent. A-
agents are the only ones that move, whereas 
B-agents build a bent branch tip and then stop  
(Fig. 2(c)). At time point  t2  agent A is re-
placed by agents of type A and B, and the 
former B-type agent is replace by an A-agent. 
Figure 2(f) illustrates the branching structure 
resulting after a few more iterations.

2.2. The Swarm Agents

In our demonstrations, a swarm agent is rep-
resented as a pyramid pointing in the direc-
tion of its velocity vector (Fig. 3). Each 
agent’s awareness of other flock mates is de-
termined by its field of perception, which is 
defined by a radius and an angle as illustrated 
in Figure 3(a). An agent will only interact 
with those agents that are within its field of 
perception. We call these agents its neighbors. 
Both the radius and angle of the field of vi-
sion are part of an agent’s attribute set. 
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Figure 2. Step-by-step illustration of swarm interpretation in 3D space (see text for details).

(d) t2: ABA (e) t3: ABAAB (f) t > t3

(c) t1 < t < t2(b) t1: AB(a) t0: A



(a) Agent perception (b) Cohesion

(c) Alignment (d) Separation

Agent Ai

Figure 3. Basic interactions with other agents. 

The velocity vector V of an agent is up-
dated according to the following formula: 

V = c1 V1(d) + c2 V2 + c3 V3 + c4 V4 + c5 V5.

Here we follow the simple boids model of 
interaction rules (Reynolds 1987), where an 
agent changes direction and adjusts its speed 
according to three influential factors (Fig. 
3(b)-(d)): 

• separation (V1(d)): steer away from the 
collective of neighbors if the minimum 
distance is smaller than a crowding 
value d (Kwong 2003). 

• cohesion (V2): move toward the average 
position of local flock mates, and

• alignment (V3): reorientation towards 
the average direction of its neighbors.

Vector V4 points to the center of the 
simulated 3D world and V5 represents a ran-
dom unit-length vector to add some noise. 
The weights c1, ..., c5 determine how much 
influence each factor has on the agent. Each 
of these ‘urges’ is specified for an agent type 
as part of a swarm grammar. In Figure 1, for 
example, separation and wander urge corre-
spond to weights c4 and c5, respectively. 

An agent stops applying the SL-system 
rules when it runs out of energy, which is 

passed on from one generation of agents to 
the next. The energy level also influences cer-
tain properties of the built 3D structures such 
as, for example, the radius of the cylinders.

In summary, an SL-grammar repeatedly 
defines the successors of an agent. Predefined 
parameters determine when a construction 
element is built, when a production rule is 
applied, how much energy is lost through the 
creation of a construction element, and when 
the agent runs out of energy and thus is un-
able to reproduce.

3. SG Agents in Action
Now let us have a look at the effects that 
emerge when we modify the set of production 
rules and the agent parameters that determine 
their flocking behaviors. The following  ex-
amples will demonstrate the high degree of 
interaction dynamics and the resulting variety  
of outcomes to be expected from swarm 
grammar systems that build 3D structures. 

3.1. Changing the SL-system Rules

We first discuss a small sample of tree-like 
structures that result from various sets of pro-
duction rules. In order to illustrate some of 
the basic effects, we use only a fairly limited 
number of swarm agents.

Agent
Type

Separation
 c1

Random
c5

A 0 0.01
B 1.7 0.01

C 13.7 0

Table 1. Flocking parameters of agent types A, B, 
and C. All other parameter weights (c2, c3, 
and c4) are set to zero.
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Figure 4. Examples of branching structures created from agent interactions governed by different swarm 
grammars.  

(d) Agents: 50

SLd = (A, {A ➝ BBBABBB, B ➝ λ})

(e) Agents: 86

SLe = (A, {A ➝ BBBABBB, B ➝ C, C ➝ λ})

(b) Agents: 64

SLb = (A, {A ➝ BAB})

(a) Agents: 87

SLa = (A, {A ➝ AB, B ➝ A})

(c) Agents: 407

SLc = (A, {A ➝ ABA, B ➝A})



Consider three types of swarm agents—
A, B, and C—with parameters as in Table 1, 
which describe the weights of their separation 
urge (c1) and random movement (c5). The re-
maining behavior parameters (c2, c3, c4, d) are 
set to zero. Initially, all agents are oriented 
upwards, hence will move towards the top 
(increasing their y coordinate). 

The interpretation of swarm grammar 
SLa = (α = A, P = {A ➝ AB, B ➝ A}) results 
in a tree-like structure with sparse branches, 
which makes it easy to analyze (Fig. 4(a)). 
The ‘natural’ look of the overall tree can be 
attributed to the small degree of random 
movements of both types of agents. A-type 
agents move upwards with no urge to sepa-
rate, whereas any B-agent moves away from 
agents of type A, due to its urge for separation 
(c1 = 1.7). Hence the arrangement of the 
branches is mainly a consequence of the 
agents’ interactions. 

