
Foreword

After my undergrad studies in Computer Science at the University of Erlangen, Germany,

I asked Dr. Jacob of the University of Calgary, Canada, about a possible collaboration

in the fields of Artificial Evolution and Artificial Life. A couple of months later, I took

an airplane to Calgary and I was introduced to Dr. Jacob’s Evolutionary & Swarm

Design group. During my visit, I realized that artificial swarms represent far more than

exciting models of biological systems. They are models of the scientific paradigm of

swarm intelligence: When large numbers of simple units interact, complex emergent

patterns can occur. This principle, as seen in natural swarm systems, is also assumed

to give rise to our own intelligence and consciousness. Hence, it offers an explanation

for important philosophical problems and provides concrete and illustrative examples of

many complex natural systems at the same time. These two aspects have nurtured my

passion for swarm intelligence.

The present work summarizes my early encounters with the design and evolution of

artificial constructive swarms. The original working title of this manuscript, ’Evolving

swarms that build 3D structures’, has been substituted by the more adequate book title

’Evolving artificial constructive swarms — Experimental models and methodologies’.

The new title lends itself to the idea that artificial constructive swarms have become a

fast developing discipline in artificial life. As such, it is encouraged to generalize beyond

the physical world and to experiment with abstract computational systems.

The presented experiments and their results have coined the investigative course of my

studies until today. I hope you will enjoy reading about the beginnings of my research

in the exciting area of swarm intelligence.

Sebastian von Mammen

Paraza, France

March 2008

i

author's copy

Acknowledgements

I would first like to thank my supervisor Christian Jacob for the generous promotion

of my scientific interests. He is a never-ending source of inspiration and motivation.

I am very grateful for Gabriella Kókai’s comprehensive guidance. She took on the

burden to supervise my work at my home university in Erlangen, Germany. This work’s

implementations could have never been realised without the software and the superb

support of Ian Burleigh and Jon Klein. Marcin Pilat and Stefan Mandl have accompanied

parts of my work and provided a lot of good advice. Many thanks to all of you. Also, I

thank Arne Becker for his tireless efforts to keep my Linux systems running. Sebastian

Seifert deserves credit for his support in all questions concerning the Latex environment.

Finally, I would like to thank my family for being very supportive and encouraging

throughout my studies.

ii

Background and thesis objective

Topic: Evolving swarms that build 3D structures

Background: Swarm intelligence systems are attracting more and more attention re-

cently, as many design decisions nowadays have to incorporate dynamical systems with

a very large number of interacting agents. One example is the design of city and, in

particular, traffic infrastructures. Questions of where to build new roads, bridges, tun-

nels, intersections, etc is largely dependant on simulations of traffic patterns, as obtained

through the monitoring of car and pedestrian traffic. Simulations, in which emergent

traffic patterns are analyzed, have to be performed to evaluate different options for

improved or additional infrastructure components. Hence, this iterative (and in parts

evolutionary) design process involves collective intelligence systems (such as car agents

or pedestrian agents). The Evolutionary & Swarm Design group at the Department of

Computer Science, University of Calgary, is investigating simulations of emergent pat-

terns in swarm intelligence systems. We are especially interested in models of social

insects (army ants, termites), bacterial ecosystems, and of biomolecular systems (such

as protein-protein interactions within a cell).

Thesis objective: For the context of this student thesis we will focus on simulations

of social insect behaviours. In particular, we want to investigate building behaviours of

social insects, such as the construction of termites’ nests. In [1] and [2] an evolutionary

system is described, which programs swarm behaviours through interactive ’breeding’.

The implemented system uses an evolutionary kernel (Evolvica [3, 4]) and an agent-

based swarm simulator (Breve [5]). The thesis objective is to build on these two systems

to implement an evolutionary design system for swarms, that model social animals (such

as insects or birds) and their building behaviours (such as termites building their nests).

The approach should, however, not focus on how a particular swarm system performs

its building tasks, but rather explore an evolutionary way for getting the swarms to

construct 3-dimensional structures. This could, for example, be achieved by having the

swarm agents move small, stackable objects in a 3D environment. The actual control

programs will be not manually designed but by interactive and/or automized breeding,

following the well-tested approach in [2].

iii

Literature:

1. Kwong, H. and C. Jacob. Evolutionary Exploration of Dynamic Swarm Be-

haviour In Congress on Evolutionary Computation, 2003, Canberra, Australia:

IEEE Press.

2. Kwong, H. Evolutionary Design of Implicit Surfaces and Swarm Dynamics Master

Thesis, University of Calgary, May 2003.

3. Jacob, C. Illustrating Evolutionary Computation with Mathematica Morgan Kauf-

mann Publishers, San Francisco, 2001.

4. IEC web site. http://pages.cpsc.ucalgary.ca/˜jacob/IEC

5. Jon Klein. http://www.spiderland.org/breve

Supervision: Christian Jacob and Gabriella Kókai

iv

Abstract

This thesis presents two different approaches to evolve swarms that create three-dimen-

sional structures. Consequently, both approaches comprise a swarm model serving the

constructional purpose and the design of an adequate evolutionary system.

Basis of an appropriate swarm agent are an existing model of a swarm’s flight [30] and

the knowledge that certain insects’ construction abilities result from inherited behaviour

patterns [12]. In detail the agent’s sensory abilities, its inference system and its set of

actuators are specified. According to the knowledge about insects’ coordinated work,

communication happens indirectly through manipulation of and reaction on the envi-

ronment. The presented model determines the agent’s general behavioural capabilities

but does not specify its actions for a given situation.

In fact, the agent’s flight and construction behaviour can be understood as its genotype.

It has to be evolved to accomplish the given task to create three-dimensional structures.

Whenever creative or interesting objectives had to be evolved, interactive evaluation has

stood the test: An external supervisor guides the search by influencing the outcome’s

(also phenotype) fitness rating.

In the first approach, also called the connectionist approach, the individuals’ decisions

result from processing the weighted sums over all available information. That is informa-

tion describing the swarm individual’s situation as well as its environment. The weights

of this “behaviour network” are mutated and exchanged among the swarms (crossover)

to please the supervisor. This approach has failed because the computation of a single

generation’s set of phenotypes takes too long for interactive evaluation. Nevertheless, it

may be stated that a connectionist swarm model offers a way to create smooth, colourful

and diverse structures.

The individuals of the second approach, also referred to as the rule-based approach,

base their creative decisions only on the structure that surrounds them. This behaviour is

v

encoded in a set of conjunctive rules. The weights that determine the flocking behaviour

are evolved together with these rules. A predefined three-dimensional shape guides the

evolutionary search. The successful approximation of this given 3D object is rewarded

with a positive fitness value. Several rule-based swarms have been found that build

interesting structures. Additionally, a way to interactively guide the search by using

alterations of the approximated structures has been successfully applied.

vi

Contents

1 Introduction 1

2 Seminal models and ideas 5

2.1 Techniques and examples of nest building in social insects 5

2.2 Flocking . 10

2.3 Creative and aesthetic design through interactive evolution 12

3 Approaching a constructive swarm 18

3.1 Modeling a swarm that builds three-dimensional structures 18

3.1.1 Desirable results . 19

3.1.2 The relation between a swarm and its individuals 19

3.1.3 The individuals’ basic abilities . 20

3.1.4 Perception, data processing and action of the swarm individuals21

3.2 Connectionist approach . 23

3.2.1 The individuals’ construction operators . 23

3.2.2 Behaviour determined by weighted input . 24

3.2.3 Interactive evolution . 29

3.2.4 Genetic operators . 29

3.2.5 Implementation details. .32

3.3 Rule-based approach . 34

3.3.1 The individuals’ operators . 36

3.3.2 Behaviour determined by “if-then-rules” . 39

3.3.3 Approximation of a given 3D structure .40

3.3.4 Genetic operators . 41

vii

Contents

3.3.5 Implementation details. .43

4 Evaluation of the two approaches 46

4.1 Strengths and weaknesses of the connectionist approach 46

4.1.1 An example: Construction of maximum height . 46

4.1.2 Fatal inefficiency. .48

4.1.3 Nice features of the connectionist approach . 50

4.2 Evaluation of the rule-based approach . 50

4.2.1 Exemplary structures . 51

4.2.2 A case-study: Approximation of a tower . 56

4.2.3 Guiding the search with diversified 3D objects . 58

5 Summary and future work 64

A Appendix, DNA of a Tower Building Swarm 66

viii

List of Figures

2.1 Pilat’s lattice-swarm has successfully built a construction resembling the

nest of the wasp family Agelaia. 8

2.2 The image shows the step-wise course of construction. If a microrule algo-

rithm is coordinated, asynchronous work does hardly affect the outcome

- the sequence of the single steps would play no role. If the building rules

lead to repeating patterns, a structure is created fairly easily. 9

2.3 Interactive evolution led the swarms to new architectures (“Plateaux”

and “Tunnels” by Pilat [29]). 11

2.4 The picture illustrates the three different urges of Craig Reynold’s orig-

inal swarm model: Cohesion, alignment and separation. The resulting

acceleration vectors are coloured in red. Neighbourly flockmates in blue. 12

2.5 The first two images show the same swarm. Due to its tendency to switch

from rings to sinuous lines, Jacob and Kwong named it ”Big Ring Snake”.

On the right is a typical eight formation [23]. 16

3.1 These are sample images of Jacob’s “Towers” simulation. The colourful

arrows are the swarm individuals. As soon as they reach the ground they

start piling up spheres. 25

3.2 The “behavioural net” of a swarmette: The left side shows the available

input data. In the middle part there are the computational units - per-

ceptrons are denoted with a “p”. The output on the right, which depends

only on the weights along the edges, is interpreted as the individual’s set

of actions. Most terms represent vectors, except for the green ones. Each

computational unit “fires” one scalar. 28

ix

List of Figures

3.3 The course of interactive evolution implemented to evolve a “connection-

ist” swarm. 30

3.4 The update ∆v that is added or subtracted from the original weight value

depends on a random value x ∈ [0, 1]. It can be seen that minor changes

have higher probability. 32

3.5 An agent, represented by a yellow sphere, is going to collide with the green

cubic construction particle (the agent’s velocity is indicated by the blue

arrow). The agent’s behaviour depends on the structural configuration

that surrounds the collision partner. In the illustrated case red vectors

point to the locations that will be checked for particles by the agent. . . 35

3.6 To analyze the surrounding structural configuration, the agent tests,

whether there are bricks at certain positions or not. The figure illus-

trates the following case: An agent s collides with a particle c. One of the

rules of s checks for a brick at ~pi relative to the position ~pc of the collision

particle. 40

4.1 The construction phenotype of a randomly initialized connectionist swarm

population. 47

4.2 Fourteen generations later, the constructions of Figure 4.1 have evolved

to this set of structures. The higher a structure was, the better was the

swarm’s rating. 48

4.3 The location vector of the agent strongly influences the perceptron’s de-

cision to build particles. The number of built particles varies according

to the agents’ position. 50

4.4 On the left there is a line of seed blocks that trigger the swarm’s building

process. The right image shows the swarm’s constructional result. The

almost equal distribution of the swarmettes along with their low flight

supports their constructional efforts. 53

4.5 The fan-like construction has been achieved by starting from a single seed

block in the simulation world’s center, a small distance from the ground.

The image on the left side shows an earlier stage of the construction’s

development. 53

x

List of Figures

4.6 The swarm is divided into two flocks at an early stage. Both flocks loop

back and forth from their sides to the construction. The many holes in

the building make it look like a bush. 54

4.7 Two-level flats: Developed from two seed blocks at the corresponding

heights. The third image shows the construction from above. 54

4.8 The more interesting shapes are unsymmetrical like this one. The right

picture enhances the view on the swarm’s flocking behaviour. 55

4.9 An excellent example of an asymmetric, organic looking shape. But it

has only two dimensions: The right picture shows the structure from the

side, no swarmette ever leaves the plane. 56

4.10 Intermediate states of the building process of a tower. The orange “fitness

structure” elucidates the excellence of the swarm’s approximation. 60

4.11 The swarm’s flocking behaviour after it has successfully approximated

the given tower structure. If the swarm gets into contact with the central

building it might be triggered to extend the construction. Since particles

outside the given structure is punished, the swarm is better off hiding in

the world’s corners. 61

4.12 Extended versions of the original guiding structure (seen in the last image

of Table 4.1): An extension of the tower’s height, a branching “crown”

and stairs on top of the tower. 62

4.13 1. Pillars arise after 1000 generations 2. Extension of the original “fitness

structure” results in endless efforts to gain height (644. generation) Both

images clearly show the vertical line flight formation that contributes to

the swarm’s construction . 62

4.14 After 1341 generations the original tower building swarm has adjusted

to the new challenge: Now it contributes to the branching structure by

extending its construction’s diameter with growing height. 63

4.15 The first image shows the result of an evolutionary run with an optimized

tower building swarm as basis. On the right side an outcome without a

specific initialization is displayed (925. generation). 63

xi

List of Tables

3.1 Contrasting the general differences of the two approaches 22

3.2 Set of actions of a connectionist agent 24

3.3 The connectionist agent’s available information (16 floating point and 13

integer values) . 26

3.4 These values determine the connectionist agent’s swarming behaviour (af-

ter [35]). 27

3.5 Default parameters of the connectionist approach’s implementation . . . 33

3.6 The rule-based agents’ actuators . 38

3.7 Settings of the rule-based approach’s phenotype simulation and evolution

process . 45

4.1 Structures that have guided the evolutionary search are coloured in red,

seed blocks in blue. The corresponding results are referenced on the right

side. Furthermore it is stated in which generation g the result has occurred

and what fitness f it has achieved. 52

A.1 The rule-based agent’s actuators corresponding to the genotype numbers. 68

xii

List of Algorithms

2.1 Simple Genetic Algorithm, by Mitchell [27] 17

3.1 Volume of Two Cubes’ Intersection 42

xiii

1 Introduction

Cars stuck in a traffic jam on the highway, fish that swim in schools, wasps that create

nests, cells forming a human organ or people living in big cities - all of them can be seen

as units of an emergent system. Emergence means that the complex result has qualities

that are not present as long as the single units are isolated from each other [9]. Whereas

“complex” indicates that the connections and dependencies of the units’ interplay have

had a major effect on the outcome [31].

