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Abstract— We recently introduced swarm grammars as an
extension of Lindenmayer systems to model dynamic growth
processes in 3D space, with a large number of interacting
(swarm) agents. Grammatical rewrite rules define different
types of swarm agents and their evolution over time. Sets of
parameters determine specific interaction behaviors among the
generated swarms.

As we will show, swarm grammars lend themselves to
creating an ecology of interacting entities and dynamic struc-
tures that are built by a multitude of agents. In addition to
a rather traditional approach of evolving swarm grammars
through interactive genetic programming, we explore new ways
of designing ecologies of swarm agents by immersing the
breeder into the growth and evolution processes. The system
designer takes on the role of a ‘tinkerer’ or ‘gardener’, who is
equipped with tools to influence and shape the on-going growth,
evolutionary, and other dynamic processes within the swarm
grammar ecology. Spatial genetic operators can be directed to
specific locations within the evolving swarms. This enables the
breeder to overview large numbers of phenotypic developmental
processes and implicitly direct their evolution.

I. INTRODUCTION: A GARDEN OF SWARMS

Evolution in nature is a competitive and distributed pro-
cess. Agents have to compete for resources to secure their
survival. Natural evolution also occurs in physical space,
that is organisms as well as developmental and evolutionary
processes are constrained by physical laws. Furthermore,
evolution utilizes physical properties which naturally con-
strain the number of possible solutions. Our Swarm Grammar
(SG) system incorporates several of these factors. The co-
evolutionary SG system works with a multitude of agents,
which we subdivide into swarms that exhibit certain prop-
erties shared by specific types of agents [1]. The swarming
agents act as self-organizing builders that compose three-
dimensional structures, while they are interacting with each
other, similar to termites or ants building their nests [2].
This creates the scenario of an emergent garden ecology
[3], in which a gardener arranges plants, takes care of them,
and breeds or re-seeds plants over time. The ecology has
its own dynamics, dependent on the physical properties of
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the simulated world and determined by the swarm agents’
attributes, such as speed, interaction dynamics, or separation
and cohesion urges. Consequently, the breeder or designer is
not in complete control of the overall evolutionary dynamics
(which structures are built and where?), but can influence
both the interaction processes as well as the evolutionary
processes at any time and any location within the ecology.
This is not unlike PolyWorld, a co-evolutionary virtual 2D
world, in which agents, controlled by neural networks, evolve
[4].

Parallel rewrite systems as a grammatical paradigm pro-
vide beneficial models to study and capture the formation of
complex systems [5]. We specify agent interactions through
swarm grammars [6] that are an extension of Lindenmayer
systems [7], [8], which incorporate aspects of developmental
design and morphogenesis. Both the rewrite rules and agent
parameters are evolvable over time and help to breed struc-
tures in 3D space.

II. RELATED WORK

Our Swarm Grammar approach incorporates principles
of morphogenesis, multi-agent systems, co-evolution, and
interactive design. Therefore, we give a brief overview of
related work in these respective areas.

A. Design through Development

Embryogenic and developmental approaches have been
investigated for some time in the context of how designs
can be grown instead of built [9], or how growth processes
facilitate evolution [10]. The creativity that is facilitated by
evolutionary systems to create forms and functional designs
[11], [12] has led to interesting bridges between simulated
design worlds and the automated manufacturing of physical
and functional objects [13], [14]. None of these approaches
has employed swarm intelligence to create designs such as
in [6].

