
Abstract
We present a new way of dynamically growing
and breeding structures in 3D space through
swarming agents. Different agent types and the
way they evolve over time is specified by a swarm
grammar similar to Lindenmayer systems. We
expand common L-system string interpretation
from a single turtle to a multitude of turtles which
behave like a swarm. By describing swarm agents
within the framework of formal grammars, we
build a bridge from symbolic production systems
(rewrite systems) to three-dimensional real-time
construction procedures that are executed by re-
active and interacting agents which move in simu-
lated physical 3D spaces.
We introduce constructor agents, their formal rep-
resentation in swarm grammars and demonstrate
by examples how (1) the swarm rules, (2) the
agent parameters and (3) the environment can
influence the actual construction and growth
processes that are initiated and directed by the
swarms.
In order to facilitate exploration of a large variety
of swarm grammars, we apply interactive evolu-
tionary design methods to create swarm grammar
sculptures and 3D structures.

Keywords: swarms, swarm intelligence, swarm
grammars, design of 3D structures, generative
design, rewriting systems, Lindenmayer sys-
tems, agent-based design, multi-agent system.

1. Introduction
Looking at life around us, we are immersed in
a natural world of massively parallel, decen-
tralized biological ‘information processing’
systems; a world that exhibits fascinating
emergent properties in many ways due to de-
velopmental processes, growth, and self-
organization. In fact, our very own bodies are
the result of emergent patterns, as the devel-
opment of any multi-cellular organism is de-
termined by localized interactions among an
enormous number of cells – carefully orches-
trated by enzymes, signaling proteins and
other molecular ‘agents.’ What is particularly
striking about these highly distributed devel-
opmental processes is that a centralized con-
trol agency is completely missing. This is also
the case for many other biological systems,
such as termites which build their nests with-
out an architect that draws a plan, or brain
cells evolving into a complex ‘mind machine’
without an explicit blueprint of a network
layout.

Obviously, being able to understand,
build and harness the emergent properties of
such systems would be highly beneficial for

1 of 16

Swarm grammars: growing dynamic
structures in 3D agent spaces

Christian Jacob and Sebastian von Mammen

University of Calgary, Calgary, Canada
cjacob@ucalgary.ca, s.vonmammen@ucalgary.ca

author's copy

mailto:cjacob@ucalgary.ca
mailto:cjacob@ucalgary.ca
mailto:s.vonmammen@ucalgary.ca
mailto:s.vonmammen@ucalgary.ca

helping us to create a new generation of de-
sign and manufacturing techniques. Designers
of complex systems could utilize their adapt-
ability and robustness. Such systems would
construct themselves, through self-
organization. However, system designers and
programmers are facing an enormous chal-
lenge. How can we actually build highly dis-
tributed systems of which we have only lim-
ited understanding? We have to invent new
ways of building, maintaining, and control-
ling such systems.

The Swarm Grammars we are going to
present here provide a first step towards a
new methodology for the creation and design
of 3D forms and shapes. With swarm gram-
mars (SGs) we capture growth processes that
result from the interactions of swarming
agents while they create branching structures
in 3-dimensional space.

Generative representations of design
patterns for 3D forms, such as Lindenmayer
systems (L-systems), have been used very
successfully to model growth processes.
Originally, L-systems were developed to cap-
ture growth in bacterial and yeast cells (Lin-
denmayer 1968; Rozenberg & Lindenmayer
1986). Soon L-systems were investigated in
the context of formal languages (Rozenberg
& Salomaa 1980; Rozenberg et al. 1986).
Capturing the developmental processes that
lead to branching patterns in plants became
another major area of study involving L-
system grammars (Prusinkiewicz & Hanan
1989; Prusinkiewicz & Lindenmayer 1990;
Hanan 1992; Prusinkiewicz 2004). Other
models of branching structures in dendritic
growth of neurons (Hamilton 1994) and in
arteries (Zanis 2001) have used L-systems as
well.