Seeking solutions to complex tasks becomes more and more important. Whether

it’s the jurisdiction of a democratic state or the blueprint of an automobile - complex

systems tend to grow, since “it’s always easier to add components to such a system than

to remove them” [33]. In designing software systems this happens to even “threatening”

extents [12]. Fortunately, scientists have found a way to tackle this problem. Instead of

mastering a complex task by engineering every single detail, one tries to figure out how

the whole system can be understood as an incorporation of many simple, autonomous

functional units (called agents). The interactions taking place in such a multi-agent

system are not predefined or controlled by a central instance, but coordinated by the

different agents themselves [8], in other words they are self-organised [12].

The elegance of this approach lies in the agents’ actions and interactions. However,

discovering these mechanisms can be a very difficult task [12].

Once again scientists can fall back upon the means of conservative engineering as most

groups do in the popular RoboCup-competition [2]. Here the task is to come up with a

perfectly incorporated group of autonomous robots which plays a variant of the soccer

game.

If a well-defined task is given, another approach can be the search for the agents’

optimal behaviour. By means of a genetical algorithm, Mandl has found effective be-

1

1 Introduction

havioural rules for the protagonists of the Predator-Prey Pursuit Game1. The prey

is captured (which means the prey is surrounded by the predators), as the predators

communicate and work together [25].

In the work “The Society of Mind” Minsky postulates that even intelligence might

emerge from the incorporation of a set of different agents [26]. Though the method

of designing this emergent intelligence - namely reasoning - may be controversial, the

general scheme he has drawn is still convincing.

Nevertheless, reasoning has already brought some other emergent systems to light.

Playing with the possibilities of cellular automatons made clear that iterative application

of rules which form the environment can produce emergent patterns (e.g. “The Game

of Life” [4] or “Langton’s Ant” [38]).

The most direct way to find mechanisms that yield the solutions to complex problems,

is the detailed observation of natural emergent systems. Modern biology makes it pos-

sible to understand the mechanisms within a living cell as interactions of amino-acids

and other molecules. With this agent-based point of view, scientists have already made

great steps in simulating parts of this immensely complex system [13].

Insect swarms are a representative objective of studies about emergent occurances in

nature. They consist of many autonomous beings. Each of them acts on its own and in

total they form an emergent whole. The movement of a swarm might be its most obvious

characteristic. But these swarm individuals do not only coordinate their acceleration

and velocity. Together they accomplish complex tasks like organising resources or build-

ing nests [12]. Implementations of a simple rule-based lattice-swarm affirm the current

model of such insects’ coordination (more in Chapter 2), which was the starting point

that inspired us to this thesis’ objective: Evolving swarms that build three-dimensional

structures.

In other words, it is the search for evolutionary ways to develop a swarm that creates

structures in 3-dimensional space. Except for the mentioned model of creative insect

swarms, there has not been another similar approach. Additional functionality of the

swarm individuals brings more possibilities in the creation of 3D structures. In contrast

to a mere implementation of flocking agents that act upon predefined patterns, this

1In this case searching for the agents’ emergent behavioural rules may be obvious, as the game itself

suggests the existence of a set of roles/agents.

2

1 Introduction

work tries to figure out how such agents could be bred in an evolutionary process.

Consequently, this thesis investigates the two following major subjects:

1. The general design of the swarm individuals, concerning their sensory abilities,

information processing system and actuators.

2. An evolutionary framework to search for swarm behaviour that succeeds in 3-

dimensional construction.

With a certain degree of randomness the considered swarm individuals are determined in

their behaviour. The questions that have to be answered by a detailed implementation

are: What kind of knowledge can these agents possibly perceive?, How is their input

processed? and Which actions is an agent able to execute?. The next step is to make

up one’s mind about the internal representation of the agent’s behaviour. It must

be suitable for an evolutionary algorithm and it should neither broaden nor limit the

search for an appropriate swarm too much. If thousands of values determine the agent’s

behaviour, the search for a good combination of values might be inefficient to compute.

On the other hand, if the agents have too few information about their environment,

they might not be able to make the necessary decisions to create interesting structures

(the corresponding question would be: How complex does an agent have to be in order

to create structures with its mates?). Of course, the successful search depends heavily

on the genetical operators’ functionality. Crossover and mutation generate new swarms,

selection guarantees development into the desired direction. The guidance of evolution

plays an especially important role. As there is no mathematical concept of “beautiful”

or “interesting” structures, and therefore no direct way to automatically evaluate the

swarms’ constructions.

Two separate approaches to evolve a “construction swarm” are presented in this work.

The first one, referenced as the connectionist approach, implements the individuals’

information processing system as an artificial neural net. A great number of input

values is provided and the agents’ actuators leave a lot of freedom, too. The evolutionary

process is supposed to be guided by a human supervisor, interactively rating the swarms’

products. Although the simulations’ results looked “nice” right from the start, the time

needed to adjust the individuals’ behaviour was not acceptable. The interplay of a huge

search space (there were more than 300 floating point numbers to adjust) with time

3

1 Introduction

needed by the simulation runs (computation and visualization took about three minutes

for the results of one generation) slowed down the process too much. That is why the

next approach follows a different leading idea. In the second approach, also referred

to as the rule-based approach, the agents’ behaviour is determined by a set of rules

that considers only the individual’s local environment. Furthermore, the evolutionary

process happens automatically. A predefined three-dimensional object guides the search.

Swarms that align their construction with this object have a greater fitness, and, thus,

higher probability to be transferred into the next generation. Simulations have shown

that this approach yields swarms that orientate themselves in the given structure but

also develop their own creativity.

Chapter 2 starts with presenting some examples of how natural “swarm intelligences”

construct their nests. Furthermore, an appropriate model for the agents’ movement in

space is introduced together with some recent discoveries in this field. After explain-

ing basic evolutionary techniques, some cases of human-guided evolution round off the

chapter. A discussion about the general abilities of a “construction swarm’s” individ-

ual introduces the third chapter, which is then followed by detailed explanations of the

connectionist and the rule-based approach. In Chapter 4 the insights provided by the

experiments of both approaches are presented. Although this work cannot cover all pos-

sibilities in designing a system to evolve a structure building swarm, a huge spectrum

of choices has been looked upon. After a short summary of this thesis, an outlook on a

possible consequent approach is given in Chapter 5.

4

2 Seminal models and ideas

“Evolving swarms that build 3-dimensional structures” is a very extensive task. Biology

gave birth to its underlying ideas. A model to simulate a swarm’s flight has been

successfully discovered and implemented by the scientist Craig Reynolds working in the

computer graphics sector. Evolutionary algorithms are a popular optimization method

in various disciplines of computer science. The direction of this evolutionary search is

heading towards a goal somewhere between the emergence of “creativity”, “aesthetics”

and the coordination of autonomous agents, including possible applications in fields such

as self-assembly, robotics, architecture and fine arts.

This chapter leads through the maze of distinct scientific branches to provide the

information needed to understand the given task.

2.1 Techniques and examples of nest building in social

insects

The inspiration for this thesis’ objective are swarms of social insects that build nests.

Many of these swarms have been object of studies themselves and in the book “Swarm

Intelligence - From Natural to Artificial Systems” [12] some of their occurances and ways

to explain them are summarized. The authors Bonabeau, Dorigo and Theraulaz have

placed their main interest in analysing the mechanisms of individual and cooperative

actions that result in emergent accomplishments. The gained knowledge can be used to

master similarly challenging tasks in computer science and other fields of engineering.

In opposition to an anthropomorphic approach to building nests, which basically means

that each individual follows a blueprint of an architecture, scientists nowadays claim

that an insect’s behaviour depends on local information and is determined by a “simple

probabilistic stimulus-response” scheme. Communication between the swarm individuals

5

2 Seminal models and ideas

happens as an important by-product of this behaviour - one individual alters the envi-

ronment and another one reacts to these changes. This kind of indirect communication

is called stigmergy. Two cases are differentiated:

1. Quantitative stigmergy, where triggering a reaction depends on the intensity of a

stimulus.

2. Qualitative stigmergy, where an individual reacts on a discrete occurance of some

sort.

It may be assumed that the latter kind plays the dominant role in building complex

nests. For example, discrete stimuli can be the particles that have already been built or

the environmental structures that are provided by nature. Any occurance that initiates

and guides a certain building behaviour is called template.

The number of different stimuli goes hand in hand with the number of particles built.

So, while a construction grows in size, the building rate per individual increases, too.

This phenomenon of self-organisation and a large number of individuals make it possible

that some social species exceed solitary ones by far in their nests’ complexities.

Bonabeau et al.’s first example of insects’ building behaviour presupposes the existence

of a template and a self-organisation mechanism. In this case the template is the body

of a termite (Macrotermes subhyalinus) colony’s queen that spreads a pheromone trace.

The worker termites start building protecting walls when encountering the right level of

the queen’s pheromone. As soon as the first pellets (construction elements that diffuse

another kind of pheromone, called cement pheromone) are deposited, a snow-ball effect

crops up. Single workers that are in the near distance to these pellets are attracted and

contribute to the building process. The resulting building is adapted to the queen’s body.

Based on Deneubourg’s earlier studies [7], Bonabeau et al. show how a reaction-diffusion

model of this construction of the royal chamber can be designed.

Similarly, the ant Leptothorax albipennis builds its nest’s walls. The brood together

with some ants forms a circular cluster. And though it is unclear, whether this tem-

plate functions on chemicals or the ants perceive its physical presence, workers start

constructing walls in a certain distance. Once again, this process accelerates after a

minimal amount of building elements has been deposited. Formalising the probability of

6

2 Seminal models and ideas

construction depending on the proper distance and the perceived density of construction

material leads to a good simulation of the natural occurance.

With these two examples, termites that construct the royal chamber and ants that

build the walls of their brood-nest, Bonabeau et al. demonstrate the successful interplay

of templates and self-organisation. In contrast to these cases, in which the insects mainly

act in accordance with quantitative stigmergic stimuli (e. g., pheromone concentration

that passes a given threshold), the eusocial wasp Polistes dominulus builds determined

by qualitative heterogeneities. Constructing a wasp-nest starts with a so-called pedicel,

onto which workers attach rows of cells (all construction elements consist of carton which

is made of plant fibres). Before starting a new row, a worker tends to fill existing gaps.

This shows that the local configuration determines the wasp’s action. Furthermore, this

coordinated behaviour allows to work in parallel without disorganising the construction

process.

Bonabeau et al. have designed an agent-based model to examine the nature of the

individuals’ cooperation (in a discrete three-dimensional world). In this model an agent

deposits a brick (one of two kinds) at the current position, if the conditions of one of its

microrules are satisfied. Whereas, a microrule is a concatenation of conditions that test

the situation of the agent’s neighbourhood at fix locations. Two ore more microrules

that are triggered in the same situation are considered incompatible, because the agent

is supposed to deposit only one brick at a time. A collection of microrules can then

be seen as an algorithm. There are several phases of creating a nest. To ensure that a

nest can be built by such an algorithm, it is crucial that local configurations and the

necessary constructions in each stage do not conflict with each other. If this requirement

is met, the algorithm is coordinated and the wasps can work in a parallel fashion.

Choosing a microrule algorithm randomly does not yield interesting structures. How-

ever, designing a microrule-set backwards, starting with the shape of the wasps’ nest,

leads to success. Using this approach, constructions similar to those of the wasps

Epipona, Parabolybia, Stelopolybia, Vespa and of the Chatergus genera were computed

by Bonabeau et al. Pilat was not only able to reproduce these results, but also to come

up with rule-sets for the wasp families Agelaia (Figure 2.1), Parachatergus and Vespula

(see [29]).

7

2 Seminal models and ideas

Figure 2.1: Pilat’s lattice-swarm has successfully built a construction resembling the nest

of the wasp family Agelaia.

The set of microrules determines the nest’s general shape. The output is not always

totally determined. As the agents act asynchronously, minor differences in the course of

construction can strongly affect the outcome. Nevertheless, certain attributes of the set

of microrules can be mapped onto the resulting shapes.

