
Adaptation and Integration of GPU-Driven Physics
for a Biology Research RIS

Andreas Knote * Sebastian von Mammen †

Games Engineering
University of Würzburg

Germany

ABSTRACT

Developmental biology studies biophysical processes that lead to the
development of tissues, organs, and organisms. Like other complex
scientific domains, developmental biology can greatly benefit from
real-time interactive systems (RIS). In addition to utilizing various
innovative RIS technologies, highly efficient domain models have to
be provided as well. In this paper, we present a prototypical RIS for
developmental biology research that achieves this goal by adapting
an existing, GPU-driven, position-based physics engine called FleX
to support the required biological interaction mechanisms. The
adapted cell model is further augmented by a GPU-based substance
diffusion system that simulates biochemical signals that allow cells
to communicate and react to their environment. We present model
specifics with an emphasis on their efficient integration in an existing
game engine, and we elaborate on future improvements.

Index Terms: Computing methodologies—Interactive simulation;
Computing methodologies—Agent / discrete models; Computing
methodologies—Real-time simulation;

1 INTRODUCTION

Developmental biology seeks a comprehensive understanding of the
processes that lead from single cells to complex organisms. Accord-
ingly, the focus of attention rests on cells and their interactions [19].
The cell also provides a natural level of abstraction for according
mathematical and computational models. These models have to
consider the cells’ physical representation but also their behaviors:
“Cells can move, divide, die, differentiate, change shape, exert forces,
secrete and absorb chemicals and electrical charges, and change
their distribution of surface properties” [19].

Composing simulation models of multiple cells, complex interac-
tion patterns ensue potentially yielding well-studied morphologies,
pathologies or unforeseen phenomena. Having a RIS to quickly
prototype model instances and to see their results can greatly benefit
empirical work. Real-time feedback is all the more important as
it allows the biologists to follow different intuitions, to not only
statistically analyze cohorts of data but to understand and embrace
the systems’ dynamics interactively and directly. Hence, before
the experimenters invest in costly apparatuses and long, tedious
lab routines, various hypotheses can be explored “in-silico” and
thereby minimize the effort and maximize the research outcomes.
We have created a RIS prototype that combines a virtual biological
cell model with an immersive visualization. The agent-based cell
model provides mechanical interactions powered by a GPU-driven
physics simulation, chemical signaling through a diffusion simula-
tion, and high-level behavior programmable through visual scripting.
The physics simulation repurposes the particle-based NVidia FleX

*e-mail: andreas.knote@uni-wuerzburg.de
†e-mail: sebastian.von.mammen@uni-wuerzburg.de

physics solver [22] originally developed for visual effects. Interactiv-
ity and immersion are realized through UnrealEngine 4 (UE4) [9], a
state-of-the-art game engine and a VR interface. This work focuses
on the integration of the mechanical cell model and the diffusion
simulation with the game engine and evaluates performance and
difficulties encountered.

The remainder of this paper is structured as follows. We introduce
related research on simulation models and RIS in Section 2. Our
current RIS prototype is described in Section 3. The physical cell
model and the diffusion model are presented in appropriate depth in
Section 4. Section 5 will cover integration of the system components.
We analyze the overall performance in Section 6. We then highlight
bottlenecks and design issues with a high impact on performance in
Section 7. We conclude the paper in Section 8 and further note next
steps planned to improve and evolve the system.

2 RELATED WORK

Merks [19] points to the importance of cell-centered models, empha-
sizing the view of biological systems as complex systems. Biological
cells and the concept of autonomous agents both draw from high
autonomy and low central control. Gene-regulatory networks are
a standard approach to capture cellular behavior in cellular model-
ing [5]. D-VASim [1], an interactive virtual laboratory environment
for the simulation and analysis of gene-regulatory networks, allows
the user to load SBML [14] network descriptions and visualize and
interact with the simulation state in terms of species concentrations
in an environment based on LabView [21].
Physical interactions can and have been modeled in a multitude of
ways. Successful models have been based on the Johnson-Kendall-
Roberts (JKR) model for strong adhesion of slightly deformable
soft bodies [4, 8] or mass-spring-damper (MSD) systems, including
torsion coupling [7]. Here, individual cells were often represented
by a single point and an explicit or implicit description of their
shape. A different approach is found in the Cellular Potts Model
(CPM) which is based on a grid lattice [12, 19]. Here, individual
cells are comprised of multiple grid cells, and an energy function,
the Hamiltonian, combines bonding energies and area or volume
conservation constraints into a single equation, which controls the
probability density function used for simulation of cell interactions
in a Monte Carlo Simulation (MSC). Based on these mechanical in-
teraction models, several simulation platforms have been presented.
MecaCell [7] provides a framework for the integration of physical
and behavioral models into a biological simulation written in C++
as a header-only library. CellSys [13] and CompuCell3D [24] offer
examples for an integrated design and visualisation approach. Meca-
Gen [6] offers a full development environment including behavioral
programming through gene regulatory networks. However, these
simulations are not interactive in the sense of giving the user the
ability to interfere with the simulation state directly at run-time.
In the domain of molecular simulations, such as protein folding, sev-
eral works on interactive simulations of the processes of interest have
been published lately. Lv et al. [17] research an interactive molecular
visualization system based on the Unity game engine. They created

