The Evolution of Swarm Grammars—
Growing Trees, Crafting Art and Bottom-Up Design

Sebastian von Mammen
Dept. of Computer Science

University of Calgary
Calgary, Alberta T2N 1N4 Canada
Email: s.vonmammen@ucalgary.ca

Abstract— We recently introduced swarm grammars (SGs) as
an extension of Lindenmayer systems to model dynamic growth
processes in 3D space through a large number of interacting
(swarm) agents. Grammatical rewrite rules define different
types of agents and their evolution over time. Sets of parameters
determine specific interaction behaviors among the generated
swarms.

As we will show, swarm grammars lend themselves to
creating an ecology of interacting entities and dynamic struc-
tures that are built by a multitude of agents. We will give
examples of applications of swarm grammar structures in art
and architecture.

In order to breed productive swarm grammars, we rely on
three different approaches of genetic programming. First, a
rather traditional approach of interactive genetic programming.
Second, an immersive approach in which the designer takes on
the role of a ‘gardener’, who is equipped with tools to influence
and shape the on-going growth of SGs. Third, an automatically
driven evolution that aims at the emergence of complex building
processes.

I. INTRODUCTION

Parallel rewrite systems as a grammatical paradigm pro-
vide beneficial models to study and capture the formation of
complex systems [1]. We specify agent interactions through
swarm grammars [2] that are an extension of Lindenmayer
systems [3], [4], which incorporate aspects of developmental
design and morphogenesis. Both the rewrite rules and agent
parameters are evolvable over time and help to breed struc-
tures in 3D space.

Evolution in nature is a competitive and distributed pro-
cess. Agents have to compete for resources to secure their
survival. Natural evolution also occurs in physical space,
that is organisms as well as developmental and evolutionary
processes are constrained by physical laws. Furthermore,
evolution utilizes physical properties which naturally con-
strain the number of possible solutions. Our swarm grammar
(SG) system incorporates several physical factors. However,
instead of following the idea of an open-ended evolution, we
drive evolutionary processes either manually to foster certain

Christian Jacob is a faculty member in the Department of Com-
puter Science and the Department of Biochemistry & Molecular Biology,
University of Calgary, Calgary, Alberta, T2N IN4, Canada (email: cja-
cob@ucalgary.ca).

Sebastian von Mammen is a Ph.D. student in the Department of Computer
Science, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.

author's copy

Christian Jacob
Dept. of Computer Science
Dept. of Biochemistry & Molecular Biology
University of Calgary
Calgary, Alberta T2N 1N4 Canada
Email: cjacob@ucalgary.ca

aesthetic features or automatically, if specific properties of
the emerging structures are desired. In the long run we want
to merge both approaches in order to breed aesthetically
pleasing and equally useful swarm grammar structures [2],
[51-(8]

In this article we describe three separately implemented
breeding technologies of SGs, namely (1) interactive, (2)
immersive and (3) automatic evolution. All of which have
given rise to innovative constructions created for artistic as
well as for architectural purposes.

During the traditional interactive processes a breeder rates
a small population of SGs in accordance with his/her aes-
thetic impression, thereby guiding the course of evolution.
The swarming agents act as self-organizing builders that
compose three-dimensional structures, while they are inter-
acting with each other, similar to termites or ants building
their nests [9], [10]. The SG constructions grow in isolated
virtual spaces so that no inter-species interactions take place.

The immersive breeding approach is realized in a co-
evolutionary SG system that works with a multitude of
agents, which we subdivide into swarms that exhibit certain
properties shared by specific types of agents [11]. This
creates the scenario of an emergent garden ecology, in which
a gardener may arrange plants, takes care of them, and
breed or re-seed plants over time. The ecology has its own
dynamics, dependent on the physical properties of the simu-
lated world and determined by the swarm agents’ attributes,
such as their speed, interaction dynamics, or separation and
cohesion urges. Consequently, the breeder or designer is not
in complete control of the overall evolutionary dynamics
(which structures are built and where?), but can influence
both the interaction processes as well as the evolutionary
processes at any time and any location within the ecology.
This is not unlike PolyWorld, a co-evolutionary virtual 2D
world, in which agents, controlled by neural networks, evolve
[12]. However, PolyWorld is a closed-world ecology, without
any interactive external breeder.