There are three common descriptions of structures [10]:

1. The way in which something is organized, built or put together.

2. A particular system, pattern, procedure or institution.

3. A thing made of several parts put together in a particular way.

It is assumed that structures only result from coordinated algorithms. Without co-

ordination, the parallel work of insects would result in disorganisation of the building

behaviour and therefore in an unstructured shape. If patterns (or modules) are repeated

by a coordinated algorithm, a structured output is highly probable (see Figure 2.2).

During the experiments it has become clear, that the number of microrules used by an

algorithm is usually linked to the arising structure’s complexity - a few or even only one

applied microrule in the algorithmic process indicates non or only a poor structure.

From the building element’s viewpoint the described model realises a form of self-

assembly. This analogy becomes more obvious when looking at the general definition of

8

2 Seminal models and ideas

Figure 2.2: The image shows the step-wise course of construction. If a microrule algo-

rithm is coordinated, asynchronous work does hardly affect the outcome -

the sequence of the single steps would play no role. If the building rules lead

to repeating patterns, a structure is created fairly easily.

an assembly task [20]. The task of a very basic assembly system brings an initial assembly

E0 to a final assembly that is element of a set of possible solutions, EN ∈ Efinal. In the

lattice-swarm construction algorithms the given pedicel/seed is equivalent to E0, and EN

is the resulting nest or construction. During the single steps of the assembly process,

configurations might appear that would lead to failure (summed up in set B). Excluding

any of these “obstacles”, which is desirable in self-assembly systems, is very similar to

the informal definition of structure creating, coordinated algorithms. No intermediate

situation should lead to an impasse: Et /∈ B with t ∈ {0, ..., N}. Of course, the

coordination of an algorithm influences the shape of the nest. On the other hand, one

can say that only a subset of nest-shapes is suitable for in parallel working social insects.

Furthermore, coordinated algorithms are supposed to be easier mapped onto the re-

sulting constructions. This can be derived from the fact that non coordinated algorithms

have a great tendency to deviate from preceeding outcomes in each run.

9

2 Seminal models and ideas

Analysing the results mathematically suggests that there is only a small group of (very

similar) algorithms that leads to compact constructions. One speaks of compactness if

many bricks are connected with each other. This “requires collections of complementary,

correlated microrules.”

Manually designed microrule-sets represent only a small part of the vast amount of

possible algorithms. To guide the search through the space of architectures, Bonabeau et

al. use heuristics from which conclusions about the structure can be drawn (as mentioned

above) and they also integrate the evaluation of external supervisors.

In this way many architectural styles far from wasp nests have been discovered. Pilat

evolved some more patterns and already started describing and classifying them (see Fig-

ure 2.3). In addition, he could show experimentally that a proper architecture depends

on a minimal number of agents. During his experiments he realised that the world’s fix

orientation did not allow some rule-sets to be applied to their full potential. Though

a local configuration was at hand that should have triggered an agent’s rule, it failed

as the microrule’s conditions were tested in respect to only one general direction. The

suggested solution to this symmetry problem is testing the agent’s rules according to its

own orientation. Finally Pilat demonstrates that minor changes in some rules can have

major effects on the constructions built.

2.2 Flocking

In the previous section some basic building techniques of insect swarms and colonies

have been presented. In the mentioned algorithmic models the individuals’ movements

happen randomly. However, talking about swarms implicitly means a certain spatial

coordination of the individuals. In the late eighties Craig Reynolds suggested a model

for the complex phenomenon of swarm flocking [30]. This model originates from several

urges (steering behaviours) by which each bird seems to be driven. Think of a flock of

birds. No bird wants to crash into one of its flockmates - so it keeps a safe distance to

all its neighbours. This urge works against crowding and is therefore called separation.

In order to keep up with the rest of the flock, each bird has to adjust its heading in

accordance with the average direction. This alignment takes care of a uniform motion.

The third necessary behaviour is that each bird tends to the center of its local flockmates

10

2 Seminal models and ideas

Figure 2.3: Interactive evolution led the swarms to new architectures (“Plateaux” and

“Tunnels” by Pilat [29]).

(cohesion), otherwise a flock could not be held together. Furthermore, an individual’s

perception is limited - it reacts only to mates in its neighbourhood. Whereas the neigh-

bourhood encloses all other individuals that are within a predefined range and angle

(illustrated in Figure 2.4).

From time to time, new factors or variants of the preceeding ones are proposed to gain

a specific swarming behaviour. One possible extension is the individual’s preference for

a “better view” - the resulting flock shows the typical “V formation” of migrating birds

[15].

Weighting the basic urges to different extents opens up a huge space of formations

and flocking behaviours. Jacob and Kwong have discovered parameter sets to simu-

late distinct flight patterns (a. o. flocking behaviour, line formations, figure-eight and

ring formations, see Figure 2.5) [23]. To compute an individual’s acceleration in each

simulation step, they considered the weighted sum of the following vectors (after [35]):

~V1 the opposite direction of all neighbours within distance d.

~V2 from the agent towards the world’s center.

~V3 the average of the neighbours’ velocities.

11

2 Seminal models and ideas

Figure 2.4: The picture illustrates the three different urges of Craig Reynold’s original

swarm model: Cohesion, alignment and separation. The resulting accelera-

tion vectors are coloured in red. Neighbourly flockmates in blue.

~V4 the center of gravity of the agent’s neighbours.

~V5 a random unit-length vector.

The mentioned set of parameters includes the scalar coefficients (c1...c5) of these vectors,

the crowding radius d and the maximal acceleration and velocity (Amax, Vmax). Each pa-

rameter influences the swarm’s flight. And the consequences of changes of the values can

hardly be foreseen. Jacob and Kwong were able to find interesting flight formations in

an evolutionary process guided by interactive evaluation of different parameter settings.

In the next section this approach is presented in detail.

2.3 Creative and aesthetic design through interactive

evolution

The third source of inspiration for this thesis are the many promising results of interac-

tive evolution. First of all the idea of a genetic algorithm is explained [28], [27]. After

the discussion of its general attributes, the extension of interactive evaluation (also in-

teractive evolution) is presented. Some examples of this method’s successful application

round off this chapter.

12

2 Seminal models and ideas

A genetic algorithm basically implements a generate-and-test beam-search through the

space of all possible hypotheses (hypothesis-space). This is accomplished by keeping and

updating a set of solutions (in evolutionary/biological terms: A population of individ-

uals) in accordance with the quality (fitness) of each hypothesis’ output (genotype and

phenotype). The population’s offspring are generated and tested by so-called genetic

operators. The standard set of these operators consists of:

Selection is responsible for choosing the offspring of the current population according

to the individuals’ fitnesses.

Mutation randomly changes parts of an individual’s genotype.

Recombination/Crossover generates a new individual by combining parts of its ances-

tors’ genotypes.

The so-called simple genetic algorithm (SGA) [28], which implements the most common

variations of selection, mutation and crossover, is shown in Algorithm 2.1.

Until now it has not become totally clear, how the efficient computation of proper

results emerges from the interplay of these genetical operators. However, it has been

proven that under certain circumstances an implicit parallelism (this term was introduced

by John Holland in 1975 [17] and has recently been revised by Wright et al. [14]) speeds

up the search through population-space.

Well-known facts about GAs are that they are quite robust in avoiding local optima

and that they are highly adaptive. The latter attribute refers to the ability of adjusting

the populations’ predominant genome to a recently changed environment (or fitness-

rating) in only a few generations [18] and [19].

Of course, for each of the mentioned genetic operators there exists a great variety

of extensions and derivatives1. In addition, more operators as well as some methods to

increase the power and/or speed of the evolutionary process have been suggested. Useful

concepts for this thesis’ implementations were:

Elitism takes care of the best solutions’ unquestioned propagation to the next population

[6] (extend the selection of the SGA 2.1, line 5, with: Take e percent of the members

1For a more detailed introduction in evolutionary algorithms see for example [27]

13

2 Seminal models and ideas

of P that have highest fitness and add them to Ps. Continue proportionate selection

with only (1− p− e)p members).

Multi-start hillclimber ensures that the good solutions found can be used as a starting

point for further investigation [28] (change the first line of the SGA 2.1 to: Initialize

population: P ← p hypotheses that have already been computed and have achieved

promising results).

Interactive Evaluation enables an external supervisor to rate the phenotypes’ fitnesses

or at least to partially influence their fitness values [11] (implement the function

Fitness(h) used in Algorithm 2.1 in such a way that a supervisor can rate the

hypotheses).

Interactive evaluation has proven extremely useful in domains where finding a fitness-

function is difficult or not possible at all. A human supervisor’s “vague notion” of

a concept has often led evolutionary search to astonishing results. This can be seen

in the successful search for wasps’ stigmergic construction behaviour (see Section 2.1)

and the different flight formations of swarms (see Section 2.2). After Peter Bentley had

produced shapes similar to butterflies and airplanes, the method of interactive evaluation

has widely spread. Whenever aesthetics or solely creativity play a role, this approach

comes in handy (further examples can be found in [5], [34], [39], [36], [22] and [18]).

The term “evaluation” refers to the part in an evolutionary search system that takes

care of rating the individual’s fitness. In Algorithm 2.1 evaluation is done by an external

fitness function. Whenever the fitness rating of an evolutionary algorithm implements

interactive evaluation, the whole search process may be called interactive evolution.

Considering objectives of interactive evolution, one can differentiate between those

whose genome can directly be mapped onto the phenotype (e. g., Bentley’s shapes [11]

or Kwong’s blob constructions [22]) and those whose genome encodes a procedure/be-

haviour that will result in an occurance subject to time (e. g., Thomas’ “developmental”

art forms or the swarming behaviour studied by Jacob and Kwong).

In fact, it seems to be impossible to find a clear-cut definition of aesthetics. Though

Lieckfeld postulates that useful and varied design, as a product of natural evolution,

will be perceived as beautiful by most people [24], aesthetics - that’s common sense -

can not be formalised. Nevertheless, encountered once, there are a lot of attributes that

14

2 Seminal models and ideas

help to describe an object’s aesthetics. In this context some keywords might help, such

as symmetry/asymmetry, pattern, proportion, harmony, etc. [40].

15

2 Seminal models and ideas

Figure 2.5: The first two images show the same swarm. Due to its tendency to switch

from rings to sinuous lines, Jacob and Kwong named it ”Big Ring Snake”.

On the right is a typical eight formation [23].

16

2 Seminal models and ideas

Algorithm 2.1 Simple Genetic Algorithm, by Mitchell [27]

Parameters:

Fitness: A function that assigns an evaluation score, given a hypothesis

FitnessThreshold: A threshold specifying the termination criterion

p: The number of hypotheses to be included in the population

r: The fraction of the population to be replaced by Crossover at each step

m: The mutation rate

Returns: The best hypothesis found

1: Initialize population: P ← Generate p hypotheses at random

2: Evaluate: For each h in P , compute Fitness(h)

3: while [maxhFitness(h)] < FitnessThreshold do

4: Create a new generation, Ps:

5: Select: Probabilistically select (1−r)p members of P to add to Ps. The probability

Pr(hi) of selecting hypothesis hi from P is given by

Pr(hi) = Fitness(hi)∑p

j=1
Fitness(hj)

6: Crossover: Probabilistically select r·p
2

pairs of hypotheses from P , according to

Pr(hi) given above. For each pair, < h1, h2 >, produce two offspring by applying

the Crossover operator. Add all offspring to Ps.

7: Mutate: Choose m percent of the members of Ps with uniform probability. For

each, invert one randomly selected bit in its representation.

8: Update: P ← Ps.

9: Evaluate: for each h in P , compute Fitness(h)

10: end while

11: Return the hypothesis from P that has the highest fitness.

17

3 Approaching a constructive swarm

Several requirements have to be met to start artificial evolution. First of all, one has

to make sure that the model of the evolution’s objective can fulfil the expectations. In

Section 3.1 general abilities of a constructive swarm are discussed. A model’s details

go hand in hand with its representation. As soon as the objective’s representation

stands, the genetical operators can be defined. Each of these nontrivial steps has been

undertaken twice. Both approaches, together with remarks on the implementation and

the simulation settings, are presented in the rest of this chapter.

3.1 Modeling a swarm that builds three-dimensional

structures

Modeling the swarm in question comprises two aspects: To take something as an example

for the swarm’s actions and secondly, to decide how the swarm will look like, work, etc.

The latter part might be better expressed with the term designing.

However, there are so many possibilities to choose from, that intuitive conclusions have

to be made to come up with an overall model. A trivial example: It is not immediately

clear, what consequences arose by using cubic blocks as construction elements instead of

spherical ones. Spherical objects have a greater surface than cubic ones, while consuming

the same volume in space. Such an implicit attribute might increase the frequency of

collisions between agents and spherical particles. Therefore a decision for one or the other

could lead to different structures or influence the agent’s interactions. The dimensions of

the simulated space, the amount of computed simulation seconds, the relation between

an agent’s and a particle’s size and many other choices are subject to the programmer’s

intuitions.

18

3 Approaching a constructive swarm

3.1.1 Desirable results

In the course of this chapter, two concepts are presented that include a specific swarm

model and an elaborate evolutionary system. Expectations may consequently be placed

in three distinct areas:

1. The evolutionary system

2. The swarm model

3. A set of swarms with a specific constructional behaviour

The course of evolution is supposed to work effectively on the swarm’s representation,

in order to adjust the genepool into a certain direction. The swarm model’s goal is to

ensure that the swarm’s functionality is complete in respect to the constructional task.