author's copy



a stand-alone viewer for displaying molecular structures, surfaces,
animated electrostatic field lines and biological networks. Frey et
al. [10] developed a generic system to link molecular simulations
with interactive front-ends called MDdriver. Molecule position and
energy data is transferred via network to the visualization engine,
and user input is in return converted to physical force to be applied
to the simulation. A VR prototype using VTK [23] served as a use
case, where the user can interact with the molecular simulation in
real time.

Considering the presented related work, our research aims for the
niche between interactive molecular simulations, which offer real-
time interactivity for lower-level molecular interactions, but lack
higher-level cell behavior, and the existing biological simulations,
which–to our knowledge–do not yet offer real-time interactivity.

3 RIS PROTOTYPE

To gather feedback from developmental biologists as early as pos-
sible during the development, an interactive, immersive prototype,
using current virtual reality (VR) head-mounted displays (HMD)
was implemented. Using an interactive editor, the user can recreate
biological assays by placing the simulation elements (cells, diffusion
grids, physical objects) into a scene and configure them. Cell behav-
ior can be controlled by visual scripting or native code, offering full
access to the simulation’s features. In Figure 1, the view at runtime
of the simulation is shown. The user can place and remove cells or
modify density values of the diffusion simulation. Physical forces
may be exerted on the cells both through the user or other simulated
objects. The user can freely modify the viewport. Using a movable
plane, the inside of clusters of cells can be inspected by disabling
the rendering of cells above the plane. The density values created
by the diffusion simulation can be visualized in a cut-through. To
realize the above system, the RIS has three main requirements: (1)
A sufficiently detailed simulation model, (2) the efficient handling
of user input, and (3) high-quality visualizations of the simulation
state. Furthermore, means to augment the display with important
state information and the provisioning of appropriate user interfaces
needs to be supported.
Based on the requirements, the next section will first present our
physical cell and diffusion model to tackle requirement (1). Then,
the integration of the simulation component with a state-of-the-art
game engine is detailed, which covers requirements (2) and (3) and
offers a variety of tools for UI and visual augmentation.

4 PHYSICAL CELL MODEL AND DIFFUSION SIMULATION

Our biology-tailored RIS adapts an existing real-time physics engine
to model the required system mechanics. In this section, we briefly
explain the most important aspects of the adapted model. It provides
the foundation for integration in the main simulation loop which
will be explained in Section 5. We will first introduce our cell model
based on the NVidia FleX position based dynamics solver [22]
before presenting the GPU based diffusion simulation.

4.1 Position Based Dynamics on GPU

To simulate the physical interactions of cells, we required an efficient
physics solver capable of soft body simulation. With the FleX
Unified Particle-Based Physics Simulation, NVidia provides a fast
and efficient GPU-based physics simulation [18, 20, 22] for soft and
rigid bodies. The position-based approach is stable and controllable
compared to force-based simulations, trades efficiency for physical
correctness, but achieves visually plausible results [2]. Instead of
computing the change of momentum of simulated systems as a
product of applied forces and numerical integration of accelerations
and velocities, positions are calculated directly based on the solution
to a quasi-static problem. Thus, problems such as overshooting that
occur in force-based systems can be avoided. Collision constraints

and penetrations can be handled easily by adjusting the simulated
positions directly.