More recently, generative approaches
using L-systems have explored architectural
designs (Coates 1999; Hemberg 2001; Jack-

son 2001), to design modular robots (Hornby
et al. 2001; Hornby & Pollack 2001a), to effi-
ciently encode physical designs (Hornby &
Pollack 2001b), and to represent evolvable
hardware (Haddow 2001) and solutions in
computational mechanics (Alber et al. 2002).

In L-systems, a formal grammar speci-
fies rules that capture the step-by-step growth
process by rewriting a string of symbols,
which are subsequently translated into
graphical objects through a turtle interpreta-
tion. A turtle is a virtual drawing device that
is navigated in 3D space following the sym-
bolic commands of the string. In swarm
grammars we substitute the turtle interpreta-
tion by a swarm interpretation. Instead of a
single turtle following the path described by
an L-system, a swarm of ‘turtle agents’ inter-
pret the grammar rules. This simple expan-
sion from one interpreting turtle to a swarm
reveals new dimensions in performance, dy-
namics and complexity of the resulting struc-
tures. The swarm agents are not only con-
trolled by the grammar rules, but have the po-
tential to interact among each other and with
their environment. In fact, collision resolution
among branching structures can be accounted
for quite easily through parallel swarm-based
turtle interpretation. This does not only lead
to more interesting designs emerging from the
swarm’s dynamics, but also engages the de-
signer in an interactive dialog with the crea-
tive process, by introducing alternate swarms
or other static and dynamic environmental
components that can influence a swarm’s de-
velopmental processes.

Describing the swarm grammar ap-
proach in more detail, we proceed in the fol-
lowing manner: In Section 2 we define swarm
grammar systems and their associated build-
ing agents. Examples of building processes
implicitly described by swarm grammars are
illustrated in Section 3. Here we also show

2 of 16

which effects the rewrite rules and the agent
parameters have on the actual swarm-driven
building process. In Section 4 we show how
swarm grammar agents encounter other enti-
ties within their environment and how these
interactions influence the building dynamics
and the resulting compositions. We describe
the exploration of new swarm grammar rules
and agent parameters through an evolutionary
system in Section 5. A brief comparison to L-
systems—with respect to parallel turtle inter-
pretation, in particular—is presented in Sec-
tion 6. A short outline of future expansion
possibilities of swarm grammar systems in
Section 7 concludes this contribution.

Figure 1. Example of a swarm grammar system
with two rewrite rules, a start symbol, and a
set of attributes for agent types A and B
(see Section 2.2 for more details).

2. Swarm Grammar System
In this section we describe the two key parts
of a swarm grammar system: (1) a set of re-
write rules, which determine the composition
of agent types over time, and (2) a set of
agent specifications, which define agent type

specific parameters that govern the agents’
interactions.

2.1. The Swarm Grammar

A swarm grammar system SG = (SL, ∆) con-
sists of a rewrite system SL = (α, P) and a set
of agents ∆ = {a1, a2, ..., an}. The rewrite sys-
tem SL is an L-system with axiom α and pro-
duction rules P (Jacob 2001). In the simplest
form of context-free 0L-systems, each rule
has the form p ➝ s, where p is a single sym-
bol over an alphabet Ω, and s is either the
empty symbol (λ) or a word over Ω. Each
agent ai is characterized by a set of attributes,
which can include its geometrical shape,
color, mass, vision range, radius of perception
and other parameters such as separation or
cohesion urges that determine its behavior
while encountering its environment. Figure 1
gives an example of such a swarm grammar
with two types of agents. The rewriting pro-
cess begins with start symbol A. In the first
iteration of applying any matching rules, only
the first rule is applicable, hence A is rewrit-
ten into AB. At the next iteration, both rules
apply: A is rewritten into AB, and B is rewrit-
ten into A. The resulting string is ABA. Fur-
ther rewriting will result in the following
word sequence:
 t0: A
 t1: AB
 t2: ABA
 t3: ABAAB
 t4: ABAABABA
 ...