The dynamic processes of construction as well as the final
construction products of SGs can be observed and quantified,
from which comparison measures can be derived. Upon
the successful determination of such criteria, an automatic
evolutionary process can be initiated to yield diverse, yet

well-constrained SG structures.

After an overview of related work and a formal description
of swarm grammars, we will discuss the three outlined
breeding approaches. Finally, we will provide samples of
successfully bred SG constructions for art and architecture.

II. RELATED WORK

Our swarm grammar approach incorporates principles of
morphogenesis, multi-agent systems, co-evolution, and inter-
active design. Therefore, we give a brief overview of related
work in these respective areas.

A. Design through Development

Embryogenic and developmental approaches have been
investigated for some time in the context of how designs
can be grown instead of built [13], or how growth processes
facilitate evolution [14]. The creativity that is facilitated
by evolutionary systems to generate forms and functional
designs [15]-[17] has led to interesting bridges between
simulated design worlds and the automated manufacturing
of physical and functional objects [18]—[20].

B. Design through Multi-agent Systems

Recently, promising multi-agent systems have been inves-
tigated to build and evolve virtual organisms [21] and em-
bryogenic processes [22]. As an analogy to natural swarms,
like ant colonies or schools of fish, systems of spatially
interacting agents are often referred to as artificial swarms.
Often, artificial swarms are associated with heuristic, parallel
but neighborhood-dependend optimization methods (e.g. par-
ticle swarm optimization [23]). Such swarm models support
construction and design tasks especially if their objectives are
precisely phrased, as in the geometrical place problem [24],
or shape optimization tasks [25]. However, none of these
approaches has employed swarm intelligence to promote
creative designs such as in [2].

It has also been shown that swarms of agents can be
evolved to perform sorting tasks by arranging similar objects
into clusters [26]-[28]. Evolutionary algorithms have been
used to breed swarms of agents that display choreographed
dynamics [29] or build structures in 3D space [30]. Similar
reconstruction algorithms for 3D objects were also imple-
mented with models of honey bees [31]. Computational
models that combine morphogenesis and multi-agents show
interesting analogies to embryogenetic processes in fruit
flies [32]. Many evolutionary multi-agent systems exploit
cooperation or competition in a coevolutionary environment,
such as [33].

C. Interactive Evolution

Design is an iterative process. Human design, in particular,
is an interactive process. Consequently, different techniques
for engaging a system-external designer or evaluator into
evolutionary computing have been studied. One of the early
examples involves interactive evolution of procedural mod-
els for the creation of pictures and textures in computer
graphics [34]. Especially interesting results were obtained

with interactive techniques in the reproduction and analysis
of natural evolutionary processes [35], [36]. A more formal
representation of interactive evolution was proposed even
before interactive evolutionary methodologies became more
applicable due to the faster processing power of desktop com-
puters [37]. Today, interactive evolutionary techniques are
starting to become more sophisticated by applying machine
learning techniques to adjust to user input and preferences
[38].

D. Developmental Modeling and Lindenmayer-Systems

Our swarm grammars are extensions of Lindenmayer
systems (L-systems) [4], which—quite successfully—have
been used for the grammatical encoding of growth processes
and generation of structures in two- and three-dimensional
space. Plants have been modeled extensively with L-systems
[39], [40], including simulated plants that interact with their
environment [41]-[43]. Original work in genetic program-
ming of L-systems [44]-[46] has led to several platforms
for L-system evolution [47]-[49] and the breeding of virtual
plants in a coevolutionary scenario, which even displays
competitive arms-race situations [50]. Beyond plants, L-
systems have also been used to evolve virtual creatures and
their control networks [51], [52] and for the reconstruction
of retina and blood vessel structures [53], [54]

III. SWARM GRAMMARS

Following our previous work on swarm-based simulations
[2], [55] and evolutionary swarms [29], we define a swarm
grammar (SG) system as composed of two parts: (1) a set
of rewrite rules, which determine the composition of agent
types over time, and (2) a set of agent specifications, which
define agent-type specific parameters that govern the agents’
interactions.