Deformable soft bodies are realized through constraints among
sets of particles of clusters. The initial relative positions of the
particles within these clusters define their rest positions. The de-
formation of a cluster is calculated from the overall change of its
particles as a single transformation. Vertices of a mesh are associ-
ated with one or more clusters using the common computer graphics
method of bones, or weighted summed transformations [15]. When
rendering soft bodies, the mesh representation is modified using
GPU-based mesh skinning [16]. Deformations that result from
simulation are captured by according bone transformations. In the
given implementation, this process happens at each simulation step.

4.2 Cell Model

We implemented our model following an agent-based, cell-centered
[11, 19] approach. Each cell is a reactive agent with an internal state.
Different types of cells with individual logic and physical state can
be created, and cells can be programmed using visual scripting or
C++. By controlling the relative transformations of the particles
in a cluster, cell growth can be simulated by translational scaling.
Furthermore, this allows realizing non-uniform scaling, such as
an increase in length. We have not yet quantitatively evaluated
this simulation model against empirical data, e.g. obtained by CT
scan time series of developing organisms. Although we will need
to rely on a different, validated physics-enabled cell model, our
current model provides a baseline for the performance of GPU-
based, particle-based soft body simulation in a RIS. Furthermore, it
allows to create a working prototype for the evaluation of the overall
system concept.

4.2.1 Cell-Cell Adhesion

In reality, cells adhere to each other using sticky proteins on their
surfaces, upon which more elaborate structures may be created. We
simulate these so-called adhesion junctions by partitioning the cells’
surfaces into polygonal regions as seen in Figure 2. In Subfigure
(2a), the truncated icosahedron underlying the partitioning can be
seen. Subfigure (2b) shows the groups of particles that make up
the attachment regions. Among such regions, spring joints can be
created at runtime that connect the cells on their surface, as seen in
Subfigure (2c) and (2d). Based on this partitioning, the k out-most
particles are selected for every region, and the one closest to their
common center of mass is designated as the region’s pivot. The pivot
represents the region for queries, e.g., regarding distances, to allow
cells to attach to one another once they get close enough. To avoid
degenerated attachments in certain edge cases, e.g., cells attaching
to the far sides of other cells when they are overly compressed,
additional constraints are enforced. When two regions are connected,
only an according entry is made in the cells’ list of connected regions
at first. The actual spring constraints are created in each simulation
step based on the stored connections, as particle indexes may change
with every addition or removal of cells. An optimal spring pairing
among the particles of both regions (one-to-one) is chosen the first
time so that the particles of the local and remote region are paired
in such a way as to minimize each pairs’ initial distance. This is
an attempt to minimize the introduction of unwanted additional
forces created by a suboptimal pairing. Spring pairings have to be
created within a GPU-CPU synchronized block, as they depend on
the particle state. The spring coefficient and rest distance of the
springs can be configured for each cell.

4.3 GPU-driven Diffusion Simulation

Diffusion gradients – the relative differences in the concentration
of certain substances in space – play a major role in (inter-)cellular
processes. We implemented an approximation of substance diffusion.



Figure 1: The RIS Prototype as seen through an HMD (field of view cropped). (a) A close-up view of the demonstration assay. A cell cluster,
composed of two types of cells, is suspended in a rigid frame. Each cell type (light violet, light green) produces a different morphogenic substance.
The substance densities are visualized (translucent blue and green) on a plane. The user can move the plane around by drag and drop. (b) The
user can interact with the cells using a hand-held controller, visualized here by the puck-shaped object. For example, new cells can be added to
the simulation. Also, forces can be exerted upon cells by holding a button and pushing the virtual controller against them. (c) The user can see the
inside of a cluster of cells by defining a culling plane that can be moved and placed freely.

Figure 2: (a) Based on the tessellation of the surface of a spherical
cell (orange), attachment regions are created by grouping the k out-
most particles. (b) These regions consist of a pivot (center) and k−1
other particles. (here: k = 5 particles connected by colored lines, pivot
at center) (c,d) Between regions, spring constraints can be created to
simulated surface-based attachments of cells. Specific regions can
be activated or deactivated.

It is parallelizable and naturally adapts to a three-dimensional lattice
grid.