To verify the overal concept’s abilities, that is the framework comprising swarm model

and evolutionary system, some construction swarms should be evolved and their output

should be analyzed.

As the application for the developed “construction swarm” is not predefined, the

properties of its output are not specified either. That is why it is attempted to satisfy

the qualities of a structure (in Section 2.1) and to keep an eye on the aspects of creativity

and aesthetics (see Section 2.3 on page 14) at the same time.

3.1.2 The relation between a swarm and its individuals

Natural swarms usually include individuals of different types. In the case that the in-

dividuals have the same abilities, they might automatically1 specialise in an area to

contribute to the swarm’s needs in the best possible way. As far as this thesis is con-

cerned, we only deal with uniform individuals (that is individuals of the same type)

without any capabilities of specialization. This is considered as sufficient for a general

approach, since it has already been shown that structures can emerge from swarms of

such simple kinds (see Chapter 2.1).

1The more often a specific action is exercised by an individual - triggered by an external signal, the

more it is reinforced to do it again. In this fashion experts are automatically cultivated according

to the colony’s/swarm’s needs [12]

19

3 Approaching a constructive swarm

3.1.3 The individuals’ basic abilities

From the given task we can derive some inherent abilities of the swarm agents: They

should be able to construct and to wander in space. Basic decisions concerning the way

of construction and movement are explained in the subsequent paragraphs.

By flying (instead of walking) the agents are able to reach a maximal number of points

within a three-dimensional space. Thus flying is the least limiting traveling method (it

offers the highest degree of freedom). One might argue that swarming implicitly means

flying, but a bottom-up construction strategy, as in ant colonies, could have also been

chosen - swarm intelligence as defined by Bonabeau et al. includes:

[...] any attempt to design algorithms or distributed problem-solving devices

inspired by the collective behaviour of social insect colonies and other animal

societies. [12]

The process of construction itself has undergone careful considerations, too. As framed

in Section 2.1, there are a lot of inspiring examples for this process in nature. Ants and

termites that carry and dispose objects (soil, wood-chips etc.) or wasps that produce

carton as their very special building material. The latter one might be closest to our

decision to let the agents create new construction elements appearing from nowhere. In

this way, resources do not have to be organised2 nor does their absence limit the creative

abilities of the swarm.

If the swarmettes’ flight3 is neither predefined nor random, it demands permanent

visual perception. Yet, triggering an agent’s construction mechanisms only happens, if

there are some stigmergical signals. Checking for the environment’s structural config-

uration is guaranteed to make sense, as soon as the agent has collided with a particle

already built. Of course, this is a simplification. It can be seen as the requirement

distance dagentToParticle = 0 to get the construction process started. Yet, this is only a

quantitative limitation of the general concept - if the swarmette is going to build a new

particle at a specific location, it is supposed to be near that place anyways. So changing

the environment is restrained to the events of collision.

2Organising resources is a large-scale task for swarm intelligences. It includes the search for resources,

the construction of infrastructures and cooperative transport [12].
3Swarmette is another term addressing to the agents of a swarm.

20

3 Approaching a constructive swarm

3.1.4 Perception, data processing and action of the swarm

individuals

The perception of a swarmette is limited to the senses of sight and touch. It might

support the swarm’s goals, if direct communication of the agents is possible (sense of

hearing) and other senses are existent. But there are arguments for keeping the amount

of sensory information on a minimal level. First of all it simplifies matters. Furthermore,

in an artificial simulation environment, one can transfer certain stimuli onto signals that

can be perceived by available senses. Originally olfactory (relating to the sense of smell,

e.g. a pheromone) signals can be easily mapped onto visual marks. Even communication

can happen indirectly and by means of qualitative or quantitative stigmergy (as seen in

Section 2.1).

The behaviour of an individual can be determined by a set of rules, a neural network

or any other inference system considering the input information and implying an output

action. In addition, memory could influence the inferred action. In the individual’s

memory things could be stored such as: recent construction locations, attributes of the

last particle built, the number of built particles or whole lists of the last events etc.

This might lead to an agent’s specialization, for example it might become responsible

for the construction of whole modules of an architecture. Still, for a start it is already

a challenging task to come up with a whole swarm that is specialised in building only a

part of an architecture. Finally, the individual’s own physical situation can play a role in

its building behaviour. Just consider an agent that is supposed to start building a roof,

after it has reached a certain height. In this case, allowing the agent’s own situation to

influence its actions seems reasonable.

The possible actions of a swarm agent are very few. It can adjust its flight to its

swarm-mates in the neighbourhood and build or destroy construction elements. Once

the decision has been made to create a swarm of flying agents, their movements are

coordinated in accordance with the model of swarming, introduced in Section 2.2.

Of course, perception, input processing and action of a swarm individual must be

connected: Input information has to be processed by an inference system which yields

an action. The following sections offer two approaches which differ from each other in

most of these respects (Table 3.1 contrasts both approaches by keywords).

21

3 Approaching a constructive swarm

The succession of discussed topics may be explained in a few words: The swarm’s task

to create 3D structures claims for a set of basic abilities such as moving in space and

building particles. Each swarm agent has to be equipped with the necessary fundamental

operators which has to be done first and serves as basis for further discussions. An agent

usually consists of three main parts: Its actuators, its perception and an internal system

that connects these modules in a particular way. After predefinition of the actuators,

the sensory features have to be specified. A simulation is set up only for the purpose to

develop a creative swarm. The designed world offers several sources from which the agent

could gain its knowledge. An agent’s perception will determine its area of influence and

has to be done with careful consideration. Development of a proper inference system has

been chosen as third and last step of designing the agent. The type of information that

is processed and the kind of information that represents the agents’ actions influence the

decision for a certain system that connects a swarmette’s input and output. Of course,

the manner of knowledge processing is constitutive for the agent’s behaviour as well.

After these steps have been carried out, the swarm agent’s model is poised to be evolved

to build 3D structures. Therefore the final steps of each approach’s presentation outline

the evolutionary process which will lead to a proper creative swarm.

Connectionist Approach Rule-based Approach

Quantitative stigmergy Qualitative stigmergy

Usage of thresholds, processing of

continuous signals

Clear cut input data about the

agent’s surrounding structure

Smoothness Plainness

Particles are overlapping, colour-

ful and vary in size

Non-overlapping, uniform parti-

cles

Interactive evolution Automatical orientation towards

a given 3D object

Table 3.1: Contrasting the general differences of the two approaches

22

3 Approaching a constructive swarm

3.2 Connectionist approach

The first approach is based on an implementation by Jacob called “Towers” in which

the agents start piling up particles as soon as they have collided with another particle

or the ground. Of course, this quickly leads to immense computational costs. With no

limitation to this behaviour, shortly many thousands of particles flood the simulation

and therefore the computer’s main memory. Nevertheless, the program influenced this

connectionist approach’s general character and implicitly answered some questions about

the details of the construction process. Therefore, the following paragraph draws a more

detailed picture of the “Towers” simulation (Figure 3.1 shows two sample images of the

“Towers” simulation).

Think of a three-dimensional environment, (graphically) consisting of the ground and

the sky. In this environment a number of spheres is swarming around. Indeed, these

spheres represent the swarm individuals. They are remnants of the earlier works by Klein

and Spector [35]. Jacob has changed the simulation in such a way that each time an

individual collides with an object, a new particle is added on top. The created particles

are uniform, white spheres. An agent collides with the ground and the particles already

built. In “Towers” collision of particles themselves is not tested at all. Consequently,

the newly created shapes overlap with older ones in most cases. This continuity of the

construction looks natural and smooth and it is therefore a good leading idea for the

(first) overall approach.

In the upcoming subsections an elaborate model is presented that extends the “Tow-

ers” agents’ sensory capabilities and connects their constructional behaviour to the in-

coming information. The further developed “connectionist” swarm agents are equipped

with a much more complex inference system that determines their doings. In order to

train the agents’ intelligence, the means of interactive evolution are applied which is also

part of the overall approach.

3.2.1 The individuals’ construction operators

An agent collides with a particle or the ground. Instantly, the agent’s internal system

decides how to react. The possible reactions range from “do nothing” to “do all the things

you can”. The latter conglomerate of actions consists of destruction of the particle the

23

3 Approaching a constructive swarm

agent has collided with and of creation of a new one. Whereas destroying an existing

particle is either done or not, the creation of a new particle needs some more deliberation.

For once, there are the attributes of the new particle that have to be determined: Size

and colour (a construction element is a sphere that can vary in size and colour). Further

on, the agent can place it anywhere around itself.

The whole simulation setting’s granularity is only limited by the internal precision

of floating point numbers. For that reason, the parameters of the agents’ actions are

continuous, too. Colour is defined after the RGB model (which means that each objects’s

colour is a combination of the three colour-channels red, green and blue) and consists

therefore of three values from [0, 1]. A particle’s size ranges from [0, 3]. The new particle

is placed right next to the agent. As the agent itself is represented as a sphere, any

direction can be considered.

In total nine numbers (two boolean, three integer and four floating point values) are

needed to describe the agent’s construction behaviour. This happens, as mentioned

before, as soon as a collision with a particle or the ground occurs.

Statics do not play a role, that is why an agent may build right into the air. The

original “smoothness” of the Towers simulation is kept: Particles may still be built into

each other, so that they overlap. This aspect is even intensified by the construction

apparatus that attaches continuous attributes to the newly built particles.

Action Possible Values Parameters

Destroy old Particle Yes/No None

Create new Particle Yes/No Colour, Size, Location

Table 3.2: Set of actions of a connectionist agent

3.2.2 Behaviour determined by weighted input

Except for the models that we have seen in Chapter 2, nothing indicates what informa-

tion is useful for a swarm individual to build structures. For that reason every directly

available information is passed to the swarmettes. Moreover, calculations are made to

produce some additional data. Table 3.3 gives a complete overview of the swarm indi-

24

3 Approaching a constructive swarm

Figure 3.1: These are sample images of Jacob’s “Towers” simulation. The colourful

arrows are the swarm individuals. As soon as they reach the ground they

start piling up spheres.

vidual’s accessible data. The necessary objectives to ascertain the input data are the

agent itself, the particle it has collided with and its surrounding particles.

The agent is supposed to derive its actions (Table 3.2) from these input values. Pro-

cessing this huge amount of data is done by a one-layer neural net. The 29 numbers

(sum of all numbers in the Representation column of Table 3.3) are connected to nine

computational units. According to the kind of output needed, sigmoidal and perceptron

units are used (a detailed introduction to neural networks can be found in [32]). Both

types consider the weighted sum of all input values xi, i ∈ {0, ..., n}:

neti =
∑

i

wixi , (3.1)

whereas wi is the weight of the edge that connects input xi with the unit.

If the equation neti ≥ 0 holds, a perceptron unit yields 1, and 0 in the other case.

Such a perceptron with an extended input vector assumes that the first input value

equals minus one, x0 = −1. The first incoming edge’s weight, w0, can then be seen as

a threshold value, Θ. Due to its binary output, it suits perfectly for boolean decisions,

like those about creation and destruction in Table 3.2.

25

3 Approaching a constructive swarm

Description of the information Representation

About the agent’s situation

The agent’s velocity at the time of the impact 3D Vector

The agent’s location 3D Vector

About the particle the agent has collided with

The old particle’s location 3D Vector

The old particle’s color RGB-triple

The old particle’s size Scalar

About the neighbouring particles

The number of neighbours Scalar

The neighbours’ minimal/maximal and average colour One RGB-triple each

The neighbours’ minimal/maximal and average size One scalar each

The neighbours’ minimal/maximal and average height One scalar each

Table 3.3: The connectionist agent’s available information (16 floating point and 13 in-

teger values)

A sigmoidal unit (also called sigmoid) yields an output value in the interval [0, 1] by

computing the function:

s(neti) =
1

1 + e−neti
(3.2)

A sigmoid delivers the proper value for each of the swarmette’s construction parame-

ters (location, colour and size of a new particle). Figure 3.2 shows the connections of the

“behavioural net” of the swarm’s agents. The output depends on the input values and

the weights along the edges. Put in other words: The weights of the net are responsible

for what an agent does in each situation.

The swarm’s flocking behaviour results from the interplay of another class of actions:

E.g. the alignment of an agent’s direction relative to its neighbours as presented in

Section 2.2. Depending on the weight that is assigned to each of these actions, a distinct

flight formation of the swarm results. Table 3.4 shows a parameter set that causes a

swarm to “flock normally”, which means that the agents fly in small groups and it comes

often about, that single members of the swarm wander off.

26

3 Approaching a constructive swarm

Swarming Parameter Value

SPACING CONSTANT (c1) 3.0

WORLD CENTER CONSTANT (c2) 2.0

VELOCITY CONSTANT (c3) 10.0

CENTER CONSTANT (c4) 2.0

WANDER CONSTANT (c5) 4.0

MAX VELOCITY (Vmax) 15

MAX ACCELERATION (Amax) 15

CRUISE DISTANCE (d) 0.4

Table 3.4: These values determine the connectionist agent’s swarming behaviour (after

[35]).