B. Design through Multi-agents

More recently, promising multi-agent systems have been
investigated to build and evolve virtual organisms [15]. It
has also been shown that swarms of agents can be evolved
to perform sorting tasks by arranging similar objects into
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SLa = {A, {A → BBB,B → A}} SLb = {N, {N → NN}} SLc = {I, {I → I}}

(a) (b) (c)
Fig. 1. Swarm Grammar agents interacting with their environment and their corresponding swarm rewrite systems. (a) 243 agents building a tree-like
structure. All agents—which are visualized as pyramidal shapes at the branch tips—have an upward urge, but B-agents repel from each other, which creates
the bushy crown. (b) A similar set of swarm grammar agents is forced to climb up a wall. Once the agents reach to the top of the wall, they are drawn
towards a fixed point above and behind the wall. The small flock of agents is visible just ahead of the top branches. (c) Agents are attracted towards a
rotating ‘sun’ object, which makes them follow a spiral during their upward path. The structure on the right is constructed by a single agent, whereas the
left structure involves 20 agents which are repelling from each other.

clusters [16], [17], [18]. Evolutionary algorithms have been
used to breed swarms of agents that display choreographed
dynamics [19] or build structures in 3D space [20]. Similar
reconstruction algorithms for 3D objects were also imple-
mented with models of honey bees [21]. Computational
models that combine morphogenesis and multi-agents show
interesting analogies to ebryogenetic processes in fruit flies
[22]. Many evolutionary multi-agent systems exploit cooper-
ation or competition in a coevolutionary environment, such
as [23].

C. Interactive Evolution
Design is an iterative process. Human design, in particular,

is an interactive process. Consequently, different techniques
for engaging a system-external designer or evaluator into
evolutionary computing have been studied. One of the early
examples involves interactive evolution of procedural mod-
els for the creation of pictures and textures in computer
graphics [24]. Especially interesting results were obtained
with interactive techniques in the reproduction and analysis
of natural evolutionary processes [25], [26]. A more formal
representation of interactive evolution was proposed even
before interactive evolutionary methodologies became more
applicable due to the faster processing power of desktop com-
puters [27]. Today, interactive evolutionary techniques are
starting to become more sophisticated by applying machine
learning techniques to adjust to user input and preferences
[28].

D. Developmental Modeling and Lindenmayer-Systems
Our swarm grammars are extensions of Lindenmayer

systems (L-systems) [8], which—quite successfully—have

been used for the grammatical encoding of growth processes
and generation of structures in two- and three-dimensional
space. Plants have been modeled extensively with L-systems
[29], [30], including simulated plants that interact with
their environment [31], [32], [33]. Original work in genetic
programming of L-systems [34], [35], [36] has led to several
platforms for L-system evolution [37], [38], [39] and the
breeding of virtual plants in a coevolutionary scenario, which
even displays competitive arms-race situations [40]. Beyond
plants, L-systems have also been used to evolve virtual
creatures and their control networks [41], [42] and for the
reconstruction of retina and blood vessel structures [43], [44]

III. SWARM GRAMMARS

Following our previous work on swarm-based simulations
[45], [6] and evolutionary swarms [19], we define a swarm
grammar (SG) system as composed of two parts [6]: (1) a set
of rewrite rules, which determine the composition of agent
types over time, and (2) a set of agent specifications, which
define agent-type specific parameters that govern the agents’
interactions.

A. SG Rewrite Rules

A swarm grammar system SG = (SL, ∆) consists of a
rewrite system SL = (α, P ) and a set of agent specifications
∆ = {∆a1 ,∆a2 , ...,∆an

} for n types of agents ai. The
rewrite system SL is a probabilistic L-system with axiom
α and production rules P , as described in [38], [8]. In the
simplest form of context-free 0L-systems, each rule has the
form p

θ→ s, where p ∈ Ω is a single symbol over an alphabet
Ω, and s ∈ Ω∗ is either the empty symbol (λ) or a word over



Ω. The replacement rule is applied with probability θ. Each
agent ai is characterized by a set of attributes, ∆ai

, which
can include its geometrical shape, color, mass, vision range,
radius of perception and other parameters such as separation
or cohesion urges that determine its overall dynamics and
interaction behavior as outlined in Table I.