Here each ti represents a decision point1
where an agent triggers the application of the
next SL-system iteration with the string de-
scribing the current composition of the

3 of 16

1 In the following examples a decision point coincides with the iteration number of the SL-system.

swarm. In the example above we have five
type-A and three type-B swarm agents after
decision point t4. Figure 2 shows the first
steps of the swarm interpretation in 3D space.
The single type-A agent starts its vertical as-
cent, building a cylindrical shape on its way.
At decision point t1 agent A is replaced by a
new agent of type A and a type-B agent. A-
agents are the only ones that move, whereas
B-agents build a bent branch tip and then stop
(Fig. 2(c)). At time point t2 agent A is re-
placed by agents of type A and B, and the
former B-type agent is replace by an A-agent.
Figure 2(f) illustrates the branching structure
resulting after a few more iterations.

2.2. The Swarm Agents

In our demonstrations, a swarm agent is rep-
resented as a pyramid pointing in the direc-
tion of its velocity vector (Fig. 3). Each
agent’s awareness of other flock mates is de-
termined by its field of perception, which is
defined by a radius and an angle as illustrated
in Figure 3(a). An agent will only interact
with those agents that are within its field of
perception. We call these agents its neighbors.
Both the radius and angle of the field of vi-
sion are part of an agent’s attribute set.

4 of 16

Figure 2. Step-by-step illustration of swarm interpretation in 3D space (see text for details).

(d) t2: ABA (e) t3: ABAAB (f) t > t3

(c) t1 < t < t2(b) t1: AB(a) t0: A

(a) Agent perception (b) Cohesion

(c) Alignment (d) Separation

Agent Ai

Figure 3. Basic interactions with other agents.

The velocity vector V of an agent is up-
dated according to the following formula:

V = c1 V1(d) + c2 V2 + c3 V3 + c4 V4 + c5 V5.

Here we follow the simple boids model of
interaction rules (Reynolds 1987), where an
agent changes direction and adjusts its speed
according to three influential factors (Fig.
3(b)-(d)):

• separation (V1(d)): steer away from the
collective of neighbors if the minimum
distance is smaller than a crowding
value d (Kwong 2003).

• cohesion (V2): move toward the average
position of local flock mates, and

• alignment (V3): reorientation towards
the average direction of its neighbors.

Vector V4 points to the center of the
simulated 3D world and V5 represents a ran-
dom unit-length vector to add some noise.
The weights c1, ..., c5 determine how much
influence each factor has on the agent. Each
of these ‘urges’ is specified for an agent type
as part of a swarm grammar. In Figure 1, for
example, separation and wander urge corre-
spond to weights c4 and c5, respectively.

An agent stops applying the SL-system
rules when it runs out of energy, which is

passed on from one generation of agents to
the next. The energy level also influences cer-
tain properties of the built 3D structures such
as, for example, the radius of the cylinders.

In summary, an SL-grammar repeatedly
defines the successors of an agent. Predefined
parameters determine when a construction
element is built, when a production rule is
applied, how much energy is lost through the
creation of a construction element, and when
the agent runs out of energy and thus is un-
able to reproduce.

3. SG Agents in Action
Now let us have a look at the effects that
emerge when we modify the set of production
rules and the agent parameters that determine
their flocking behaviors. The following ex-
amples will demonstrate the high degree of
interaction dynamics and the resulting variety
of outcomes to be expected from swarm
grammar systems that build 3D structures.

3.1. Changing the SL-system Rules

We first discuss a small sample of tree-like
structures that result from various sets of pro-
duction rules. In order to illustrate some of
the basic effects, we use only a fairly limited
number of swarm agents.

Agent
Type

Separation
 c1

Random
c5

A 0 0.01
B 1.7 0.01

C 13.7 0

Table 1. Flocking parameters of agent types A, B,
and C. All other parameter weights (c2, c3,
and c4) are set to zero.

5 of 16

6 of 16

Figure 4. Examples of branching structures created from agent interactions governed by different swarm
grammars.