ũt+∆t = ut(1−α) (1)

ut+∆t = ũt+∆t +
α

‖N‖ ∑
x∈N

ux
t (2)

We denote the density value at some point in the grid at time t as ut ,
and the uniform flow rate between grid cells as α . The time incre-
ment between simulation steps is denoted by ∆t. The neighboring
density values of the point are Nd

t , where d identifies a direction (e.g.,
to the left, above) within the point’s Moore neighborhood (i.e., its
immediate neighbors including diagonals). First, the outflow from
the lattice grid point is subtracted from the local density, before the
influx from all neighboring cells is summed and added, according
to Equations (1) and (2). To update the value of a lattice grid point
according to Equation (2), only a single write operation is necessary,
combined with further n+1 read operations on the n direct neighbor
densities and the local density. A separate kernel is executed for
every point on the grid, each realizing the diffusion model from
Equation (2). Kernels inside a block can access a limited amount
of shared memory quickly. We make use of shared memory in our
implementation by first reading the value ut of the associated grid
point into a shared array. A synchronization point after the read
operation makes sure that the cache is filled.
We used a double-buffered approach for the host and the device mem-
ory, so that data transfer of the last integration result can happen in
parallel to the next iteration and reading access on the host does not
require synchronization. To minimize the amount of data transfer
from the host to the device, individual emissions of substances are
condensed to total emission amounts at pairwise distinct locations.
This mapping is realized using a hash map and merging sequential
substance emissions to the same grid points. Thereby, instead of
storing individual productions and absorption events, the net effect
is calculated on the CPU immediately using a map of floats indexed
by their index in the 3D grid. This map is then serialized into a list
and sent to the device, where each net event is processed in parallel
in a grid-stride loop before the integration step.
It is possible use a parallel GPU computation to obtain density gra-
dients for all points in the grid. The complete gradient data for a
diffusion grid lattice increases the transfer load by 300%, as three
additional values, one vector per point, need to be moved for each



Figure 3: CUDA Benchmarking Results: 49 Cells, 2 diffusion grids (54x54x54), no diffusion simulation substepping. Between 0ms and 0.25ms,
the diffusion simulation fully occupies the GPU (grey). The data transfer back to the host (violet) and computation of the two grids overlaps. Next,
the FleX simulation is executed. First, modified state data is pushed to the GPU (green) before the solver computation is executed. The resulting
state data is then pulled from the GPU.

Figure 4: CUDA Benchmarking Results: Flex solver configured for 300000 Particles. 49 vs. 1150 Cells, each comprised of 255 particles. Data
transfer times (green, violet) depend on the maximum number of particles and are almost independent of the active particles. Computation time
varies with the number of particles (grey).

lattice grid coordinate. Thus, using the GPU to calculate the gra-
dients for all points can be enabled, but by default, gradients are
calculated on the CPU.

5 INTEGRATION WITH THE GAME ENGINE

We implemented our first RIS prototype relying on UE4 which of-
fers source code access free of charge below certain revenue thresh-
olds [9]. It provides high-quality 3D graphics and easy handling of
user input, including spatial controllers common to current virtual
reality (VR) gear. NVidia maintains a fork of UE4 that integrates the
FleX solver tightly with the engine infrastructure, e.g., by provid-
ing dynamic soft body rendering and mesh-particle collisions [22].
Minor adjustments were done to the FleX integration to accommo-
date dynamic changes at runtime to the underlying constraints that
define the shapes of the soft bodies. The interface to define spring
constraints was also extended to allow bulk processing new spring
definitions as created by surface attachment described above.

5.1 Asynchronous Execution and Synchronization
The following system components were most important for our pro-
totype: The game engine itself, including functionality for graphics,
input, audio, the FleX solver, the logic processing of the individual
cells, and the diffusion simulation.
In the current implementation, these subsystems are synchronized
once during each iteration of the game engine loop. The main loop
is partially parallelized internally (i.e., during physics calculations),
but can be considered to be executed by a single thread if we only
observe modifications of entities through scripting or user input. As,
by default, all tick methods on game objects are executed without
concurrency, programmatic interaction with other entities or the
game world, in general, does not require synchronization.
In Figure 5, the synchronization between systems and components
during one iteration are visualized. The FleX solver and the dif-
fusion simulation run on the device and are synchronized with the
main engine thread to modify the respective simulation state. At
the beginning of an engine loop update, the logic update of the cells

Flex Update, Collisions...