A. Swarm Grammar Rewrite Rules

A swarm grammar system SG = (SL,A) consists of a
rewrite system SL = («, P) and a set of agent specifications
A = {Ay,, Aoy, Ay, } for n types of agents a;. The
rewrite system SL is a probabilistic L-system with axiom «
and production rules P, as described in [4] and [48]. In the
simplest form of context-free 0L-systems, each rule has the
form p LA s, where p € € is a single symbol over an alphabet
Q, and s € Q* is either the empty symbol (\) or a word over
Q). The replacement rule is applied with probability 6. Each
agent a, is characterized by a set of attributes, A,,, which
can include its geometrical shape, color, mass, vision range,
radius of perception and other parameters such as separation
or cohesion urges that determine its overall dynamics and
interaction behavior as outlined in Table I.

B. Controlling the Swarm Agents’ Interactions

Graphically, a swarm agent is represented as a pyramid
with its tip pointing in the direction of the agent’s velocity
vector (Fig. 1). Each agent is only aware of other flock mates

TABLE 1
PARAMETER RANGES FOR A SWARM INDIVIDUAL

[Symbol] Variable [Min [Max |
I Perception field radius 50 150
B Perception field angle 2 6.28
We,y,z z-y-z world center coordinates -1000 1000
c1,c2,C3 separation, cohesion, alignment -2 2
cq4,cCh world center attraction, noise 0 1
Vimaz Maximum velocity 0 25
Amazx Maximum acceleration 0 40
I Energy loss per iteration 0 0.25
Iy Iterations until branching 20 150
I Iterations until drawing 15 30
Coly g.b Color range (for each r, g and b) 0 1
Cylg Number of cylinder edges 3 13
Cylg Cylinder scaling 0 2

Fig. 1. The swarm agents are represented as pyramidal cones oriented
towards their velocity.

(its neighbors) within its radial field of perception which is
defined by a radius (r) and an angle (3). The velocity of an
agent is constantly updated with an acceleration vector V.
according to a simple ‘boids’ model [56]:

Vacc :Cl‘/l(d)+62‘/2+63%+64‘/21+05‘/5. (1)

Agents change their direction and adjust their speed ac-
cording to three influential factors: (1) separation (V1(d)),
where an agent steers away from the collective of neighbors,
given the minimum distance to other agents is smaller than
a crowding radius d [29]; (2) cohesion (V2), where the agent
moves toward the average position of local flock mates; and
(3) alignment (V3), where the agent is oriented toward the
average direction of its neighbors.

Vector Vy points to the center of the simulated 3D world
and V5 represents a random unit-length vector to add some
noise. The weights ¢, ..., c5 determine how much influence
each factor has on the agent. Each of these ‘urges’, c;, is
specified for an agent type as part of a swarm grammar (Table
I). An agent stops applying the S L-system rules when it runs
out of energy. Energy levels are inherited through replication.

The energy level also influences certain properties of the
built 3D structures such as, for example, their size. The type
of a swarm individual determines the visual representations
of the construction elements it can leave behind on its journey
through the simulated 3D scenario as illustrated in Figure 2.

Several values characterize these construction elements or
building blocks: each scaled cylindrical object is placed in
space at an agent’s location after the swarm has flown for a
certain number of iterations. The shorter these intervals I
are, the smoother the appearance of the emerging construc-
tion. The color and the numbers of edges define the design
of the cylindrical shapes (Table I).

For example, a swarm grammar SG, = (SL,, A,) with

SL,
A, =

(a=A,P={A— BBB,B— A}), (2
{A4,AB} 3)

will generate a sequence of swarm composition strings A,
BBB, AAA, BBBBBBBBB, etc. At each iteration step,
either each type-A agent is replicated into three B agents,
or agents change from type B to type A. If A agents have
no separation urge (c; = 0), and B-type agents do separate
(c1 = 1.0), the generated swarm of agents creates a tree-
like structure as in Figure 2(a). Note that here and in the
following examples we assume 6 = 1, that is a matching
rule is always applied.