With the even simpler grammar SLc, the 
style of the tree looks similar to the structure 
from SLa (Fig. 4(b)), where B-agents only 
place stationary building blocks and then 
stop.

A different branching pattern is shown 
in Figure 4(c), where a slightly larger number 
of A-agents is generated at each decision 
point by adding an extra A-type agent com-
pared to SLa. This leads to bursting agent re-
productions, a more expansive growth of the 
branches, and the formation of a denser can-
opy. The small green objects at the branch 
tips represent the swarm agents that are still 
to finish their next building step.

 However, an increased number of gen-
erated agents does not always mean that the 
complexity of the emerging structures in-
creases as well. The SL-system in Figure 4(d) 
produces a large number of agents, but the 
outcome is quite simple, as type-B agents 
only get the chance to establish a short side 

branch and are removed before the next build-
ing step. 

In Figure 4(e), a third agent type, C, is 
added, which has a very high separation urge 
with no random component added (Table 1). 
As C-agents are also oriented vertically at 
their time of creation, they are responsible for 
the vertical branch endings.

3.1. Changing the Agent Parameters

Instead of changing the SL-system rules, we 
are now going to modify the agents’ flocking 
parameters and look at the consequences with 
regard to the generated 3D structures. We 
start from a swarm grammar with a single 
rule that enables forked branching:

SGsimple = (α = A, P = {A ➝ AA}, ∆).

At each iteration step, one type-A agent 
reproduces into two A-agents. As there is only 
one type of agents, they all share the same 
flocking parameters listed in Table 2. These 
settings were reported by Kwong (2003) who 
investigated swarm interaction patterns and 
their evolution in more detail. Kwong discov-
ered a range of parameter settings, where the 
agents displayed formations such as figure 
eights, rings and other choreographed ar-
rangements (see also Kwong & Jacob, 2004). 
Figures 5(a), (b), and (c) show snapshots of a 
line formation, a ring formation, and a loose 
cluster emerging from the parameter sets (1), 
(2), and (3) in Table 2, respectively. Here the 
additional parameter crowding is introduced. 
If the distance to a neighbor is within crowd-
ing range, the separation urge is in effect. 
This allows an agent to influence only a sub-
set of its actual neighbors. The parameters 
amax and vmax denote the agents’ maximum 
allowed acceleration and velocity, respec-
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tively. No agent can fly faster or accelerate 
faster than specified by these limits.

(1) (2) (3) (4)

Separation (c1) 1 5 5 2

Cohesion (c2) 10 8 0 3

Alignment (c3) 5 7 2 7

World Ctr (c4) 14 8 7 6

Random (c5) 1 5 6 3

Crowding 0.14 0.14 0.23 0.01

amax 39 38 40 40

vmax 9 13 6 6

Table 2. Flocking parameter settings that lead to 
the following behaviors: (1) large ring for-
mation, (2) line formation, (3) a loose sta-
tionary cluster, and (4) a figure eight.

The bottom images in Figure 5 show 
the structures that result from using the same 
types of agents to interpret swarm grammar 
SGsimple as described above. The building 
blocks of the depicted structures bear differ-
ent colors (or grey levels) so that their com-
position over time is visualized. Lighter-
colored building blocks are built earlier. The 
structure in Figure 5(d), for example, was 
built from left to right, with intermittent 
changes of the swarm’s direction. This con-
struction does not seem to involve any 
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Figure 5. Choreographed swarms are employed for building 3D sculptures. Top: snapshots of choreo-
graphed flocking behaviors; (a) line formation, (b) ring formation, (c) loose cluster formation. Bot-
tom: the structures built by the corresponding swarm grammar agents. Lighter (darker) colors of 
building blocks indicate earlier (later) addition during the building process (flocking parameters ac-
cording to Table 2). Videos of these choreographed swarms are available at: 
http://www.swarm-design.org/SwarmGrammars/movies/. 

(d) (e) (f)

(a) (b) (c)

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/


branching due to agent separation urges. The 
smooth bands originate from the agents’ al-
most perfect flight coordination while con-
structing very similar, almost parallel fibers. 
Looking a little closer, however, reveals a 
small gap at a U-turn slightly off the center at 
the top right of the image (see Fig. 5(d) inset). 

The structure in Figure 5(e) evolves 
spherically from a center point. The large ring 
flocking behavior of the swarm contributes to 
a spiky and impulsive character of this grow-
ing ‘sculpture’.