Engine Loop FleX

Cell Tick

Cell Tick (Sync.)
Push
Solve
Pull

Diffusion Grid

Diffusion Emission Push

Solve
Pull

Host (CPU) Device (GPU)

Figure 5: Synchronization barriers and high-level execution steps
between the engine loop, the diffusion grid simulation, and the FleX
simulation. Outside of the synchronized regions between a synchro-
nization barrier (thick black bars) and the asynchronous calls (dashed
arrows), execution of the engine loop on the host and the physics and
diffusion simulation on the device are executing in parallel. For FleX,
the complete data transfer is asynchronous, and no read access is
possible outside of the region. Thus an additional cell logic call (Cell
Tick (Sync.)) was introduced inside the safe region.



Cell Count (w/Tick)
Cell Count (w/o Tick)

Frame Time (with Logic Tick)
Frame Time (without Logic Tick)

256
512

1024

0

5

10

20

25

30

35

15

39 44 49

C
el

l C
ou

nt
Fr

am
e 

Ti
m

e 
[m

s]

Simulation Runtime [s]

Figure 6: These bottom-line performance charts show the frame
times of a simulation with increasing numbers of cells which only
feature physics, but no biological logic. The red graph depicts the
overhead incurred when the scripting system for cell behavior is en-
abled.

is executed. Any outstanding GPU work for diffusion or physics
simulation can be processed in parallel. At the first synchronization
barrier the main loop will block until the latest diffusion simulation
data was pulled from the device and made available for reading
access during the next update cycle. Any diffusion emissions gen-
erated during the current simulation will be merged and sent to the
device in a batch to avoid performance degradation through mul-
tiple small data accesses. The preparation of the emission events
and the swapping of the data pointers are the only non-negligible
blocking calls. On the device, the previous output data is updated
with the new emissions, and the pointers for in- and output data are
swapped. Then the density kernels and, if enabled, gradient kernels
are launched, and finally the transfer of data to the host is scheduled.
The solver and the subsequent data readback are scheduled and exe-
cuted in parallel, ending the synchronized region. The data of the
diffusion simulation is pulled from the device asynchronously to the
main engine loop.
The FleX synchronization barrier asserts that the transfer of the latest
FleX simulation state data finished. The FleX data cannot safely be
accessed outside this synchronized region, except for a small subset
(e.g., cell positions), which is duplicated. The logic of cells can
conceptually be separated into parts that modify the physics state
or require full access to the data of all particles in the simulation.
Accordingly, two tick methods were implemented for cells, one that
is executed during the main tick of the engine (pre-physics) and one
that is executed during the synchronized phase of the FleX solver
and the engine loop. The spring constraints are cleared and recreated
from the individual cells’ attachment data to account for indexing
changes or removed particles. Then, the pushing of the modified
FleX state data, the solver step, and the readback of the result is
scheduled, and the synchronized region ends. When the simulation
is executed on the GPU, there is no further explicit coordination
between FleX and OpenGL. CUDA devices are able to schedule
multiple processes on the GPU to overlap. However the high number
of particles and the diffusion grid points in our simulation usually
occupies the GPU completely.

6 RESULTS

To assess the performance of the system in more detail, we will
first look at the overall achievable frame times in relation to the
number of cells active in a synthetic simulation setup. Then, we will
analyze the performance of FleX and the diffusion simulation on
the CUDA device. Based on this, bottlenecks will be pointed out.
The timings were obtained using NVidia NSight CUDA profiler, the
UnrealEngine profiler, an NVidia GTX 1080 and an Intel i7-6700k

4GHz, VisualStudio 2015 and the customized UnrealEngine 4.12.5
with FleX.

6.1 System Performance
We benchmarked our system using a simplified “test”-cell with
no active logic or biological behavior to examine the bottom line
performance.

6.1.1 Overall Performance
In Figure 6, obtained frame rates using test cells in an otherwise
empty simulation are shown. Frame times depend on the number
of cells active in the simulation. For 256 cells, 5ms of frame time
remain available for additional logic computation while staying be-
low 11ms (90Hz) in total. Such setups would be well-suited for
VR applications. At 512 cells, 16.6ms (60Hz) for non-VR applica-
tions can be maintained. At 1024 cells, frame times around 27ms
(30Hz) are suitable only for less demanding applications. The spikes
in frame times are a result of the instantiation of new cells in the
simulation. There is a noticeable difference between the simulation
runs depending on whether cell logic ticks are enabled. As there is
no additional logic executed (no actual logic is implemented), the
spikes likely stem from an overhead in UE when instantiating new
entities which make use of the scripting system.