(d) Agents: 50

SLd = (A, {A ➝ BBBABBB, B ➝ λ})

(e) Agents: 86

SLe = (A, {A ➝ BBBABBB, B ➝ C, C ➝ λ})

(b) Agents: 64

SLb = (A, {A ➝ BAB})

(a) Agents: 87

SLa = (A, {A ➝ AB, B ➝ A})

(c) Agents: 407

SLc = (A, {A ➝ ABA, B ➝A})

Consider three types of swarm agents—
A, B, and C—with parameters as in Table 1,
which describe the weights of their separation
urge (c1) and random movement (c5). The re-
maining behavior parameters (c2, c3, c4, d) are
set to zero. Initially, all agents are oriented
upwards, hence will move towards the top
(increasing their y coordinate).

The interpretation of swarm grammar
SLa = (α = A, P = {A ➝ AB, B ➝ A}) results
in a tree-like structure with sparse branches,
which makes it easy to analyze (Fig. 4(a)).
The ‘natural’ look of the overall tree can be
attributed to the small degree of random
movements of both types of agents. A-type
agents move upwards with no urge to sepa-
rate, whereas any B-agent moves away from
agents of type A, due to its urge for separation
(c1 = 1.7). Hence the arrangement of the
branches is mainly a consequence of the
agents’ interactions.

With the even simpler grammar SLc, the
style of the tree looks similar to the structure
from SLa (Fig. 4(b)), where B-agents only
place stationary building blocks and then
stop.

A different branching pattern is shown
in Figure 4(c), where a slightly larger number
of A-agents is generated at each decision
point by adding an extra A-type agent com-
pared to SLa. This leads to bursting agent re-
productions, a more expansive growth of the
branches, and the formation of a denser can-
opy. The small green objects at the branch
tips represent the swarm agents that are still
to finish their next building step.

 However, an increased number of gen-
erated agents does not always mean that the
complexity of the emerging structures in-
creases as well. The SL-system in Figure 4(d)
produces a large number of agents, but the
outcome is quite simple, as type-B agents
only get the chance to establish a short side

branch and are removed before the next build-
ing step.

In Figure 4(e), a third agent type, C, is
added, which has a very high separation urge
with no random component added (Table 1).
As C-agents are also oriented vertically at
their time of creation, they are responsible for
the vertical branch endings.

3.1. Changing the Agent Parameters

Instead of changing the SL-system rules, we
are now going to modify the agents’ flocking
parameters and look at the consequences with
regard to the generated 3D structures. We
start from a swarm grammar with a single
rule that enables forked branching:

SGsimple = (α = A, P = {A ➝ AA}, ∆).

At each iteration step, one type-A agent
reproduces into two A-agents. As there is only
one type of agents, they all share the same
flocking parameters listed in Table 2. These
settings were reported by Kwong (2003) who
investigated swarm interaction patterns and
their evolution in more detail. Kwong discov-
ered a range of parameter settings, where the
agents displayed formations such as figure
eights, rings and other choreographed ar-
rangements (see also Kwong & Jacob, 2004).
Figures 5(a), (b), and (c) show snapshots of a
line formation, a ring formation, and a loose
cluster emerging from the parameter sets (1),
(2), and (3) in Table 2, respectively. Here the
additional parameter crowding is introduced.
If the distance to a neighbor is within crowd-
ing range, the separation urge is in effect.
This allows an agent to influence only a sub-
set of its actual neighbors. The parameters
amax and vmax denote the agents’ maximum
allowed acceleration and velocity, respec-

7 of 16

tively. No agent can fly faster or accelerate
faster than specified by these limits.

(1) (2) (3) (4)

Separation (c1) 1 5 5 2

Cohesion (c2) 10 8 0 3

Alignment (c3) 5 7 2 7

World Ctr (c4) 14 8 7 6

Random (c5) 1 5 6 3

Crowding 0.14 0.14 0.23 0.01

amax 39 38 40 40

vmax 9 13 6 6

Table 2. Flocking parameter settings that lead to
the following behaviors: (1) large ring for-
mation, (2) line formation, (3) a loose sta-
tionary cluster, and (4) a figure eight.