In particular, Figure 2(a) displays 243 agents—which are
visualized as pyramidal shapes at the branch tips. Both
occurring agent types A and B have an upward urge, but since
B-agents repel from each other, a bushy crown is emerging.
Figure 2(b) shows a similar set of swarm grammar agents that
is forced to climb up a wall. Once the agents reach to the
top of the wall, they are drawn towards a fixed point above
and behind the wall. The small flock of agents is visible just
ahead of the top branches. In Figure 2(c) agents are attracted
towards a rotating ‘sun’ object, which makes them follow a
spiral during their upward path. The structure on the right
is constructed by a single agent, whereas the left structure
involves 20 agents which are repelling from each other.

Each step of applying the production rules (in parallel)
represents a decision point for all agents within the system.
Contrary to L-systems [4], where only a single ‘turtle’ is
used to interpret a string, we employ a swarm of interacting
agents. Neither do we need to add navigational commands
for the turtles within the grammar strings, because the swarm
agents navigate by themselves, determined by the agent
specifications as part of the SG system. More detailed ex-
amples of swarm grammar rewriting that demonstrate further
application aspects are given in [2].

IV. INTERACTIVE GENETIC SWARM GRAMMAR
PROGRAMMING

Combining swarm systems with evolutionary computing
has to our knowledge only been considered in the context
of particle swarm optimization (e.g., [57], [58]) and in
swarm-based music generating systems (e.g. [59], [60]).
Emergence of collective behavior has been investigated for

oy :
SL, = {A,{A

— BB, B — A}}
(a)

Fig. 2.

agents within a three-dimensional, static world [61], but this
did not involve interactive evolution. Our Genetic Swarm
Grammar Programming (GSGP) approach incorporates both
interactive, user-guided evolution as well as the utilization of
emergent properties from interactions of a large number of
agents.

The rewrite rules and agent parameters are represented as
symbolic expressions, so that GP can be used to evolve both
the set of rules as well as any agent attributes. This follows
our framework for evolutionary programming EVOLVICA
[48], where all rewrite rules and agent parameters are en-
coded as symbolic expressions [29]. For the examples we
present here, only context-free rules with a maximum string
length of three (|s| = 3) are applied. We allow at most five
rules and up to three different types of swarm individuals
per SG-genotype. Again, each agent type is described by the
coefficients listed in Table I.

In our evolutionary swarm grammar experiments con-
ducted within the EVOLVICA framework, standard GP tree-
crossover and subtree mutations are the only applied genetic
operators [48]. We use an extension of Inspirica [29], one of
our interactive evolutionary design tools, to explore the po-
tential of the described swarm grammar systems. Figure 3(a)
depicts the procedure of a standard interactive evolutionary
approach with manual fitness assignment. The phenotypes
(po to p,,) are computed separately, inspected manually, and
rated. The assigned fitness values determine the probabilities
of the genetic operators: selection, mutation and crossover.
Arrows illustrate the flow of information. Dashed lines
represent visual inspection. Accordingly, Figure 3(b) displays
a screenshot of the Inspirica [29] user interface that helps to
interactively evolve swarm grammars. All windows display
the construction process as it occurs. All designs are true
objects in 3D space, hence can be rotated, zoomed and
inspected in various ways. After assessment of the presented
(twelve) structures, the swarm designer assigns fitness values

SL, = {N,{N — NN}}
(b)

Swarm grammar agents interacting with their environment and their corresponding swarm rewrite systems.

between 0 and 10 to each solution, and proceeds to the next
generation. By means of this approach, one can easily—
within only a few generations—create structures as illustrated
in Figure 4.

The impact of the inter-breeding process, accomplished
through crossovers of the SL-system grammars and their
associated agent parameters, is illustrated in Figure 5. The
replication of an agent (as determined by the grammar)
and its associated constructions cease as soon as a swarm
agent runs out of energy. Since the energy level of an agent
is linked to the radius of the built cylindrical shape, the
structures tend to look like naturally grown, with smaller
tips at the ends. If the agents’ energy loss, I., is very low,
however, the radii of the cylindrical objects hardly decrease.
Since the energy level is one possible termination criterion,
constructions that keep their radii approximately constant
often appear in tandem with vivid growth. These effects are
illustrated in Figures 2 and 4.