6.1.2 CUDA Performance
Our model currently uses 255 particles per cell. After configuring
FleX for 300k particles to accommodate a maximum of 1150 cells,
about 17 MiB of data needed to be copied to and from the device
at each frame. The data comprises, among other, the complete
state data of the simulated particles (position, velocity, mass). Con-
straints, such as springs, are pushed to the device, but not read back
(this functionality was lacking in the used FleX release). Particle
data is allocated a-priori on the GPU and remains constant in size.
Constraint data is dynamically added and removed.

A complete GPU execution timeline can be seen in Figure 4. First,
the diffusion grid calculation is executed, which takes about 200 µs,
including data transfer to and from the GPU. Subsequently, the FleX
simulation is executed, beginning and ending with a relatively large
amount of data transfer. The transfer costs are fixed and independent
of the actual number of cells, compare Figure 3. For 1150 cells, the
time required for executing the physics solver on the GPU is about
11ms. The execution time dependends on the number of particles
and constraints that are active in the simulation.

Multiple diffusion grids can be placed in the simulation. As
the number of grid points usually exceeds the number of available
threads, and one thread currently updates one grid point, the GPU is
fully utilized when performing the diffusion simulation. Thus, only
data transfers overlap with the diffusion kernel execution. In Figures
3 and 7, the execution timings for simulations with two diffusion
grid instances can be seen. Measured kernel execution times per
substep are 125µs and data transfer times 48µs (615 KiB). If the
grid resolution is increased to 93x93x93, measured kernel execution
times are 650µs per substep and data transfer times 245µs (3.1 Mib)
(not depicted). In Figure 7, the amount of data transfer saved by
only transferring net changes is shown (448 bytes vs. 615 KiB).

7 DISCUSSION

The integration with existing engine technologies can reduce de-
velopment efforts significantly, especially in domains related to
visualization and the capture of user input. For small numbers of
cells, data transfer times between the GPU and the host dominate the
execution time. However, CPU logic – which was not benchmarked
here, as it is highly dependent on the implementation and the type
of behavior to be realized – is performance intensive and not easy to
parallelize using the standard features of UE4 without duplicating
data structures, as most API methods are not thread-safe. Reusing



Figure 7: CUDA Benchmarking Results: 2 diffusion grids (54x54x54). Top: A complete update on the GPU including all data transfers. Bottom:
Cropped to host-device transfer at the beginning of the diffusion grid update. To minimize data transfer between host and device, only delta
changes (e.g., emissions from cells or user input) are sent to the device. Notice the time scale (µs).

the implementation of FleX with UE4 was chosen as it allowed to
quickly test the modeling, configuration, and overall feasibility of
the interactive cell simulation. However, the tight integration with
the engine loop limits scalability. Although the actual computation
of FleX is asynchronous to the main loop, it is synchronized every
tick. As the benchmarks showed, even at just 1k cells, the physics
simulation time alone would exceed 11ms, making it unsuitable for
VR applications as long as the simulation-visualization lockstep is
maintained.
The spikes in frame times when instantiating large numbers of new
cells might be mitigated by pre-allocating cells ahead of the simu-
lation or potentially continuously during simulation runtime. Cur-
rently, this would have to be done for each potential cell type indi-
vidually, as the cells are subclasses of a common cell class and, as
such, do not necessarily share a common memory layout. The FleX
representation of a cell, which is comparatively light weight in terms
of memory consumption, barely contributes to the spikes.
As depicted in Figure 5, a decision was made to separate logic from
physics updates and partially synchronize the processes. The current
exemplary simulations were not extensive enough to show wether
the resulting implementation bias qualitatively reduces the useful-
ness of the simulation.
Better decoupling of the engine loop and the simulation loop is
required. It is important to maintain a clean separation between the
visualization and interaction components and the cell simulation
engine. This might also benefit the maintainability and reusability
of the individual components. Increasing the simulation tick time
and, optionally, using a smoothing algorithm to cover up visual
artifacts, could allow the interactive exploration of rather demand-
ing (regarding computational time per simulation step) scenarios,
as long as an appropriate visual representation can be found. To
this end, an abstraction layer similar to MDDriver [10] seems a
reasonable approach. Here, only essential information about the
position of individual atoms and energy fields is transmitted, allow-
ing to reconstruct the full visual image based on predefined visual
representations. Obviously, this allows decoupling the simulation
and rendering loops. In the long run, research into the integration
with decentralized simulations might be worthwhile by spreading
the computational load on multiple machines.
The diffusion simulation currently operates in a brute-force man-
ner. As no sparse representation is used, every grid point has to be
calculated by and the complete state data pulled from the GPU. De-
tection of empty regions, where all densities including the marginal
areas could considerably reduce the transfer and computation times.
Furthermore, the medium is treated as being static, without any
macroscopic flow taking place. Further analysis needs to be done to
decide on whether simulating this aspect is really necessary.
Regarding the visualization of morphogen densities, using cutting
planes is merely a stop-gap solution that should be replaced by
volume rendering [3], providing higher visual fidelity and a more
fine-grained spatial representation.