The bottom images in Figure 5 show
the structures that result from using the same
types of agents to interpret swarm grammar
SGsimple as described above. The building
blocks of the depicted structures bear differ-
ent colors (or grey levels) so that their com-
position over time is visualized. Lighter-
colored building blocks are built earlier. The
structure in Figure 5(d), for example, was
built from left to right, with intermittent
changes of the swarm’s direction. This con-
struction does not seem to involve any

8 of 16

Figure 5. Choreographed swarms are employed for building 3D sculptures. Top: snapshots of choreo-
graphed flocking behaviors; (a) line formation, (b) ring formation, (c) loose cluster formation. Bot-
tom: the structures built by the corresponding swarm grammar agents. Lighter (darker) colors of
building blocks indicate earlier (later) addition during the building process (flocking parameters ac-
cording to Table 2). Videos of these choreographed swarms are available at:
http://www.swarm-design.org/SwarmGrammars/movies/.

(d) (e) (f)

(a) (b) (c)

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/

branching due to agent separation urges. The
smooth bands originate from the agents’ al-
most perfect flight coordination while con-
structing very similar, almost parallel fibers.
Looking a little closer, however, reveals a
small gap at a U-turn slightly off the center at
the top right of the image (see Fig. 5(d) inset).

The structure in Figure 5(e) evolves
spherically from a center point. The large ring
flocking behavior of the swarm contributes to
a spiky and impulsive character of this grow-
ing ‘sculpture’.

Our third example of combining cho-
reographic swarms with swarm grammars in-
volves flocking behavior where the agents
form loose, temporary clusters, then disperse
and regroup to form new clusters at a differ-
ent location. This behavior is induced by the
parameters in Table 2(3). The formation of
one of these clusters is depicted in Figure
5(c). Looking at the corresponding structure
built by the swarm grammar agents, the sites
of cluster formation are clearly identifiable as
‘knots’. Since the flocking parameters allow

for a rather dynamic flight, single agents can
leave one cluster and join another one at a
different location.

4. Interactions with the Envi-
ronment

In this section we present three different
kinds of interaction with both static and dy-
namic elements within the environment. Table
3 lists the parameters for the six types of
agents we are going to employ.

D E F, G, H I

Separation 0 10 80 33

Cohesion 0 0 0 10

Alignment 0 0 10 11

World Ctr 10 1 1 5

Random 10 2 4 0

Crowding 0 10 10 1

amax 30 30 10 27

9 of 16

Figure 6. Swarm grammar agents interacting with objects in their environment: (a) a static wall constricts
agents from reaching a goal point behind it; (b) agents tend towards a goal point that orbits above
the construction center. Videos of these environmental interactions are available at:
http://www.swarm-design.org/SwarmGrammars/movies/.

(a) (b)

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/

D E F, G, H I

vmax 2 5 4 2

Table 3. Parameter settings for agent types D, E,
F, G, H, and I.

4.1. Swarm—Object Interaction

Figure 6(a) shows an example of agents
interacting with non-moving objects in their
environment. Agents of types F, G and H tend
to move towards the world center, which, in
this case, is located beyond the wall and far
up in the sky (like a sun). Whenever a swarm
agent tries to penetrate the wall, it bounces
back as its velocity vector’s x- and z-
coordinates are reversed. This implements a
simple collision detection with static objects.
As soon as the swarm structure has outgrown
the wall, the agents are no more prevented
from moving towards their destination.

As soon as the world center becomes
dynamic, its movement pattern is reflected in

the construction of those swarm agents that
tend towards it. In Figure 6(b) the world cen-
ter orbits far up in the sky and around the y-
axis of the simulation. Both agent types, D
and E, are attracted towards the moving world
centre. Consequently, the structure they build
reflects an upward, twisted growth pattern. In
order to better recognize the constructors, D-
type agents are assigned a very light and
agents of type E a darker color. As D-agents
do not feel the urge to separate from their
neighbors, they almost perfectly drive up-
wards around the y-axis. The constructions
from agents of type E outgrow the ones from
the D-type since E-agents are allowed a
greater maximum velocity (compare Table 3).