V. IMMERSIVE SWARM GRAMMAR EVOLUTION

In the previous examples the phenotypes are grown in
separate spaces whereas the subsequent fitness assignment
is realized through a two-dimensional user interface. The
isolated swarm grammar phenotypes, as depicted in Figure 3,
are completely independent of each other, that is there is no
interaction among the growing structures of different swarm
grammars. In a co-existing and co-evolutionary setup, the
encountered phenotypes can be the result of massive inter-
actions of swarm agents. In an immersive design ecology,
however, one can identify robust swarm grammars that gen-
erate stable phenotypes, whether they are isolated or put into
highly populated environments. Figure 6(a) schematically de-
picts the processes in an immersive breeding environment. It
integrates the computation of the phenotypes (pg to p,, etc.)
as well as the evolutionary manipulation of the underlying

Fitness
Assignment

&%

LIV I3 NN I R Y e T |

Desiop)SG-EvolutionBz

% 'H ' Phenotype
\ Computation

)

R ETI r.

000 Evolution, 00 /s volution! Evolution/Ba.. § O 0 O Evolution/Ba.

S | |y

€Y (b)

Fig. 3. (a) Diagram depicting the standard procedure of interactive evolutionary algorithms. (b) Screenshot of the Inspirica GUI that enables interactive
evolution based on Mathematica in combination with its genetic programming extension Evolvica.

Mutation
&

¢

Crossover

(a) b)

(d)

Fig. 4. Examples of Evolved Swarm Grammar Phenotypes: (a) Pointy yet smooth nodes connect with long thin branches. (b) A flower-like structure
created by a single mutation. (c) Spinning and whirling groups of swarm agents create a woven 3D pattern. (d) An organismic structure with growing tips.

(a) (b)

Fig. 5. Examples of the impact of interactive breeding: (a) and (b) show two phenotypes that were interbred and whose offspring (c) successfully acquired
characteristics of both parent structures. Investigation of the genotypes confirms that a recombinational transfer of a recursively applicable grammatical
rule leads to the complex mesh of ramifications seen in (c).

Genotype Evolution
&

Phenotype Computation

. ’ \.‘.
{pe

(a)

Fig. 6.
can manually select and tinker with the present specimen.

genotypes. In the diagram, arrows depict the flow of genetic
material, induced by spatial breeding operators.

A. Spatial Breeding Operators

Our immersive user interface integrates two aspects: visual
representation and intuitive manipulation by an external
breeder or designer. The latter mechanism is realized by
the already mentioned spatial breeding operators, or breeder
volumes. Figure 6(b) shows a breeder volume that encloses
several swarm grammar agents. Swarm agents that pass
through a volume (a sphere in this case) can be influenced
in various ways. We use breeder volumes for the crossover
and mutation operators, for moving and copying swarm
agents, and for boosting their energy levels. Analogous to the
watering of plants in a garden, fitness evaluations are only
given implicitly by providing more energy to selected groups
of agents. In order to facilitate the selective evolutionary
intervention, breeder volumes can be placed at fixed positions
to perform operations on temporary visitors with predefined
frequencies. Additional visuals allow to keep track of pre-
vious agent selections. Figure 6(c) depicts how previously
enclosed agents remain associated with the according breeder
volume. This relationship is visualized by the connecting
lines.

The visualization interface enables the moving, rotating,
and zooming of the camera, or the saving and restoring of
specific views and scenario settings (Fig. 7). Most of these
procedures are already incorporated in the agent software
environment BREVE which we use as our display and simu-
lation engine [61]. In addition to aspects of visualization, the
supervising breeder is equipped with tools to select, group,
copy, and move swarm grammar agents, thus being able
to influence the course of evolution within the emerging
scenario. The set of possible manipulations also includes
mutation and crossover operators to manually trigger changes
of the genotypes that encode the swarm grammar rules and
the agent parameters.