Our third example of combining cho-
reographic swarms with swarm grammars in-
volves flocking behavior where the agents 
form loose, temporary clusters, then disperse 
and regroup to form new clusters at a differ-
ent location. This behavior is induced by the 
parameters in Table 2(3). The formation of 
one of these clusters is depicted in Figure 
5(c). Looking at the corresponding structure 
built by the swarm grammar agents, the sites 
of cluster formation are clearly identifiable as 
‘knots’. Since the flocking parameters allow 

for a rather dynamic flight, single agents can 
leave one cluster and join another one at a 
different location. 

4. Interactions with the Envi-
ronment

In this section  we present three different 
kinds of interaction with both static and dy-
namic elements within the environment. Table 
3 lists the parameters for the six types of 
agents we are going to employ. 

D E F, G, H I

Separation 0 10 80 33

Cohesion 0 0 0 10

Alignment 0 0 10 11

World Ctr 10 1 1 5

Random 10 2 4 0

Crowding 0 10 10 1

amax 30 30 10 27
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Figure 6. Swarm grammar agents interacting with objects in their environment: (a) a static wall constricts 
agents from reaching a goal point behind it; (b) agents tend towards a goal point that orbits above 
the construction center. Videos of these environmental interactions are available at: 
http://www.swarm-design.org/SwarmGrammars/movies/.

(a) (b)

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/


D E F, G, H I

vmax 2 5 4 2

Table 3. Parameter settings for agent types D, E, 
F, G, H, and I.

4.1. Swarm—Object Interaction

Figure 6(a) shows an example of agents 
interacting with non-moving objects in their 
environment. Agents of types F, G and H tend 
to move towards the world center, which, in 
this case, is located beyond the wall and far 
up in the sky (like a sun). Whenever a swarm 
agent tries to penetrate the wall, it bounces 
back as its velocity vector’s x- and z-
coordinates are reversed. This implements a 
simple collision detection with static objects.  
As soon as the swarm structure has outgrown 
the wall, the agents are no more prevented 
from moving towards their destination.

As soon as the world center becomes 
dynamic, its movement pattern is reflected in 

the construction of those swarm agents that 
tend towards it. In Figure 6(b) the world cen-
ter orbits far up in the sky and around the y-
axis of the simulation. Both agent types, D 
and E, are attracted towards the moving world 
centre. Consequently, the structure they build 
reflects an upward, twisted growth pattern. In 
order to better recognize the constructors, D-
type agents are assigned a very light and 
agents of type E a darker color. As D-agents 
do not feel the urge to separate from their 
neighbors, they almost perfectly drive up-
wards around the y-axis. The constructions 
from agents of type E outgrow the ones from 
the D-type since E-agents are allowed a 
greater maximum velocity (compare Table 3).

4.2. Swarm—Swarm Interaction

In the previous examples, the swarm grammar 
agents were interacting with either static or 
dynamic objects. Now, consider a second 
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(a) (b)

Figure 7. Constructing swarms interacting with another flock of agents. (a) Resulting construction with no 
other swarm present; (b) the same swarm’s movements are influenced by another (non-
constructing) swarm of agents shown in blue. Videos of these swarm constructions are available 
at: http://www.swarm-design.org/SwarmGrammars/movies/. 

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/


swarm that is not part of a swarm grammar, 
but exhibits flocking behavior within the en-
vironment. Both swarms influence each other 
as soon as some of their individuals enter the 
field of vision of the other swarm agents. 

These swarm-swarm interactions are 
hard to capture in a screenshot. However, the 
swarm grammar agents witness the exertion 
of influence from the other swarm by leaving 
a trace in the 3D construction space. 

We look at another simplistic swarm 
grammar:

SGstraight-up = (α = I, P = {I ➝ I}, ∆).

 Figure 7(a) shows the structure that is built 
by this swarm grammar, with no elements in-
teracting with the swarm agents. The move-
ments of the type-I agents are not driven by 
any randomness, so that any deviation from 
the presented structure has to be seen as the 
result of other external factors. The agent pa-
rameter settings are listed in Table 3.

Figure 7(b) displays a scene where the 
interaction between both flocking and swarm 
grammar agents is still in progress. The blue 
pyramidal shapes represent (non-building) 
agents that organize their flight in a figure 
eight formation (parameters according to Ta-
ble 3 and taken from Jacob & Kwong 2004). 
As a result of the interactions between the 
building swarm and the flocking swarm, a 
completely different structure emerges. When 
one observes this construction during run 
time, the influence of the swarm grammar 
agent on the other swarm is fascinating to 
watch: as long as the swarm grammar agent is 
present, there is a very high probability of the 
other flock-mates to interact with it, as the 
figure eight formation usually occurs around 
the world center. 