4.2. Swarm—Swarm Interaction

In the previous examples, the swarm grammar
agents were interacting with either static or
dynamic objects. Now, consider a second

10 of 16

(a) (b)

Figure 7. Constructing swarms interacting with another flock of agents. (a) Resulting construction with no
other swarm present; (b) the same swarm’s movements are influenced by another (non-
constructing) swarm of agents shown in blue. Videos of these swarm constructions are available
at: http://www.swarm-design.org/SwarmGrammars/movies/.

http://www.swarm-design.org/SG/videos/
http://www.swarm-design.org/SG/videos/

swarm that is not part of a swarm grammar,
but exhibits flocking behavior within the en-
vironment. Both swarms influence each other
as soon as some of their individuals enter the
field of vision of the other swarm agents.

These swarm-swarm interactions are
hard to capture in a screenshot. However, the
swarm grammar agents witness the exertion
of influence from the other swarm by leaving
a trace in the 3D construction space.

We look at another simplistic swarm
grammar:

SGstraight-up = (α = I, P = {I ➝ I}, ∆).

 Figure 7(a) shows the structure that is built
by this swarm grammar, with no elements in-
teracting with the swarm agents. The move-
ments of the type-I agents are not driven by
any randomness, so that any deviation from
the presented structure has to be seen as the
result of other external factors. The agent pa-
rameter settings are listed in Table 3.

Figure 7(b) displays a scene where the
interaction between both flocking and swarm
grammar agents is still in progress. The blue
pyramidal shapes represent (non-building)
agents that organize their flight in a figure
eight formation (parameters according to Ta-
ble 3 and taken from Jacob & Kwong 2004).
As a result of the interactions between the
building swarm and the flocking swarm, a
completely different structure emerges. When
one observes this construction during run
time, the influence of the swarm grammar
agent on the other swarm is fascinating to
watch: as long as the swarm grammar agent is
present, there is a very high probability of the
other flock-mates to interact with it, as the
figure eight formation usually occurs around
the world center.

5. Swarm Grammar Evolution
We use an extension of Inspirica (Kwong
2003), one of our evolutionary design tools,
to explore the potential of generating swarm
grammar systems that exhibit intriguing con-
structions. As illustrated in Figure 8, a collec-
tion of swarm builder simulations is simulta-
neously presented to the user. Each window
shows the interpretation of different swarm
grammar rules and with different agent pa-
rameters. All windows display the construc-
tion process as it occurs. All designs are true
objects in 3D space, hence can be rotated,
zoomed and inspected in various ways. After
assessment of the presented structures, the
swarm designer assigns fitness values be-
tween 0 and 10 to each solution.

The rewrite rules and agent parameters
are represented as symbolic expressions, so
that genetic programming (GP) can be used to
evolve both the set of rules as well as any
agent attributes (Jacob 2001). For the exam-
ples we present here, only context-free rules
with a maximum string length of three (|s| =
3) are applied. We allow at most five rules per
SG-genotype. GP mutation and crossover are
the only genetic operators.

As this is our first swarm grammar pro-
totype, the results presented here are still
simplistic, but they already reveal the poten-
tial of form generation through SG systems.
Figures 9 and 10 show selected examples of
such evolved structures. As developmental
rewrite systems are usually rather sensitive to
changes in the genotypes—which can result
in vastly different growth structures and de-
velopmental processes—we have limited our
grammars to only three symbols. In the Evol-
vica system (Jacob 2001) we have used filters
on typed genetic operators to limit variability
on L-system genotypes, which can be applied
to swarm grammars as well. However, further

11 of 16

investigations will be necessary to explore
different encodings and genotype-phenotype
mappings for swarm grammars.