(a) Diagram depicting the approach of immersive evolution. (b) By means of volumetric tools and (c) additional visual aids, the immersed breeder

B. The Swarm Grammar Gardener

Figure 7 illustrates how a breeder can influence the emerg-
ing building processes within a simple ecology of swarms.
In Figure 7(a) two swarm agents have built a cylindrical
structure with a small side branch. Both agents, which have
run out of energy, are still visible at the top left and to
the right of this construction. In the next step (Fig. 7(b)) a
breeder sphere is introduced so that it encloses the agent on
the right. Through a contextual menu, this agent is ‘revived’
by replenishing its energy reservoir. Subsequently, the agent
resumes its building process, generates an additional side
branch and extends the overall structure further to the right
(Fig. 7(c)). A similar procedure is applied to the agent on the
left. It is captured by the breeder sphere and triggered to first
replicate, i.e., make copies of itself, and then resume con-
struction (Fig. 7(d,e)). This generates further expansions of
the structures and—after further energy boosts (Fig. 7(f))—
results in the structure depicted in Figure 7(g). The pattern
continues to grow until the agents run out of energy again.

This is only an example of how external manipulation by
a breeder, the ‘gardener’, can influence the agent behaviors,
the building or developmental processes. Their evolution
as agents can change their respective control parameters
during replication. Agents of a specific type share a swarm
grammar, but agent groups can be copied as well, so that they
inherit a new copy of their own swarm grammar, which may
also evolve over time, either automatically or through direct
influence from the gardener. Figure 8 gives a few examples of
evolved swarm grammar ecologies and extracted structures
at different stages during their evolution.

VI. SWARM CONSTRUCTIONS IN THE ARTS

In the provided examples, the aesthetic judgement of a
breeder drove the artificial evolution of swarm grammars.
This objective suits well for endeavors in which an artist
searches for innovative expressions of certain artistic themes.
Swarm grammar constructions are special in that the dy-
namics of their construction processes are captured in the
emerging structures in peculiar ways. Local interactions

(b)

(©)

®

(&)

Fig. 7.

Illustration of Interactive Manipulation of Swarm Grammar Agents by an External Breeder. (a) Two agents create an initial structure. (b) A breeder

sphere locally infuses energy. (c) Further growth is initiated by the additional energy. (d-e) Replication of an agent triggers further parallel construction.

(f-g) Expansion of the structure is continued after another energy influx.

determine the placement of construction elements and the
flight formations of the swarm. Inherent in any swarm
system, the tandem of actions and reactions can result in
a feedback loop of interdependencies [62]. The diagram in
Figure 9 hints at the complex relationships that arise in boid
systems, without even considering indirect communication
beyond the ever changing neighborhood relations between
the swarm individuals: A swarm agent ¢ perceives a set
of neighbors that determine its acceleration. Its changed
location, in turn, affects those swarm mates that perceive ¢ as
a neighbor. The emerging dynamics are captured in structures

that exhibit liveliness and spontaneity, contrasting themes,
rhythmic movements, tension, organic looks, and rigid forms.

Accordingly, the artistic interpretation of SG structures
can support artistic work in several ways, for example when
composing pieces of computer-generated SG structures and
traditionally painted motives, or when inspiring themes and
concepts of artistic works as a whole [6]. As an example,
Figure 10(a) displays the diptych [Outlining Blues] by the
Canadian artist Joyce Wong. It comprises two oil paintings
on 12’ x 24’ metal plates that were preprocessed with rusting

Fig. 8.
surrounding designs were created.

Fig. 9. The black arrows in the upper box show the direction of influence
between perception, action and state of a swarm agent <. The S-P tuples
stand for the state and perception modules of other agents that interact with
agent 1.

Collage of Designs Generated by Swarm Grammars. The figure in the centre illustrates a swarm grammar garden ecology, within which the

agents. It was inspired by the interplay of two different SG
systems (Fig. 10(b))—one swarm grammar leaving a black
thin trace of cylindrical objects, the other one building up
waves of pyramidal layers.

VII. AUTOMATIC SWARM GRAMMAR EVOLUTION

Once a concrete design task is chosen for a swarm gram-
mar system, certain constraints on the growing structure can
be formulated. Afterwards, the power of innovation of evolu-
tionary computation can be harnessed to automatically create
assortments of SG designs. In addition to the analysis of the
genotype of a swarm grammar, two things can be subjected
to the fitness assignment of an evolutionary algorithm: (1)
the construction processes and (2) the emerging structures.
Structural analysis is either very course grained, considering