The use of game engine technology, and especially a physics en-
gine with its focus on visual plausibility, naturally raises concerns
on applicability of the results. For this specific prototype, we were
motivated to create a simulation of sufficient scale, including surface-
based mechanical interactions of deformable cells. The system has
not yet been quantitatively evaluated against empirical biological
data or models. The exploitation of the GPU for this task showed
great potential, and the availability of a functional soft body physics
simulation enabled the creation of an interaction prototype to ex-
plore future research directions. The authors are fully aware of the
limited applicability of the quantitative results. We will explore the
integration of proven simulation models into interactive systems
in the future. However, providing a simulator that integrates high
level behavior through a phenomenological cell model, mechanical
interactions and chemical messaging was well received by empiri-
cists and modelers specialized in biological development at several
opportunities of live testing. These informal evaluations make a case
for the further research in more realistic real-time suitable simulation
model.

8 CONCLUSION

We presented our current prototype RIS for biologists which realizes
an immersive simulator for the study of morphological development.
In particular, we provided an overview and elaborated on the tech-
nical details of model adaptation and integration in the context of
the UE4 platform. The system integrates several key components
that are required to support the research of the domain experts in
developmental biology. These include a mechanical cell model that
incorporates physicality and surface interactions between cells and a
diffusion simulation that models the signaling systems of biological
cells.
There are obvious shortcomings of the current approach: We made
various design decisions to integrate and adapt existing sub-engines
for the biological simulation, and even at a lightweight simulation of
cells only driven by physics and not also by higher level biological
logic, interactive frame rates cannot be maintained well with rising
numbers of cells. However, we have identified several means to
mitigate this challenge. First, the physics simulation, selected for its
anticipated speed and flexibility, will need additional scrutiny. The
diffusion simulation provides a substantial speed-up over similar
CPU based solutions, but is limited in its accuracy and does not
scale well. Most importantly, the current approach exposed the tight
coupling of simulation and visualization loop, making it hard to
keep frame times stable in demanding simulation setups.
Despite these necessary improvements, feedback by domain experts
has been very encouraging. We plan on introducing high-level behav-
ior definition based on gene regulatory networks to better represent
current research and modeling approaches. Efforts are being made
to adapt the cell model to the simulation of craniofacial develop-
ment in cooperation with biologists, incorporating and evaluating
the proposed system changes. Furthermore, the planned integration



of existing simulation models into a RIS will provide apt testing
grounds for interaction principles, visualization, and the applicability
of interactive simulation to biological research.

REFERENCES

[1] H. Baig and J. Madsen. D-vasim: an interactive virtual laboratory
environment for the simulation and analysis of genetic circuits. Bioin-
formatics, 33(2):297–299, Sep 2016.

[2] J. Bender, M. Müller, and M. Macklin. Position-Based Simulation
Methods In Computer Graphics. In EUROGRAPHICS 2015 Tutorials.
Eurographics Association, 2015.

[3] J. Beyer, M. Hadwiger, and H. Pfister. A Survey of GPU-Based Large-
Scale Volume Visualization. In R. Borgo, R. Maciejewski, and I. Viola,
eds., EuroVis - STARs. The Eurographics Association, 2014.

[4] Y.-S. Chu, S. Dufour, J. P. Thiery, E. Perez, and F. Pincet. Johnson-
kendall-roberts theory applied to living cells. Physical Review Letters,
94(2), Jan 2005.

[5] E. Davidson and M. Levin. Gene regulatory networks. Proceedings of
the National Academy of Sciences, 102(14):4935–4935, Apr 2005.

[6] J. Delile, M. Herrmann, N. Peyriéras, and R. Doursat. A cell-based
computational model of early embryogenesis coupling mechanical
behaviour and gene regulation. Nature Communications, 8:13929, Jan
2017.