6. Discussion
The interpretation of an expanded L-system
string by a single turtle has always been one
of the major constraints of L-systems.
Whereas the rewrite rules are applied in paral-
lel on a single string (i.e., any matching rule
is applied), the interpretation of the string by
a single turtle serializes the actual drawing or
creation process of the 3-dimensional struc-
tures. Simulating the growing branches of a
tree, for example, this creates major issues as
the branch tips are not created in a parallel
fashion. Hence, detection of branch collisions
and their resolution has to be dealt with after
collisions have already occurred (Mech &
Prusinkiewicz 1996). Within the swarm
grammar approach, these problems do not
arise any more, as the swarm agents act as

independent, interacting units which resolve
collisions on their own. Hence, swarm gram-
mars combine the ease of specification of a
grammar system with the interpretive power
of a multitude of building devices (extended
‘turtles’) in 3D spaces.

Organizing sets of swarm agents
through deterministic, context-free grammars
has enabled us to transfer the notion of con-
nectivity – which is inherent in rewriting sys-
tems – onto structures that are created by co-
ordinated movements among swarm agents.
The underlying grammar has a profound ef-
fect on the resulting topology of the built
structures, whereas the employed swarms and
their characteristics largely determine the dy-
namic composition process.

12 of 16

Figure 8. The interactive evolutionary design interface used to explore swarm grammar rules, agent pa-
rameters, and their corresponding 3D structures.

7. Swarm Grammars: What
Next?

There is a wide range of possibilities to ex-
tend the proposed swarm grammar approach.
Here are a few of these expansions we are
currently beginning to explore. As SG-
systems are natural extensions of Linden-
mayer grammars, all variants of L-systems
are applicable as well, such as: context-

sensitive production rules, non-deterministic
or probabilistic rules, map SG-systems, and
table SG-systems. Prusinkiewicz & Linden-
mayer (1991) give a good overview of these
L-system variants. How far these extended
SG-systems will expand the variety of con-
ceivable designs remains to be seen.

Similar arguments apply to the agent
side of SG-systems. Not only can interaction
parameters be changed, but one may define

13 of 16

Figure 9. Collage of evolved designs generated from swarm grammar systems.

agents with specific (simulated) physical
properties (limited speed, mass, vision, etc),
or constrain their interaction spaces (e.g.,
termites that build nests, but cannot fly). Evo-
lutionary design systems – such as Evolvica
(Jacob 2001) and Inspirica (Kwong 2003)
will certainly help us to unleash the still
largely hidden powers of generative, dynamic
design through swarm grammar systems.

Software
Sample code of our swarm grammar systems
and other swarm-based simulations, which
our Evolutionary & Swarm Design Labora-
tory is working on, are available at
http://www.swarm-design.org.

Acknowledgement
Our swarm grammar systems are imple-
mented in BREVE, a simulation package for
modeling decentralized, agent-based systems
in 3-dimensional space (Spector & Klein
2002). BREVE was designed and is still being
further developed by Jon Klein, whom we
have to thank for his continuous support and
for providing such an excellent research tool
for our swarm-based investigations.

References
Alber, R., Rudolph, S., & Kröplin, B. (2002). On
Formal Languages in Design Generation and
Evolution. 5th World Congress on Computational
Mechanics (WCCM V), Vienna, Austria.

Coates, P., Broughton, T., & Jackson, H. (1999).
Exploring Three-Dimensional Design Worlds us-
ing Lindenmayer Systems and Genetic Program-
ming. In P. Bentley (Ed.), Evolutionary Design by
Computers. (pp. 323-341). San Francisco, CA,
USA: Morgan Kaufmann.

Haddow, P. C., Tufte, G., & van Remortel, P.
(2001). Shrinking the Genotype: L-systems for
EHW? Evolvable Systems: From Biology to
Hardware: 4th International Conference, Tokyo,
Japan.

Hamilton, P. (1994). Computing Dendritic
Growth. In R. Paton (Ed.), Computing with Bio-
logical Metaphors. (pp. 86-102). London Chap-
man & Hall.