The connectionist swarm agent has now the capabilities to swarm in space and react on

its environment to build structures. The determination of the individual’s behaviour lies

completely in the network’s weights. Each of the nine computational units is connected

with all 35 input values. Consequently, the whole network can be seen as a matrix,

comprising nine vectors, each consisting of 35 weights (in total that is 9 × 35 = 315

single values).

27

3 Approaching a constructive swarm

agentVelocity
agentLocation

particleLocation
particleColor

particleSize

numberOfNeighbours
neighboursMinLocation
neighboursMaxLocation
neighboursAvgLocation

neighboursMinSize
neighboursMaxSize
neighboursAvgSize

neighboursMinColor
neighboursMaxColor
neighboursAvgColor

p

p

buildNewParticle

destroyOldParticle

newParticleSize

newParticleLocation

newParticleColor

Information about
the agent's

situation

Information about
the collision

partner

Information about
near particles

.

.

.

Each of these
edges is weighted

{
{
{

Figure 3.2: The “behavioural net” of a swarmette: The left side shows the available input

data. In the middle part there are the computational units - perceptrons are

denoted with a “p”. The output on the right, which depends only on the

weights along the edges, is interpreted as the individual’s set of actions. Most

terms represent vectors, except for the green ones. Each computational unit

“fires” one scalar.

28

3 Approaching a constructive swarm

3.2.3 Interactive evolution

After the layout of the agent’s abilities is made, the final step is to find configurations

of the agents’ behaviour that induce the creation of interesting structures. Section 2.3

has introduced the means of interactive evolution, which apparently answer the needs

for the faced task.

A swarm’s genotype is represented by the described 9 × 35 matrix of the behaviour

network. The according phenotype is the construction that is built by the corresponding

swarm. Interactive evolution is realised by repetition of the following steps (this process

is illustrated by Figure 3.3):

1. Generation of a population of genotypes (at first randomly, in the next iterations

by applying the genetic operators which are described in Subsection 3.2.4)

2. Non-graphical computation of the phenotypes

3. Simultaneous visualization of the population of constructions

4. Comparison and rating of the constructions by a supervisor (with values from 0

to 9, where 0 indicates the worst and 9 the most satisfying result).

5. Returning the genotypes and the attached ratings to the genetic operators that

are used in step 1

As in the simple genetic algorithm (Algorithm 2.1), the first population of swarms

is created randomly. The weight matrices that determine each swarm’s behaviour are

initialized with random numbers from −5 to +5. This initialization guarantees that

processing a single input value can cover the whole range of achievable outcomes: 1 is

an operational value of all given input data. Equation 3.1 with xi = 1 and wi ∈ [−5,+5]

leads to an outcome in the interval [0, 1] for the sigmoidal unit (Equation 3.2) and enables

the perceptrons to fire 0 or 1.

3.2.4 Genetic operators

The schemed interactive evaluation furnishes selection with adequate values to choose

individuals from the current population and transfer them to the next generation. The

29

3 Approaching a constructive swarm

[w0,0 w0,34

⋮ ⋱
w8,0 w8,34

]
swarm0

⋯ [w0,0 w0,34

⋮ ⋱
w8,0 w8,34

]
swarm4

Population of swarm genotypes

⋯

The population's phenotypes

Graphical User Interface to
interactively rate the phenotypes

1. Generate a new
population of swarm
genotypes

2. Compute the
phenotypes
nongraphically

3. Visualize the
phenotypes

4. Rate the phenotypes
relative to each other

5. Return ratings

Figure 3.3: The course of interactive evolution implemented to evolve a “connectionist”

swarm.

30

3 Approaching a constructive swarm

rest of the genetic operators work on the genotypes themselves, represented as weight

matrices. This subsection describes the implemented genetic operators and supplemen-

tary functions.

Rank-based selection: The individuals are ranked in accordance with their ratings.

To each rank a (fix) probability of selection is attached. Rank-based selection

avoids crowding [27], which would mean that one individual is overly predominant

in the upcoming generation. Fitness proportionate selection, for example, has a

great tendency to choose only the best individual, if its fitness is extremely high

compared to the others’ ratings. For a small population size crowding can happen

within a few generations. Due to that reason, rank-based selection is used.

Crossover mask: This mask tells the crossover-operator (see Section 2.3) which part of

the genome should be taken from which ancestor. It is a binary string: 0 indicates

that an allele (a part of the genome of a defined length) is inherited from ancestor

A, a 1 signals that the allele originates from parent B. Here, the crossover mask

is a random concatenation of zeros and ones.

Crossover on matrices: Merges parts, in particular vectors, of the behaviour network

matrices from two ancestors according to a given crossover mask. It produces two

new individuals.

Crossover on vectors: Mixes the values of two (weight-)vectors according to a given

crossover mask and thereby generates two new vectors.

Mutation: Changes a value with a given probability. A threshold is declared that has

to be surpassed, in order to execute mutation at all. If a random variable X is

greater or equal than a mutation threshold Θm,

X ≥ Θm (3.3)

the mutation operator updates the original value v0 to the new value v1 by adding

or subtracting the term:

∆v = 1− e−x2

with a random x ∈ [0, 1] (3.4)

v1 = v0 ±∆v with v0 ∈ [−5,+5] (3.5)

31

3 Approaching a constructive swarm

(increase and decrease of the original value are equally probable)

The idea to mutate all values of every individual is taken from [16]. However, the

mutation threshold Θm (in Equation 3.3) reduces the chances of an actual value

change. Θm defines the percentage of mutation on the next generation’s total

genetic information (also gene pool). The update function (Equations 3.4 and 3.5)

ensures a smooth alteration because minor changes are more common (see Figure

3.4).

The set of presented genetic operators can be understood as a special implementation

of the standard operators, introduced in Section 2.3. If not mentioned differently, it

is fully complied with the simple genetic algorithm (Algorithm 2.1). Details of the

system’s settings and the interplay of the evolutionary algorithm, simulation runs and

the realization of interactive evaluation are presented in the next subsection.

U
pd

at
e

va
lu

e

Random variable x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

Figure 3.4: The update ∆v that is added or subtracted from the original weight value

depends on a random value x ∈ [0, 1]. It can be seen that minor changes

have higher probability.

3.2.5 Implementation details

There are only a few parameters that determine the evolutionary process and the swarm

simulations to compute the phenotype. They are listed in Table 3.5.

The phenotype is computed with a simulation environment called Breve which is

developed by Jon Klein [21]. Breve interpretes an agent-based implementation of the

32

3 Approaching a constructive swarm

Simulation parameters

Number of individuals per swarm 20

Spatial dimensions 1003

Size of an agent 1

The agent’s neighbourhood radius 3

Maximal size of a particle 3

A particle’s neighbourhood radius 3 times its own size

Simulated seconds 300

Evolution parameters

Population size 5 swarms

Crossover rate 0.5

Mutation threshold Θm 0.9

Table 3.5: Default parameters of the connectionist approach’s implementation

swarm (in the language Steve). To keep the swarms’ outcomes comparable, each process

is run until 300 simulated seconds have passed. During this time interval visualization

is switched off. For an additional computational speed-up processing the population

is distributed onto five computers. After the simulations have run and their output

has been stored, the results are transferred to the most powerful machine. There the

visualization takes place and a supervisor can rate the swarms’ constructions. Interactive

evaluation is preferably done with an easy-to-use graphical interface. The Qt-library by

Trolltech [37] has been used to create a simple GUI panel that accepts the following tasks

and calls the proper functions of a PERL-script (the panel can be seen at the bottom of

Figure 3.3):

1. Initialization of a population

2. Import of an existing population

3. Creation of a new generation based on input ratings

4. Start and stop of the simulation process

33

3 Approaching a constructive swarm

5. Visualize the current result (the successful completion of a simulation run is indi-

cated)

3.3 Rule-based approach

The second approach adheres to the means of qualitative stigmergic nest-building pre-

sented in Chapter 2. It can be seen as the absolute opposite to the connectionist ap-

proach. Although, the simulated world is still “continuous”, in the sense that it is not

divided by a three-dimensional grid, this attempt ignores the connectionist approach’s

postulated “smoothness” completely. In particular it deviates in the following points:

• Particles may not overlap anymore

• Construction elements are uniform: They are all of cubic shape and share the same

size and colour

• The agents’ construction behaviour is determined by a set of rules instead of a

neural net

• The input information is limited to:

– The necessary data for the swarming behaviour

– The local structural configuration on which the building behaviour depends

• Interactive evaluation is replaced by measuring the fitness through the approxima-

tion of a given 3D structure

• The genotype includes the set of parameter values that determine the swarm’s

flight formation

Conceding the construction elements to overlap finds its legitimation as soon as one

thinks of glueing objects together. If objects are supposed to be piled up or consist of

solid material, overlapping is out of the question. The swarm’s implementation implicitly

asks for a decision in favour of the one way or the other. There are good arguments

for both methods. Overlapping is realised by the connectionist approach. For studying

34

3 Approaching a constructive swarm

as many aspects as possible, the rule-based approach implements the construction with

separated particles4.

A cube is the simplest shape of an object, which is to be piled up. Since an agent

does not consider anything for the construction process, except the local structural con-

figuration, a uniform cube size makes sense, too. The agent’s environment is formed by

a conglomerate of cubes. Since many small cubes can form a bigger one, the distinc-

tion between their size in the individual case would not make a difference. Figure 3.5

illustrates the interplay between a spherical agent and cubic construction elements.

Figure 3.5: An agent, represented by a yellow sphere, is going to collide with the green

cubic construction particle (the agent’s velocity is indicated by the blue ar-

row). The agent’s behaviour depends on the structural configuration that

surrounds the collision partner. In the illustrated case red vectors point to

the locations that will be checked for particles by the agent.

To keep the construction process simple, marks, such as attaching different colours to

the single particles, are not used either.

It turns out that each run of a simulation, that is guided by interactive evaluation

builds upon a certain idea. At first one might, for example, try to achieve a construc-

tion that reaches very high. During the course of evolution the supervisor might run

into an unforeseen though interesting structure that inspires his/her objective’s notion.

However, when starting the simulation, the supervisor must have in mind a reasonably

4To avoid overlapping bricks, a test for collision must be performed before a new particle is built. One

can easily revert to overlapping objects by deactivation of this collision detection.

35

3 Approaching a constructive swarm

explicit conception. If one is able to map some attributes of the imagined structure onto

a three dimensional construction (such attributes can be height or a general shape, etc),

the provision of orientation towards an object comes in handy.

The agents’ way of swarming might also influence the coordination of their building

behaviour. To concede the facility of adjusting its flocking behaviour to a given task, the

destining set of swarming parameters is included into the genotype. Thus, the swarm’s

flight undergoes the same evolutionary process as its building behaviour.

In total this approach cherishes the idea that complex structures are realised by regard-

ing qualitative stigmergy in tandem with adoption of the swarm’s flocking behaviour.

Instead of interactive evaluation, the approximation of a given three dimensional struc-

ture takes over the task to guide the evolution of a suitable swarm.

3.3.1 The individuals’ operators

The swarm’s flocking behaviour results from a set of parameters. Pursuant to Reynold’s

swarm model and its extensions (Section 2.2) the agents are equipped with visual senses

to see their neighbours. Assume ~dsi as the vector between a swarmette s and another

individual i of the swarm. Every individual i is in the neighbourhood N of a swarmette

s, if the absolute value of ~dsi is within the swarmette’s radius of perception r and the

angle αsi between the direction of s and the location of i is within some range [0, 2].

∀i ∈ Ns|(‖~dsi‖ ≤ r) ∧ (αsi < 2) (3.6)

In each time step of the simulation, the swarmette’s velocity ~Vvelocity is updated with an

acceleration vector ~Vacceleration:

~Vacceleration =
5∑

j=0

wj
~Vj (3.7)

wj , j ∈ [0..5] are the weights of the distinct tendencies during the flight.

The six urges are:

~V0, Center: Yields the vector towards a fixed location within the simulation environ-

ment or to an agent’s location. If no center is defined, V0 is zero.

36

3 Approaching a constructive swarm

~V1, Separation: Implemented as explained in Section 2.2:

~V1 = −
∑
i∈Ns

~dsi

‖dsi‖2
(3.8)

~V2, Alignment: Implemented as explained in Section 2.2, referring to the neighbour’s

velocity ~vi:

~V2 =
∑
i∈Ns

~vsi

‖dsi‖2
(3.9)

~V3, Cohesion: Implemented as explained in Section

refsectionSwarming, referring to the neighbour’s location ~li:

~V3 =
∑
i∈Ns

~lsi
‖dsi‖2

(3.10)

~V4, Ground: Is responsible for the general tendency towards the ground. heights entitles

the swarmette s’ height and heightmax is the maximum height of the simulation

environment.

~V4 =


0

1
2
heights/heightmax

0

 (3.11)

~V5, Random: A normalized random vector.

~V0 offers a new potentiality. ~V0 refers to a center of the swarm which is not implicitly

given but has to be explicitely announced. An individual has to declare a specific

location or itself as center of the swarm. If w0 is sufficiently high (compared to the

other weights), a tendency towards the selected goal will appear. In this way one can

say that all the agents have a common leader (if an agent has declared itself as center of

the swarm) or, in the other case, that the swarm focuses onto a certain region. Another

action comes along with setting or changing the swarm center: An agent may recant the

declaration of a center, so that former announcements have no influence on the single

agent’s acceleration anymore.