B. Controlling the Swarm Agents’ Interactions

Graphically, a swarm agent is represented as a pyramid
with its tip pointing in the direction of the agent’s velocity
vector (Fig. 1). Each agent is only aware of other flock mates
(its neighbors) within its radial field of perception which is
defined by a radius (r) and an angle (β). The velocity of an
agent is constantly updated with an acceleration vector Vacc

according to a simple ‘boids’ model [46]:

Vacc = c1V1(d) + c2V2 + c3V3 + c4V4 + c5V5. (1)

Agents change their direction and adjusts their speed
according to three influential factors: (1) separation (V1(d)),
where an agent steers away from the collective of neighbors,
given the minimum distance to other agents is smaller than
a crowding radius d [19]; (2) cohesion (V2), where the agent
moves toward the average position of local flock mates; and
(3) alignment (V3), where the agent is oriented toward the
average direction of its neighbors.

Vector V4 points to the center of the simulated 3D world
and V5 represents a random unit-length vector to add some
noise. The weights c1, ..., c5 determine how much influence
each factor has on the agent. Each of these ‘urges’ is specified
for an agent type as part of a swarm grammar. An agent stops
applying the SL-system rules when it runs out of energy.
Energy levels are inherited through replication.

The energy level also influences certain properties of the
built 3D structures such as, for example, their size. The type
of a swarm individual determines the visual representations
of the construction elements it can leave behind on its
journey through the simulated 3D scenario 1. Several values
characterize these building blocks: each scaled cylindrical
object is placed in space at an agent’s location after the
swarm has flown for a certain number of iterations. The
shorter these intervals are, the smoother the appearance of the
emerging construction. The color and the numbers of edges
define the design of the cylindrical shapes I.

For example, a swarm grammar SGa = (SLa,∆a) with

SLa = (α = A,P = {A → BBB,B → A}), (2)
∆a = {∆A,∆B} (3)

will generate a sequence of swarm composition strings A,
BBB, AAA, BBBBBBBBB, etc. At each iteration step,
either each type-A agent is replicated into three B agents,
or agents change from type B to type A. If A agents have
no separation urge (c1 = 0), and B-type agents do separate
(c1 = 1.0), the generated swarm of agents creates a tree-
like structure as in Figure 1(a). Note that here and in the

following examples we assume θ = 1, that is a matching
rule is always applied.

Each step of applying the production rules (in parallel)
represents a decision point for all agents within the system.
Contrary to L-systems [8], where only a single ‘turtle’ is
used to interpret a string, we employ a swarm of interacting
agents. Neither do we need to add navigational commands for
the turtles within the grammar strings, as the swarm agents
navigate by themselves, determined by the agent specifica-
tions as part of the SG system. More detailed examples of
swarm grammar rewriting are given in [6].

TABLE I
PARAMETER RANGES FOR A SWARM INDIVIDUAL

Symbol Variable Min Max
r Perception field radius 50 150
β Perception field angle 2 6.28

—
wx,y,z x-y-z world center coordinates -1000 1000

c1, c2, c3 separation, cohesion, alignment -2 2
c4, c5 world center attraction, noise 0 1
Vmax Maximum velocity 0 25
Amax Maximum acceleration 0 40

—
Ie Energy loss per iteration 0 0.25
Ib Iterations until branching 20 150
Id Iterations until drawing 15 30

Colr,g,b Color range (for each r, g and b) 0 1

CylE Number of cylinder edges 3 13
CylS Cylinder scaling 0 2

IV. GENETIC SWARM GRAMMAR PROGRAMMING

Combining swarm systems with evolutionary computing
has to our knowledge only been considered in the context of
particle swarm optimization (e.g., [47], [48]). Emergence of
collective behavior has been investigated for agents within
a three-dimensional, static world [49], but this did not
involve interactive evolution. Our Genetic Swarm Grammar
Programming approach incorporates both interactive, user-
guided evolution as well as the utilization of emergent
properties from interactions of a large number of agents.

We will first describe the GP data structures to implement
swarm grammars and their associated swarm agents. We
introduce new spatial genetic operators through which a
designer or breeder can interactively direct the emergent and
evolutionary processes within a swarm simulation.