5. Swarm Grammar Evolution
We use an extension of Inspirica (Kwong 
2003), one of our evolutionary design tools, 
to explore the potential of generating swarm 
grammar systems that exhibit intriguing con-
structions. As illustrated in Figure 8, a collec-
tion of swarm builder simulations is simulta-
neously presented to the user. Each window 
shows the interpretation of different swarm 
grammar rules and with different agent pa-
rameters. All windows display the construc-
tion process as it occurs. All designs are true 
objects in 3D space, hence can be rotated, 
zoomed and inspected in various ways. After 
assessment of the presented structures, the 
swarm designer assigns fitness values be-
tween 0 and 10 to each solution. 

The rewrite rules and agent parameters 
are represented as symbolic expressions, so 
that genetic programming (GP) can be used to 
evolve both the set of rules as well as any 
agent attributes (Jacob 2001). For the exam-
ples we present here, only context-free rules 
with a maximum string length of three (|s| = 
3) are applied. We allow at most five rules per 
SG-genotype. GP mutation and crossover are 
the only genetic operators. 

As this is our first swarm grammar pro-
totype, the results presented here  are still 
simplistic, but they already reveal the poten-
tial of form generation through SG systems. 
Figures 9 and 10 show selected examples of 
such evolved structures. As developmental 
rewrite systems are usually rather sensitive to 
changes in the genotypes—which can result 
in vastly different growth structures and de-
velopmental processes—we have limited our 
grammars to only three symbols. In the Evol-
vica system (Jacob 2001) we have used filters 
on typed genetic operators to limit variability 
on L-system genotypes, which can be applied 
to swarm grammars as well. However, further 
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investigations will be necessary to explore 
different encodings and genotype-phenotype 
mappings for swarm grammars.  

6. Discussion
The interpretation of an expanded L-system 
string by a single turtle has always been one 
of the major constraints of L-systems. 
Whereas the rewrite rules are applied in paral-
lel on a single string (i.e., any matching rule 
is applied), the interpretation of the string by 
a single turtle serializes the actual drawing or 
creation process of the 3-dimensional struc-
tures. Simulating the growing branches of a 
tree, for example, this creates major issues as 
the branch tips are not created in a parallel 
fashion. Hence, detection of branch collisions 
and their resolution has to be dealt with after 
collisions have already occurred (Mech & 
Prusinkiewicz 1996). Within the swarm 
grammar approach, these problems do not 
arise any more, as the swarm agents act as 

independent, interacting units which resolve 
collisions on their own. Hence, swarm gram-
mars combine the ease of specification of a 
grammar system with the interpretive power 
of a multitude of building devices (extended 
‘turtles’) in 3D spaces. 

Organizing sets of swarm agents 
through deterministic, context-free grammars 
has enabled us to transfer the notion of con-
nectivity – which is inherent in rewriting sys-
tems – onto structures that are created by co-
ordinated movements among swarm agents. 
The underlying grammar has a profound ef-
fect on the resulting topology of the built 
structures, whereas the employed swarms and 
their characteristics largely determine the dy-
namic composition process.
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Figure 8. The interactive evolutionary design interface used to explore swarm grammar rules, agent pa-
rameters, and their corresponding 3D structures.



7. Swarm Grammars: What 
Next?

There is a wide range of possibilities to ex-
tend the proposed swarm grammar approach. 
Here are a few of these expansions we are 
currently beginning to explore. As SG-
systems are natural extensions of Linden-
mayer grammars, all variants of L-systems 
are applicable as well, such as: context-

sensitive production rules, non-deterministic 
or probabilistic rules, map SG-systems, and 
table SG-systems. Prusinkiewicz & Linden-
mayer (1991) give a good overview of these 
L-system variants. How far these extended 
SG-systems will expand the variety of con-
ceivable designs remains to be seen.

Similar arguments apply to the agent 
side of SG-systems. Not only can interaction 
parameters be changed, but one may define 
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Figure 9. Collage of evolved designs generated from swarm grammar systems.



agents with specific (simulated) physical 
properties (limited speed, mass, vision, etc), 
or constrain their interaction spaces (e.g., 
termites that build nests, but cannot fly). Evo-
lutionary design systems – such as Evolvica 
(Jacob 2001) and Inspirica (Kwong 2003) 
will certainly help us to unleash the still 
largely hidden powers of generative, dynamic 
design through swarm grammar systems.   

Software
Sample code of our swarm grammar systems 
and other swarm-based simulations, which 
our Evolutionary & Swarm Design Labora-
tory is working on, are available at 
http://www.swarm-design.org.
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Figure 10. SwarmGrammar Art: Each of the two scenes is a composition of sub-structures evolved from 
different swarm grammars, similar to the ones discussed in the text. 
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