As in the connectionist approach, the agents have an infinite number of construction

elements at their disposal. Once again the attention is turned to the resulting structure

37

3 Approaching a constructive swarm

and explicitely not to meet the demands of applied sciences. Hence the agent’s basic

abilities remain creating and destroying a new particle. The individual’s functionality

is elaborated as follows.

A brick is built at a location relative to the spatial coordinates of the particle the

agent has collided with. This relation is stated by a direction vector d. There is a

set D of given direction vectors according to the basic points of the compass (in detail

these are ~dNorth, ~dSouth, ~dEast, ~dWest, ~dabove, ~dbelow and ~dhere). The absolute values of

these standard direction vectors are normalised to the bricks’ size, so that direction and

distance of ~dabove point from one particle exactly to its upper neighbour’s center.

There are two types of destruction methods. The agent may destroy the particle

it has collided with. Another method is to destroy a particle at a relative distance.

The location of the particle in question is computed by addition of a vector ~ddestroy to

the collision particle’s coordinates ~pc. Of course, if there is no particle at ~pc + ~ddestroy,

destruction does not take place.

The rule-based agent’s actions are summarized in Table 3.6.

Class Action Parameter

1 Create new particle Vector (relative to the the colli-

sion particle’s location)

2 Destroy the collision particle None

Destroy a remote particle Vector (relative to the the colli-

sion particle’s location)

3 Set center to itself None

Set center to a specific location Vector (relative to the the colli-

sion particle’s location)

Cancel swarm center None

Table 3.6: The rule-based agents’ actuators

38

3 Approaching a constructive swarm

3.3.2 Behaviour determined by “if-then-rules”

The agents’ behaviour is determined by a set of Rules R. Each rule r ∈ R has the form:

c0 ∧ c1 ∧ . . . ∧ cn → a (3.12)

Whereas each condition ci is internally represented as a vector ~pi. A condition is fulfilled,

if a brick is found at ~pi + ~pc (~pc denotes the location of a particle the swarmette has

collided with). The rule’s consequence a consists of an action (one of Table 3.6) and a

vector which is sometimes used as a parameter.

Since there is no lattice that divides the three dimensional space into discrete unit

cubes, the way to ascertain a brick’s existence at a given location is not straightforward.

One method to realize this test is checking whether a collision will occur, if a cube of

minimal size is built at the given coordinates. Figure 3.6 shows this procedure.

The actuator on the rule’s right is only triggered if all the conditions on the left side

are satisfied. Once a collision occurs, each rule r ∈ R is tested and if applicable its

consequent action is executed.

The number of rules |R| and the length of a rule (which is equivalent to the number

of conditions and therefore denoted as nconditions) are given. The higher the number of

conditions the lower is the chance that a rule is complied with. In order to leave the

rules easily applicable, the number of conditions is limited to five. The number of rules

is set to 20.

When initialized, to each condition a vector ~vi is (randomly) attached that is element

of the set of basic directions D introduced in Subsection 3.3.1. The same holds for the

vector that is part of the rule’s consequence. The action itself is found in two steps:

1. Choose the general class of action (there are three classes of actions: those related

to creation, to destruction and to the swarm center, see Table 3.6).

2. Take one of the actions available in the specific class.

This section has clarified, how processing the perceived data is linked to distinct

constructional actions presented in Subsection 3.3.1.

39

3 Approaching a constructive swarm

1.An agent is
going to collide
with a particle

2. Considering its set of rules,
the agent wants to know, whether
there is a brick at a given position
relative to the collision particle.

3. A collision test with a
small object (green) placed at the
coordinates in question yields
the desired answer.

pc

pi

V velocity

0
If a particle is within the grey area, a
collision occurs. In the illustrated
case, the blue particle collides with
the light green object and therefore
the condition is satisfied.ci

Figure 3.6: To analyze the surrounding structural configuration, the agent tests, whether

there are bricks at certain positions or not. The figure illustrates the following

case: An agent s collides with a particle c. One of the rules of s checks for

a brick at ~pi relative to the position ~pc of the collision particle.

3.3.3 Approximation of a given 3D structure

Perception, data processing and a set of actions of the rule-based swarm agent are out-

lined in the previous sections. The next important task is to find a set of rules and

flocking parameters that lead to structured constructions. Automation of the evolu-

tionary search for an appropriate genotype requires a mathematical way to measure a

swarm’s fitness. In order to guide the search, the difference between a swarm’s construc-

tion (constructionswarm) and a given three dimensional structure (constructionpredefined)

is used as the swarm’s fitness rating.

The fitness function’s prototype looks like this:

fitness(constructionswarm) = constructionswarm ∩ constructionpredefined (3.13)

40

3 Approaching a constructive swarm

The given construction is composed of several cubes, specified by position and range.

Since the difference of two 3D objects is equivalent to their intersecting volume, the set of

built bricks is tested against the set of given cubes for intersection. Based on Algorithm

3.1 it is simple to compute some values that help to implement a proper fitness function.

C, “Covering Volume” represents the summed intersections of built and predefined

particles.

¬C, “Non Covering Volume” is the volume of the swarm’s construction that does not

intersect with the predefined structure.

F , “Fitness Object Volume” , the total volume of the given structure.

Equation 3.13 can now be implemented as follows:

fitness(constructionswarm) =
C

F
− ¬C

F
(3.14)

The term C
F

is added to the fitness. It reaches its maximum when C = F , which

is the case if the whole given structure is rebuilt by the swarm. But this case does

not exclude the eventuality that the swarm might have constructed something totally

different and that the predefined structure is only covered incidently. To ensure that the

swarm’s construction is as near to the given 3D objects as possible, any outgrowth is

rated negatively by the second term of Equation 3.14, ¬C
F

. The more particles are built

that do not contribute to the given structure’s approximation, the lower is the fitness

of the swarm. Instead of direct subtraction of the volume of the misplaced particles,

a softer penalty is imposed. The volume of the unwanted bricks is set into relation to

the fitness structure’s volume. In this fashion the punishment is small as long as the

swarm creates fewer particles than necessary to fill up the given structure. This gives

the swarm an impetus to construction in general. However, if the built structure grows

rampant, the penalty will ruin the swarm’s fitness.

3.3.4 Genetic operators

This section describes the functions used to create new generations in the evolutionary

process. In general, all steps are implemented according to the simple genetic algorithm

(Algorithm 2.1). However, the genotype’s representation, that is the set of construction

41

3 Approaching a constructive swarm

Algorithm 3.1 Volume of Two Cubes’ Intersection

Parameters:

~a,~b: The cubes’ positions

rangea, rangeb: The range is half the size of a cube

Returns: Intersecting volume of cubes a and b

~dmin = ~dmax =


0

0

0

 {these vectors describe the intersecting box}

for all i ∈ [0..2] do

if (ai − rangea) < (bi − rangeb) then

dmin,i = bi − rangeb;

else

dmin,i = ai − rangea;

end if

if (ai + rangea) > (bi + rangeb) then

dmax,i = bi + rangeb;

else

dmax,i = ai + rangea;

end if

end for

volume =
∏2

i=0 dmax,i − dmin,i;

Return |volume|;

rules and flocking parameters, needs some adjustment of the genetic operators. Details

that are kept open by Algorithm 2.1 are stated, too.

Crossover Although a whole set of crossover modes is implemented (random, equal, one

point and multi-point crossover masks, as described by Mitchell [27]), it is sufficient

to confine to one of them. For the simulation a two point crossover mask is chosen,

so that each of the two offspring owns one part of one and two parts of the other

ancestor. If there exist any dependencies within the agent’s genotype (e. g., a

constructional rule that makes only sense with another one within the same set),

its partitioning into three parts may very likely conserve them.

42

3 Approaching a constructive swarm

There are several levels in the genotype’s hierarchy. The genotype is split in

construction rules and flocking parameters. Again, the set of construction rules

consists of a number of rules that own lists of conditions. On each of these levels

the crossover operator could come into action: On rules, sets of rules, sets of

parameters or on the whole genotype. Of course, the latter kind is taken to generate

the offspring for a new generation. In this fashion, the offspring inherit flocking

parameters and single constructional rules according to the crossover mask. The

offspring’s number of rules is limited to the smallest order of the ancestors’ rule

sets. By this means it may happen that the average size of the swarms’ rule sets

decreases in the course of evolution. A small set of rules and still good performance

corresponds with Occam’s razor which states that [27]: “the simplest hypothesis

is the best”.

Mutation At first the mutation operator checks whether it should alter the given object

or not - according to a given mutation rate. If the decision is made in favour of

alteration, a number or vector, smaller than a given mutation distance, is chosen

and added to or subtracted from the original value. Whenever the resulting values

leave an interval (defined by a lower and an upper bound), they are trimmed

to the next boundary. This procedure is applied on every genotype of the new

generation. There is no special motivation for this mutation procedure. The

mentioned boundaries ensure that the evolved parameters make sense and the

mutation distance defines the procedure’s maximum effect.

3.3.5 Implementation details

Table 3.7 lists the default parameters of the evolutionary system and of the simulations

which ascertain the phenotypes’ fitnesses. In opposition to the first approach (Section

3.2) a supervisor only has to adjust the parameters of Table 3.7, provide a 3D structure

that allows to compute a swarm’s fitness and start the evolutionary process.

The evolution is executed by iteration of two steps:

1. Iterative computation of all swarm phenotypes along with their fitness

2. Application of selection, crossover, mutation as described in 3.3.4

43

3 Approaching a constructive swarm

The structure which guides the evolutionary process is read from a file. The genotype

(also DNA) of each swarm along with its achieved fitness are stored in a protocol file. The

evolutionary process can be resumed, if it had to be stopped. The k fittest genotypes are

saved automatically in a separate file. A multi-start hillclimber (as described in Chapter

2 on page 12) can be launched by supplying the program with a file consisting of an

appropriate set of genotypes. The file which contains the k best swarm genotypes can

be directly used for this purpose.

Triggering the swarm’s creative behaviour depends on at least one brick (otherwise

the set of constructional rules will not even be considered, see 3.3.2). Due to this fact,

a “seed”-file is read, which tells the program where to place some initial bricks before a

simulation is run (similar to the pedicel introduced in Chapter 2).

C++ is the second approach’s programming language of choice. Graphics and process

management are accomplished by Ian Burleigh’s VIGO library [3]. To optimize the

routines of collision detection, a loose octree is dynamically built up and folded together

during the simulation:

If an object moves in space and a collision with another object is supposed to initiate

an event, the simulation has to query for intersection with all other objects in each step.

If the space of the simulation in question is divided into small sections, collision queries

only have to consider the particles that are in the same area as the agent. The men-

tioned octree automatically partitions space according to the number of objects in the

simulation. The pruned search leads to a better performance (a profound introduction

into collision detection and other computer graphics issues can be found in [1]).

44

3 Approaching a constructive swarm

Simulation parameters

Spatial dimensions 5× 10× 5

Minimal distance of two particles 0.001

Block edge size 0.15

Agent sphere radius 0.05

Number of individuals per swarm 25

Simulated seconds 500

Evolution parameters

Population size 20 swarms

Number k of best genotypes 10

Crossover rate 0.4

Mutation Rate

In general 0.2

Rules’ actions 0.1

Mutation Distance

Flocking parameters 0.05

Rules’ conditions 0.2

Alleles’ Boundaries

Flocking parameters [0, 2]

Rule vectors The simulation’s outmost points

Maximal number of rules 20

Maximal number of conditions 5

Table 3.7: Settings of the rule-based approach’s phenotype simulation and evolution pro-

cess

45

4 Evaluation of the two approaches

In the last two sections of the previous chapter, two different approaches to the evolution

of a creative swarm are presented. Due to the very different claims of their actual

swarm agent model and their particular evolutionary methods, this chapter presents

some equally different results.

4.1 Strengths and weaknesses of the connectionist

approach

Interactive evolution has too great a task to face, when hundreds of parameters need

to be found. This truth does not hold in general. But if it takes a long time to over-

come one search step and it is foreseeable that the number of intermediate states is

immense, automatic search is the only option. Even after optimizing and parallelizing

the simulation, the connectionist approach fails due to that reason.

Anyways, the scarce data that has been collected about the connectionist swarm, yields

some interesting results, too. Smoothness and implicit dependencies of the construction

elements for example.

4.1.1 An example: Construction of maximum height

The first generation of a simulation run is shown in Figure 4.1. With a random initializa-

tion of the connectionist swarm’s weight matrix, a colourful and diversified construction

is produced. After a supervisor has guided the evolutionary process with the objective

of building as high as possible for more than two hours, the population as seen in Figure

4.2 has been developed.

46

4 Evaluation of the two approaches

Figure 4.1: The construction phenotype of a randomly initialized connectionist swarm

population.

A glimpse on several outcomes reveals that the inclusion of the agents’ positions in the

constructional network yields very one-sided structures in the full sense of the word. The

simulation space is divided into four quadrants, the geometrical origin is the ground’s

center. It can easily be recognised that the majority of particles is concentrated within

one of the four quadrants. This occurance is induced by the agents’ position vector that

influences the swarm’s construction. The location vector’s components, x, y and z, are

connected to the perceptron that decides, whether to build a new particle or not. For

each particle, the weighted sum of input values has been sufficiently great to conclude

its construction. The images of Figure 4.3 clearly show the link between the agents’

locations and the built particles.