A. Swarm Grammar Genotypes and Genetic Operators

The rewrite rules and agent parameters are represented as
symbolic expressions, so that GP can be used to evolve both
the set of rules as well as any agent attributes. This follows
our EVOLVICA framework [38], where all rewrite rules and
agent parameters are encoded as symbolic expressions [19].
For the examples we present here, only context-free rules
with a maximum string length of three (|s| = 3) are applied.
We allow at most five rules and up to three different types



(a) (b)
Fig. 2. Standard Interactive Evolution: (a) The concept of interactive evolution with manual fitness assignment. The phenotypes (p0 to pn) are computed
separately, manually inspected, and rated. The assigned fitness values determine the selection probabilities of the genetic operators: mutation and crossover.
Arrows illustrate the flow of information. Dashed lines represent visual inspection. (b) The Inspirica user interface helps to evolve swarm grammars. All
windows display the construction process as it occurs. All designs are true objects in 3D space, hence can be rotated, zoomed and inspected in various
ways. After assessment of the presented (twelve) structures, the swarm designer assigns fitness values between 0 and 10 to each solution, and proceeds to
the next generation.

(a) (b) (c) (d)
Fig. 3. Examples of Evolved Swarm Grammar Phenotypes: (a) Pointy yet smooth nodes connect with long thin branches. (b) A flower-like structure
created by a single mutation. (c) Spinning and whirling groups of swarm agents create a woven 3D pattern. (d) An organismic structure with growing tips.

of swarm individuals per SG-genotype. Each agent type is
described by the coefficients listed in Table I.

In the context of this paper standard GP tree-crossover and
subtree mutations are the only genetic operators used [38].
The replication of an agent (as determined by the grammar)
and its associated constructions cease as soon as a swarm
agent runs out of energy. Since the energy level of an agent
is linked with the radius of the built cylindrical shape, the
structures tend to look like naturally grown, with smaller
tips at the ends. If the agents’ energy loss, Ie, is very low,
however, the radii of the cylindrical objects hardly decrease.
Since the energy level is one possible termination criterion,
constructions that keep their radii approximately constant
often appear in tandem with vivid growth. These effects are
illustrated in Figures 1 and 3.

B. Interactive Breeding of Swarm Grammars

We use an extension of Inspirica [6], one of our evolution-
ary design tools, to explore the potential of the described
swarm grammar systems. Following a standard interactive
evolutionary approach, as outlined in Figure 2, one can
easily—within only a few generations—create structures as
illustrated in Figure 3.

V. IMMERSIVE EVOLUTION

In the previous example phenotypes are grown in separate
spaces whereas the subsequent fitness assignment is realized
through a two-dimensional user interface. The isolated swarm
grammar phenotypes, as depicted in Figure 2, are completely
independent of each other, that is there is no interaction
among the growing structures of different swarm grammars.



(a) (b) (c)
Fig. 4. Immersive Evolution: (a) An immersive evolutionary environment integrates the computation of the phenotypes (p0 to pn, etc.) as well as the
evolutionary manipulation of the underlying genotypes. Arrows depict the flow of genetic material, induced by spatial breeding operators. (b) A breeder
volume that encloses several swarm grammar agents can manipulate the agents’ properties and induce mutation operations. (c) Previously enclosed agents
from (b) remain associated with the breeder volume. This relationship is visualized by the connecting lines.

In a co-existing and co-evolutionary setup, encountered phe-
notypes can be the result of massive interactions of swarm
agents. On the other hand, one can identify robust swarm
grammars that generate stable phenotypes whether they are
isolated or put into highly populated environments.

A. Spatial Breeding Operators

Our user interface to an immersive evolutionary scenario
integrates two purposes: visual representation and intuitive
manipulation by an external breeder or designer. The visual-
ization interface enables the moving, rotating, and zooming
of the camera, or the saving and restoring of specific views
and scenario settings. Most of these procedures are already
incorporated in the agent software environment BREVE
which we use as our display and simulation engine [49]. In
addition to aspects of visualization, the supervising breeder is
equipped with tools to select, group, copy, and move swarm
grammar agents, thus being able to influence the course of
evolution within the emerging scenario. The set of possible
manipulations also includes mutation and crossover operators
to manually trigger changes of the genotypes that encode the
swarm grammar rules and the agent parameters.