[7] J. Disset, S. Cussat-Blanc, and Y. Duthen. MecaCell: An Open-source
Efficient Cellular Physics Engine. In 07/20/2015-07/24/2015, p. 67.
The MIT Press, 2015. doi: 10.7551/978-0-262-33027-5-ch014

[8] Y. M. Efremov, D. V. Bagrov, M. P. Kirpichnikov, and K. V. Shaitan.
Application of the Johnson–Kendall–Roberts model in AFM-based
mechanical measurements on cells and gel. Colloids and Surfaces B:
Biointerfaces, 134:131–139, 2015. doi: 10.1016/j.colsurfb.2015.06.
044

[9] Epic Games Inc. UnrealEngine 4. https://docs.unrealengine.
com/latest/INT/, last retrieved: 10.1.2018, January 2018.

[10] N. Férey, O. Delalande, G. Grasseau, and M. Baaden. From interac-
tive to immersive molecular dynamics. In Proceedings of the Fifth
Workshop on Virtual Reality Interactions and Physical Simulations,
VRIPHYS 2008, Grenoble, France, 2008., pp. 89–96, 2008.

[11] A. Gelfand. The Biology of Interacting Things: The Intuitive Power of
Agent-Based Models: Biomedical applications of ABMs are taking off.
Biomedical Computation Review, 2013.

[12] J. A. Glazier and F. Graner. Simulation of the differential adhesion
driven rearrangement of biological cells. Phys. Rev. E, 47:2128–2154,
Mar 1993.

[13] S. Hoehme and D. Drasdo. A Cell-Based Simulation Software for
Multi-Cellular Systems. Bioinformatics, 26(20):2641–2642, 2010. doi:
10.1093/bioinformatics/btq437

[14] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Ki-
tano, , the rest of the SBML Forum:, A. P. Arkin, B. J. Bornstein,
D. Bray, and et al. The systems biology markup language (sbml):
a medium for representation and exchange of biochemical network
models. Bioinformatics, 19(4):524–531, Mar 2003.

[15] A. Jacobson, Z. Deng, L. Kavan, and J. Lewis. Skinning: Real-time
shape deformation. In ACM SIGGRAPH 2014 Courses, 2014.

[16] D. L. James and C. D. Twigg. Skinning mesh animations. In ACM
Transactions on Graphics (TOG), vol. 24, pp. 399–407. ACM, 2005.

[17] Z. Lv, A. Tek, F. Da Silva, C. Empereur-mot, M. Chavent, and
M. Baaden. Game on, science - how video game technology may help
biologists tackle visualization challenges. PLoS ONE, 8(3):e57990,
Mar 2013.

[18] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. Unified particle
physics for real-time applications. ACM Trans. Graph., 33(4):153:1–
153:12, July 2014. doi: 10.1145/2601097.2601152

[19] R. M. H. Merks and J. A. Glazier. A cell-centered approach to develop-
mental biology. Physica A: Statistical Mechanics and its Applications,
352(1):113–130, 2005. doi: 10.1016/j.physa.2004.12.028

[20] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. Position based
dynamics. In Proceedings of the Third Workshop on Virtual Reality
Interactions and Physical Simulations, VRIPHYS 2006, Madrid, Spain,
2006., pp. 71–80, 2006. doi: 10.2312/PE/vriphys/vriphys06/071-080

[21] National Instruments. Labview. http://www.ni.com/en-us/shop/
labview.html, last retrieved: 6.2.2018, 2018.

[22] NVidia Corporation. NVidia Flex Physics. https://developer.
nvidia.com/flex, last retrieved: 10.1.2018, 2018.

[23] W. Schroeder, K. Martin, and B. Lorensen. Visualization Toolkit: An
Object-Oriented Approach to 3D Graphics, 4th Edition. Kitware, 2006.

[24] M. H. Swat, G. L. Thomas, J. M. Belmonte, A. Shirinifard, D. Hmeljak,
and J. A. Glazier. Chapter 13 - Multi-Scale Modeling of Tissues Using
CompuCell3D. In A. R. A. Arkin and A. P., eds., Methods In Cell
Biology : Computational Methods In Cell Biology, vol. Volume 110, pp.
325–366. Academic Press, 2012. doi: 10.1016/B978-0-12-388403-9.
00013-8