Throughout all provided images the particles’ attributes are connected to their posi-

tions. A concentrical order of height, colour and size arises. These smooth transitions

47

4 Evaluation of the two approaches

Figure 4.2: Fourteen generations later, the constructions of Figure 4.1 have evolved to

this set of structures. The higher a structure was, the better was the swarm’s

rating.

look nice. On the other hand this phenomenon makes clear, that the dependencies

between the agents’ perception and actions overly bias the swarm’s construction.

4.1.2 Fatal inefficiency

The most fatal encountered problem is the long computation time needed to produce

the results of a swarm’s genotype and to evaluate them interactively. Henry Kwong (in

[22]) has pointed out that:

• “Evolution may take longer, since humans judge solutions much slower than a

machine in many cases.” and

48

4 Evaluation of the two approaches

• “For hard problems that require large populations and many generations, it is

impractical for a human to perform the thousands of evaluations that would be

necessary.”

Both cases apply in this approach.

Even though visualization is switched off and several machines compute a whole popu-

lation in parallel, the computation of one generation takes a couple of minutes (depending

on the number of particles in each simulation). Rating the results has to take place on

one computer, which ends in another latency: The subsequent transfer of the results to

one machine is done fast. However, displaying the phenotypes takes another long time.

This concomitant of the evolutionary process is even worse because the search space

of weight matrices is immensely huge. Although a genetic algorithm and its derivatives

usually produce good solutions to problems of low dimensionality, they tend to a poor

performance if the genotype holds too many variables or the resulting genome depends

on a very high precision [28]. Therefore the weight matrices need a lot of adjustment,

if the swarm is meant to evince a specific construction behaviour. Assigning several

minutes to each of the presumably many steps of the evolutionary search makes this

approach a failure.

In total, processing one generation takes at least seven minutes: About two minutes for

the phenotype’s computation, another two for visualization and, if done really quickly,

three minutes to rate the outcomes. That makes approximately eight generations (of a

population of only five individuals) in one hour. A hypothesis encompasses 315 numbers,

each of them ranges from minus to plus five right from the start. With the assumption

that whole number steps are sufficient to find good weight matrices, there are 10315

distinct instances in the hypothesis space. The prospect of the objectives’ achievement

can only be justified, if the supervisor’s rating radically prunes the search, the genetical

operators work effectively together and one search step can be executed reasonably fast.

One might argue that the weight matrix (see Subsection 3.2.2) considers needlessly

much input information. Despite the fact that it is unknown, which of the incoming

data is irrelevant, discarding the consideration of ill-founded input would still end in an

awfully1 long procedure.

1Though uncommon in sciences, this term is used on purpose. It expresses the fact that too long

latencies inconvenience the human supervisor.

49

4 Evaluation of the two approaches

Figure 4.3: The location vector of the agent strongly influences the perceptron’s decision

to build particles. The number of built particles varies according to the

agents’ position.

4.1.3 Nice features of the connectionist approach

The simulation runs cannot refute the suitability of the connectionist swarm model

in general. The smooth, colourful and diverse appearance of the created structures

(especially in Figure 4.1) make the connectionist approach an aesthetical success (see

Section 2.3). The direct connection between the created particles and such incoming data

as the agent’s position do not seem to be adequate (the effects are stated in Subsection

4.1.1). However, though not very obvious, a tendency towards height is even visible in

the pictures of the “height objective’s” 15th generation (Figure 4.2).

One may conclude that particles of different sizes and colours are a good basis for an

aesthetically appealing appearance. The presented connectionist agent model is capable

of producing the necessary continuous outcome values for that purpose.

4.2 Evaluation of the rule-based approach

After the presentation of some interesting structures built by rule-based swarms, a case-

study is adduced. The case-study comprises the swarm’s evolutionary development,

attributes of its created structure and characteristics of its flocking behaviour. Finally a

50

4 Evaluation of the two approaches

few examples show how an already evolved swarm is interactively guided, to approximate

derivations of its original fitness structure.

Mapping three-dimensional contents onto normal 2D images is a rather difficult pro-

cess. The upcoming pictures are taken in such a way that as much as possible of the

important information is cognizable. At the same time this works against the attempt

to provide uniform pictures.

4.2.1 Exemplary structures

By means of the techniques presented in Section 3.3 many rule-based swarms have

been evolved that create interesting structures (see Figures 4.4, 4.5, 4.6, 4.7 , 4.8, 4.9).

Table 4.1 shows the swarms’ fitnesses, the generation in which they occurred and the

underlying structures that have guided the evolutionary search. Except for the swarms

of Figures 4.5 and 4.7 which have both a set of 18 rules, all the presented swarms have

10 constructional rules and make use of maximally 4 to 5 conditions.

Although the construction in Figure 4.4 seems to be absolutely conforming to its

underlying “fitness structure” (first image of Table 4.1), it has only acquired a puny

fitness. Appearances are deceiving, the evolved swarm is merely a by-product of the

evolutionary search. In fact, the swarm builds the desired straight line exactly ninety

degrees into the wrong direction. However, it has been discovered by chance and satisfies

the experiment’s expectations.

51

4 Evaluation of the two approaches

Fitness Measuring Structures Referenced Result(s) g f

Parallel Lines, Figure 4.4 15 0.0064

Fan-like Shape, Figure 4.5 506 0.0058

Two-level Flats, Figure 4.7 314 0.0122

Unsymmetric Structure, Figure 4.8 7 0.1305

Bush Structure, Figure 4.6 1143 0.0066

Organic Structure, Figure 4.9 35 0.1970

Table 4.1: Structures that have guided the evolutionary search are coloured in red, seed

blocks in blue. The corresponding results are referenced on the right side.

Furthermore it is stated in which generation g the result has occurred and

what fitness f it has achieved.

52

4 Evaluation of the two approaches

Figure 4.4: On the left there is a line of seed blocks that trigger the swarm’s building

process. The right image shows the swarm’s constructional result. The al-

most equal distribution of the swarmettes along with their low flight supports

their constructional efforts.

Figure 4.5: The fan-like construction has been achieved by starting from a single seed

block in the simulation world’s center, a small distance from the ground.

The image on the left side shows an earlier stage of the construction’s devel-

opment.

53

4 Evaluation of the two approaches

Figure 4.6: The swarm is divided into two flocks at an early stage. Both flocks loop

back and forth from their sides to the construction. The many holes in the

building make it look like a bush.

4.2.2 A case-study: Approximation of a tower

The tower “fitness structure” displayed in the last image of Table 4.1 has also been

basis of the development of the swarm which is examined in this subsection. In general

the swarm in question has similar attributes as the ones presented in Subsection 4.2.1:

Its constructional behaviour is determined by a set of ten rules, whereas the maximum

amount of conditions of these rules is five. It took 143 generations for the considered

swarm to occur and it achieves a fitness of 0.1926.

Figure 4.7: Two-level flats: Developed from two seed blocks at the corresponding heights.

The third image shows the construction from above.

54

4 Evaluation of the two approaches

Figure 4.8: The more interesting shapes are unsymmetrical like this one. The right

picture enhances the view on the swarm’s flocking behaviour.

Figure 4.9: An excellent example of an asymmetric, organic looking shape. But it has

only two dimensions: The right picture shows the structure from the side,

no swarmette ever leaves the plane.

But the swarm’s overal behaviour is exceptional. First it builds up a tower which is

very close to the given structure in no time (Figure 4.10), then it is fleeing from the

world’s center to avoid further construction which might lead to fitness penalty (Figure

4.11). The whole construction procedure takes approximately 200 simulated seconds,

but the biggest part is already built after 80 seconds have passed. At the simulation’s

start and as long as it takes to create the tower, the swarm stays around the center.

55

4 Evaluation of the two approaches

Afterwards it is divided into three to four flocks which head as far away from the center

as possible, lingering in the simulation world’s corners.

In Chapter 2 compactness, structure and coordination of a swarm’s creation are ex-

plained. With respect to these keywords the present construction can be characterised

as follows:

Compactness: The particles are built close to each other, therefore the construction is

compact.

Structure: Although an iterative construction process can be observed (Figure 4.10),

patterns or modules of bricks are not apparent. However, the fact that the bricks

are built on top of each other to gain height and next to each other to approxi-

mate the given shape’s breadth is sufficient to outline a structure (after the first

description of a structure in Section 2.1 on page 8).

Coordination: The single construction steps of Figure 4.10 clearly show that it occurs

that several agents build at different locations without jeopardizing the total con-

struction. Therefore one may say that the construction is coordinated.

Another question arises when looking at the single steps of Figure 4.10: How does the

swarm change its flocking behaviour? To answer this question the agents’ genotype has

to be investigated (the detailed genotype can be found in the Appendix). It consists of

the following rules:

• An unconditional rule that recants the declaration of the swarm’s center

• Five rules adding a new particle

• Two rules destroying a block

• Two rules rearranging the swarm’s center

The succession of the rules plays an enormous role. Exempting the swarm from its center

is only put into practice, if no subsequent rule defines the swarm’s center anew. Since the

rules that redefine the swarm’s center ask for certain structural configurations around

the agent to come into effect, the swarm is focused on the building as long as these

conditions are fulfilled. Through steady alteration of the built structure it might occur

56

4 Evaluation of the two approaches

that these conditions are not satisfied for agents at a certain location. As a consequence

the swarm’s intrinsic flocking behaviour could come into action urging the swarm to

the simulated world’s corners. This reasoning conforms to the seen phenomenon and is

supported by the swarm’s genotype.

4.2.3 Guiding the search with diversified 3D objects

The perfect rule-based tower building swarm (presented in Subsection 4.2.2) motivates

to make use of its properties in the following way:

• Use the elite (the ten best genotypes) of the “height approximation” experiment

as starting point for a new evolutionary run (a combination of elitism and a multi-

start hillclimber strategy, presented in 2.3)

• Alteration of the 3D structure which has been successfully approximated

Three different ideas for the tower shape’s change are discussed:

1. The simple extension of the tower’s height

2. Breaking open the close and compact structure of the tower

3. Building some stairs on top

The new structures are shown in Figure 4.12 (in the same succession). Their solid

appearances result from the facts that the shape’s overal structure can be recognised

more easily this way and covering the seed block may be done because it is at the same

position as in the example of Subsection 4.2.2.

It took 184 generations until the tower building swarm (introduced in Subsection 4.2.2)

has adopted to the “fitness structure’s” elongated shape. In general the same course of

events takes place as seen in Figures 4.10 and 4.11: Now the agents build a somewhat

higher tower before they flee from the world’s center. Although the swarm does well,

the task’s similarity to the approximation of the smaller tower diminishes its success.

More interesting results of the tower extension experiment are displayed in Figure

4.13. The images represent the results of two separate evolutionary runs, both starting

with the genotype of the tower building swarm as discussed above. It is obvious that

57

4 Evaluation of the two approaches

there is a general tendency of the swarms to fulfil the new requirements. The extension

of the original tower’s shape gives a strong impetus to build higher. It may be stated that

the evolutionary process considers the shape’s variance and thereby generalises beyond

the new given structure.

The second extension of the tower example, that is the branching crown on top of

the tower, has been approximated within 1341 generations, Figure 4.14 presents the

outcome.

Figure 4.15 shows the approximation of the third shape variation. It seems to be hard

to cope with the stairs on top of the tower. However, after already two generations the

hillclimber strategy yields a genotype with a fitness of 0.2087 which produces as structure

bent into direction of the stairs. A simulation run with no specific starting point has not

been able to achieve equally good results within 1000 generations. Its best result has

occurred in generation 925. The swarm in question has developed a slight tendency of

building towards the stairs (overal fitness: 0.0401). The “tower with stairs” experiment

combines two basically different structures, one straight upwards and the other one

diagonally upwards. Since the genotype of the latter swarm is trained to approximate

the tower shape and the stairs structure at the same time, the constructional tasks might

be overextending.

In Section 4.1 the flaws of interactive evaluation are explained. In the presented

connectionist approach (Section 3.2) the combination of two factors have led to failure:

Too many parameters to optimize and too slow computation and visualization of the

phenotypes. The examples in this subsection are guided by an underlying 3D structure

and an external supervisor that changes the evolution process’ objective. In this manner

a stepwise development from “vague notions” of interesting or aesthetical structures to

corresponding fitness shapes can take place.

58

4 Evaluation of the two approaches

Figure 4.10: Intermediate states of the building process of a tower. The orange “fitness

structure” elucidates the excellence of the swarm’s approximation.

59

4 Evaluation of the two approaches

Figure 4.11: The swarm’s flocking behaviour after it has successfully approximated the

given tower structure. If the swarm gets into contact with the central

building it might be triggered to extend the construction. Since particles

outside the given structure is punished, the swarm is better off hiding in

the world’s corners.

60

4 Evaluation of the two approaches

Figure 4.12: Extended versions of the original guiding structure (seen in the last image

of Table 4.1): An extension of the tower’s height, a branching “crown” and

stairs on top of the tower.