We facilitate the selection and manipulation of swarm indi-
viduals in three-dimensional space through breeder volumes
as illustrated in Figure 4. Swarm agents that pass through a
volume (a sphere in this case) can be influenced in various
ways. We use breeder volumes for the crossover and mutation
operators, for moving and copying swarm agents, and for
boosting their energy levels. Analogous to the watering
of plants fitness evaluations are only given implicitly by
providing more energy to selected groups of agents.

B. The Swarm Grammar Gardener

Figure 5 illustrates how a breeder can influence the emerg-
ing building processes within an simple ecology of swarms.
In Figure 5(a) two swarm agents have built a cylindrical
structure with a side branch. Both agents, which have run out
of energy, are still visible at the top left and to the right of this
construction. In the next step (Fig. 5(b)) a breeder sphere is

introduced so that it encloses the agent on the right. Through
a contextual menu, this agent is ‘revived’ by replenishing its
energy reservoir. Subsequently, the agent resumes its building
process, generates an additional side branch and extends the
overall structure further to the right (Fig. 5(c)). A similar
procedure is applied to the agent on the left. It is captured
by the breeder sphere and triggered to replicate, i.e., make
copies of itself, and resume construction (Fig. 5(d)). This
generates further expansions of the structures (Fig. 5(e))
and—after further energy boosts (Fig. 5(f))—results in the
structure depicted in Figure 5(g). The pattern continues to
grow until the agents run again out of energy.

This is only a simple example of how external manipula-
tion by a breeder (the ‘gardener’) can influence the agent
behaviors, the building or developmental processes, and
their evolution as agents can change their respective control
parameters during replication. Agents of a specific type share
a swarm grammar, but agent groups can be copied as well, so
that they inherit a new copy of their own swarm grammar,
which may also evolve over time—either automatically or
through direct influence from the gardener. Figure 6 gives
a few examples of evolved swarm grammar ecologies and
extracted structures at different stages during their evolution.

VI. CONCLUSION AND FUTURE WORK

We presented Swarm Grammars as an extension of Lin-
denmayer systems. Instead of applying a single (‘turtle’)
agent to convert linear strings into 3D structures, we use
a swarm of agents which navigate in 3D space and—as
a side effect—place structural building blocks. The swarm
grammars are used to specify how the setup of agent types
changes over time. Additional agent parameters determine
the agents’ behaviors and their interaction dynamics. Both
the grammar rules and the agent parameters are evolvable and
can change over time—either automatically at replication and
collision events among the agents, or triggered by external
‘tinkering’ from a supervising breeder.

Construction tasks like the ones illustrated here are, of
course, only one example of what swarm agents can do,
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Fig. 5. Illustration of Interactive Manipulation of Swarm Grammar Agents by an External Breeder. (a) Two agents create an initial structure. (b) A breeder
sphere locally infuses energy. (c) Further growth is initiated by the additional energy. (d-e) Replication of an agent triggers further parallel construction.
(f-g) Expansion of the structure is continued after another energy influx.

where we utilize their interaction dynamics to generate
structural forms in virtual 3D space. Swarm grammar agents
can also be used to investigate and evolve other dynamic
processes, such as in gene regulatory processes [45], [50],
immune system interactions [51], swarm behavior choreogra-
phies [19], or in interactive swarmart installations [52].

Further investigations into and expansions of our swarm
grammar system will help us to improve the breeder user
interfaces and create an efficient evolutionary design system
that can be distributed onto computer clusters, which we
will utilize for artistic design as well as for evolutionary

exploration of swarm phenomena.
Up-to-date details about swarm grammars and

other agent-based simulation examples from our
Evolutionary & Swarm Design Lab can be found at:
http://www.swarm-design.org.
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Fig. 6. Collage of Designs Generated by Swarm Grammars. The figure in the centre illustrates a swarm grammar garden ecology, within which the
surrounding designs were created.
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