Hanan, J. S. (1992). Parametric L-systems and
their application to the modelling and visualiza-
tion of plants. Ph.D. Thesis. Department of Com-
puter Science, University of Regina.

Hemberg, M. (2001). GENR8 - A Design Tool for
Surface Generation. M.Sc. Engineering Physics
Thesis. Department of Physical Resource Theory,
MIT, Boston, Ma, USA.

Henry, Kwong (2003). Evolutionary Design of
Implicit Surfaces and Swarm Dynamics. MSc
Thesis. Department of Computer Science, Univer-
sity of Calgary, Calgary, AB, Canada.

Hornby, G., Lipson, H., & Pollack, J. (2001).
Evolution of generative design systems for modu-
lar physical robots. IEEE International Confer-
ence on Robotics and Automation (ICRA), Seoul,
Korea.

Hornby, G. & Pollack, J. B. (2001a). Evolving L-
systems to generate virtual creatures. Computers
& Graphics, 25, 1041-1048.

Hornby, G., & Pollack, J. (2001b). The advan-
tages of generative grammatical encodings for
physical design. Congress on Evolutionary Com-
putation, Seoul, South Korea.

Jackson, H. (2001). Toward a Symbiotic Coevolu-
tionary Approach to Architecture. In D. W. Corne,
& P. Bentley (Eds.), Creative Evolutionary Sys-
tems. (pp. 299-314). San Francisco, CA, USA:
Morgan Kaufmann.

Jacob, C. (1994). Genetic L-System Program-
ming. PPSN III, Parallel Problem Solving from
Nature.

14 of 16

http://www.swarm-design.org
http://www.swarm-design.org

Jacob, C. (2001). Illustrating Evolutionary Com-
putation with Mathematica. San Francisco, CA,
USA: Morgan Kaufmann.

Kitano, H. (1990). Designing Neural Networks
Using Genetic Algorithms with Graph Generation
System. Complex Systems, 4(4).

Kwong, H., & Jacob, C. (2003). Evolutionary Ex-
ploration of Dynamic Swarm Behaviour. Congress
on Evolutionary Computation, Canberra, Austra-
lia.

Lindenmayer, A. (1968). Mathematical models for
cellular interaction in development, Parts I and
II. Journal of Theoretical Biology, 18, 280-315.

Mech, R., & Prusinkiewicz, P. (1996). Visual
models of plants interacting with their environ-
ment. 23rd Annual Conference on Computer
Graphics and Interactive Techniques, New York,
NY, USA.

Prusinkiewicz, P. (2004). Art and science for life:
Designing and growing virtual plants with L-
systems. Acta Horticulturae, 630, 15-28.

Prusinkiewicz, P., & Hanan, J. (1989). Linden-
mayer Systems, Fractals, and Plants (SIAM/
SIREV 33(2)). New York: Springer.

Prusinkiewicz, P., & Lindenmayer, A. (1990). The
Algorithmic Beauty of Plants. New York, NY,
USA: Springer.

Reynolds, C. W. (1987). Flocks, herds and
schools: A distributed behavioral model. Int. Con-
ference on Computer Graphics and Interactive
Techniques, SIGGRAPH, Anaheim, USA.

Rozenberg, G., & Salomaa, A. (1980). The
Mathematical Theory of L-Systems. New York, NY,
USA: Academic Press.

Rozenberg, G., Salomaa, A., & Lindenmayer, A.
(1986). The Book of L. Berlin ; New York:
Springer-Verlag.

Spector, L., & Klein, J. (2002). Evolutionary Dy-
namics Discovered via Visualization in the
BREVE Simulation Environment. 8th Interna-
tional Conference on the Simulation and Synthesis
of Living Systems, Sydney, Australia.

Zamir, M. (2001). Arterial Branching within the
Confines of Fractal L-System Formalism. The
Journal of General Physiology, 118(3), 267-276.

15 of 16

Figure 10. SwarmGrammar Art: Each of the two scenes is a composition of sub-structures evolved from
different swarm grammars, similar to the ones discussed in the text.

16 of 16