Figure 4.13: 1. Pillars arise after 1000 generations 2. Extension of the original “fitness

structure” results in endless efforts to gain height (644. generation) Both

images clearly show the vertical line flight formation that contributes to the

swarm’s construction

61

4 Evaluation of the two approaches

Figure 4.14: After 1341 generations the original tower building swarm has adjusted to the

new challenge: Now it contributes to the branching structure by extending

its construction’s diameter with growing height.

Figure 4.15: The first image shows the result of an evolutionary run with an optimized

tower building swarm as basis. On the right side an outcome without a

specific initialization is displayed (925. generation).

62

5 Summary and future work

Based on inspiration from insects’ construction abilities and from the successful appli-

cation of interactive evolution in cases where creative development is the objective, a

swarm model and an appropriate evolutionary system have been implemented. Although

the connectionist agent model was too complex to be evolved interactively, a positive

discovery has been made: The connection between input information and the agents’

actions in combination with the computation of continuous values leads to very smooth,

colourful and diverse results. There might be applications, especially in the field of the

fine arts, where such properties of an agent system are desired. Interactive art instal-

lations have not been able to gain a huge market share so far, but as offers of virtual

reality gear become more and more attractive, there lies a great potential for aesthetical

3D applications. Still, the results of the first approach can neither affirm nor refute the

main idea of the connectionist agent model.

The disappointment about the first approach’s impasses has led to fundamental con-

ceptional changes in the second attempt. The agent model is much simpler. For a start

the agents only consider the surrounding configuration to determine their constructional

actions. The lattice swarms, first presented by Bonabeau et al. [12] and later investi-

gated by Pilat [29], that react on qualitative stigmergic signals, have served as a most

promising model. The lattice swarm has been transferred into a continuous 3D space

and the original random movement in space has been substituted by Reynold’s flocking

model [30]. The latter novelty makes way for the parallel evolution of a swarm’s con-

struction behaviour and its flocking parameters. A new actuator of the swarmettes has

been introduced, too. Equipped with the functionality to actively change the swarm’s

center, the agents have the means to coordinate their work. This functionality also links

the swarm’s constructional with its flocking behaviour.

63

5 Summary and future work

If an agent is supposed to consider qualitative stigmergical information a continuous

3D world, a new test for the surrounding structural configuration is required, therefore

a proper solution is suggested in Figure 3.6. The most important extension is to let the

swarm orientate itself towards a given three-dimensional structure (technically this is

done by considering a 3D shape, the computation of the difference between the given and

the built structure, see Algorithm 3.1 and an appropriate fitness function, see Equation

3.14).

In Chapter 4 some interesting structures of rule-based swarms are shown. The first

examples are discovered by providing the search with several 3D structures (Table 4.1).

In addition the supervisor can keep up with guiding the process: An already developed

swarm can be bred to approximate an altered shape. Judging the swarm’s fitness is

conceded to the evolutionary system and the supervisor’s guidance takes place by his/her

supply of refined structures.

A huge amount of decisions has been made to develop a complete swarm model in

tandem with an evolutionary system. Though many interesting structures have occurred,

a lot of improvement might be achieved by a comparative development of the genetic

operators in Section 3.3.4. Among others, the agent’s genotype is limited to maximally

five conditions per rule. So far artificial evolution has originated mostly swarms that

obtain rules with maximally four to five conditions which clearly exhausts the given limit

of conditions. Therefore the effect of an increased number of allowed conditions should

be analysed.

Each of the presented swarms has one genotype which holds for all its individuals.

It has been shown that the presented swarm model works in general and yields some

interesting results. However, more complex structures might arise by assigning one

genotype to each swarm agent. Since a whole set of distinct swarms is already found, it

would be interesting to merge some of their individuals to let them create totally new

structures. This new perspective enforces the attempt to evolve swarms consisting of

“real” individuals.

64

A Appendix, DNA of a Tower Building

Swarm

The Genotype of a Rule-based Tower Building Swarm

<DNA>

<SWARMPARAMETERS>

<ALIGNMENT> 0.308151

<COHESION> 0.181587

<SEPARATION> 0.0599679

<RANDOM> 0

<GROUND> 0.166916

<CENTER> 0.13821

</END_SWARMPARAMETERS>

<RULE>

<ACTION> 2

<ACTIONPARAMETER> 0.255089 0.762202 0.554074

</END_RULE>

<RULE>

<ACTION> 5

<ACTIONPARAMETER> -0.712361 0.299528 0.0635564

</END_RULE>

<RULE>

<CONDITION> -0.14244 0.578193 -0.184357

<ACTION> 1

<ACTIONPARAMETER> 1.05214 0.745683 -1.7563

65

A Appendix, DNA of a Tower Building Swarm

</END_RULE>

<RULE>

<CONDITION> -0.05616 0.0895128 -1.64249

<CONDITION> -0.793849 0.582498 0.605538

<CONDITION> 0.640603 0.155417 -0.964139

<CONDITION> 0.475184 0.191081 -0.227879

<ACTION> 1

<ACTIONPARAMETER> -0.79103 1.41344 1.0936

</END_RULE>

<RULE>

<CONDITION> -0.464115 1.25665 0.0482793

<CONDITION> -0.272851 0.497835 0.419289

<ACTION> 3

<ACTIONPARAMETER> -0.0553006 0.288848 -0.78648

</END_RULE>

<RULE>

<ACTION> 3

<ACTIONPARAMETER> -0.0233629 0.190972 -0.0661236

</END_RULE>

<RULE>

<CONDITION> -0.383928 0.00313065 -0.233784

<ACTION> 3

<ACTIONPARAMETER> -0.334766 0.37158 0.518885

</END_RULE>

<RULE>

<ACTION> 3

<ACTIONPARAMETER> 0 0 0.151

</END_RULE>

<RULE>

<ACTION> 3

<ACTIONPARAMETER> 0.133642 0.194942 -0.0436256

</END_RULE>

66

A Appendix, DNA of a Tower Building Swarm

<RULE>

<CONDITION> 0.0106957 0.165715 -0.139416

<ACTION> 4

<ACTIONPARAMETER> -0.634567 0.944219 0.823604

</END_RULE>

</END_DNA>

Action Number Description

0 Set center to itself

1 Set center to a specific location

2 Recant swarm center

3 Create new particle

4 Destroy the collision particle

5 Destroy a remote particle

Table A.1: The rule-based agent’s actuators corresponding to the genotype numbers.

67

Bibliography

[1] T. Akenine-Möeller and E. Haines. Real-time Rendering, Second Edition. AK

Peters, Natick, Massachusetts, 2002.

[2] T. Bräunl. Research Relevance of Mobile Robot Competitions. In Robotics & Au-

tomation Magazine, IEEE, Vol. 6, Issue 4, pages 32-37. IEEE Press, Dec 1999.

[3] I. Burleigh. VIGO. http://pages.cpsc.ucalgary.ca/˜burleigh, 2004.

[4] P. Callahan. Wonders of Math - The Game of Life. The World of Math Online

Math.com, http://www.math.com/students/wonders/life/life.html, 2005.

[5] R. Dawkins. The Blind Watchmaker. Longman Scientific and Technical, Harlow,

1987.

[6] K. Dejong. An Analysis of the Behaviour of a Class of Genetic Adaptive Systems.

PhD Thesis, University of Michigan, 1975.

[7] J.-L. Deneubourg. Application de l‘ordre par Fluctuations à la Description de Cer-

tains étapes de la Construction du nid chez les Termites. Insect. Soc. 24, pages

117-130, 1977.

[8] M. d’Inverno and M. Luck. Understanding Agent Systems. Springer-Verlag, Berlin,

Heidelberg, 2001.

[9] I. Ravn (ed). Chaos, Quarks und schwarze Löcher: Das ABC der neuen Wis-

senschaften. Verlag Antje Kunstmann, München, 1995.

[10] J. Crowther (ed). Oxford Advanced Learner’s Dictionary of Current English, Fifth

Edition. Oxford University Press, 1995.

68

Bibliography

[11] Bentley et al. New Trends in Evolutionary Computation. In Proceedings of

CEC 2001, the Congress on Evolutionary Computation, Seoul, Korea.pp. 162-169.

RN/00/68. IEEE Press, May 27-30, 2001.

[12] E. Bonabeau et al. Swarm Intelligence: From Natural to Artificial Systems. Oxford

University Press, New York, Oxford, 1999.

[13] I. Burleigh et al. DNA in Action! A 3D Swarm-based Model of a Gene Regula-

tory System. In: Proceedings of the First Australian Conference on Artificial Life.

Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, 2003.

[14] Wright et al. Implicit Parallelism. In Proceedings of GECCO 2003 (Lecture Notes

in Computer Science, vols 2723-2724), E. Cantu-Paz (eds). Springer-Verlag, Berlin,

Heidelberg, 2003.

[15] G.W. Flake. The Computational Beauty of Nature: Computer Explorations of Frac-

tals, Chaos, Complex Systems, and Adaption. A Bradford Book, The MIT Press,

Cambridge, Massachusetts, London, England, 1999.

[16] D. Fogel. Blondie 24: Playing At The Edge of AI. Morgan Kaufmann, 1999.

[17] J. Holland. Adaption in Natural and Artificial Systems. Uiversity of Michigan Press,

Ann Arbor, Michigan, 1975.

[18] C. Jacob. Illustrating Evolutionary Computation with Mathematica. Morgan Kauf-

mann, San Francisco, 2001.

[19] C. Jacob. IEC web site. http://pages.cpsc.ucalgary.ca/˜jacob/IEC, 2004.

[20] E. Klavins. Toward the control of self-assembling systems. In A. Bicchi, H. Chris-

tensen, and D. Prattichizzo, editors, Control Problems in Robotics, volume 4 of

Springer Tracts in Advanced Robotics, pages 153–168. Springer, 2003.

[21] J. Klein. Breve Website. http://www.spiderland.org/breve, 2004.

[22] H. Kwong. Evolutionary Design of Implicit Surfaces and Swarm Dynamics Master

Thesis. University of Calgary, 2003.

69

Bibliography

[23] H. Kwong and C. Jacob. Evolutionary exploration of dynamic swarm behaviour.

In Congress on Evolutionary Computation, Canberra, Australia, 2003.

[24] C.P. Lieckfeld. Ästethik. In Bionik: Natur als Vorbild. Pro Futura Verlag GmbH,

München, 1993.

[25] S. Mandl and H. Stoyan. Evolution of Agent Coordination in an Asynchronous

Version of the Predator-Prey Pursuit Game. In Lindemann et. al., editor, MATES

2004 (Multiagent System Technologies Erfurt 29.9.2004 - 30.9.2004), Bd. LNAI

3187, p. 47-57. Springer-Verlag, Berlin, Heidelberg, 2004.

[26] M. Minsky. The Society of Mind. Simon and Schuster, Inc., New York, 1988.

[27] T. M. Mitchell. Machine Learning. McGraw Hill, Boston, Massachusettes, 1997.

[28] I.C. Parmee. Evolutionary and Adaptive Computing in Engineering Design.

Springer-Verlag, London, Berlin, Heidelberg, 2001.

[29] M.L. Pilat. Wasp-Inspired Construction Algorithms. http://www.pilat.org/, Uni-

versity of Calgary, May 1, 2004.

[30] C.W. Reynolds. Flocks, Herds, and Schools: A Distributed Behavioral Model. In

Computer Graphics, 21(4) (SIGGRAPH ’87 Conference Proceedings) pages 25-34,

1987.

[31] K. Richter and J.-M. Rost. Komplexe Systeme. Fischer Taschenbuch Verlag, Frank-

furt am Main, 2002.

[32] R. Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag Berlin

Heidelberg, 1996.

[33] P.T. Saunders and M.W. Ho. Thermodynamics and Complex Systems. In C.W.

Kilmister, editor, Diseuqilibrium and Self-Organisation, pages 243-253. D. Reidel

Publishing Company, Dordrecht, Holland, 1986.

[34] K. Sims. Artificial Evolution for Computer Graphics. In Proceedings of the 18th

annual conference on Computer graphics and interactive techniques, pages 319-328.

ACM Press, New York, USA, 1991.

70

Bibliography

[35] L. Spector and J. Klein. Evolutionary Dynamics Discovered via Visualization in

the Breve Simulation Environment. In Artificial Life VIII, Reading, MA. Addison-

Wesley, 2002.

[36] D. Thomas. Aesthetic Selection of Developmental Art Forms. In Artificial Life

VIII. The 8th International Conference on the Simulation and Synthesis of Living

Systems, Sydney, Australia, pages 157-163. MIT Press, Cambridge, December 9-15,

2002.

[37] Trolltech. Qt is a C++ toolkit for multiplatform GUI & application development.

http://www.trolltech.com/qt/, 2003.

[38] E.W. Weisstein. Langton’s Ant. From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/LangtonsAnt.html, 1999.

[39] T. Whitelaw. Breeding Aesthetic Objects: Art and Artificial Evolution. In Cre-

ative evolutionary systems, Section: Evolutionary creativity, pages 129-145. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[40] The free encyclopedia Wikipedia. Aesthetics in Art. Aesthetics in Architecture.

http://en.wikipedia.org/wiki/Aesthetics, 7 Jan 2005.

71

