
A Trans-disciplinary Program for Biomimetic
Computing and Architectural Design

Sebastian von Mammen, Joshua M. Taron
University of Calgary, Canada

In this article, we present our trans-disciplinary approach to teaching
biomimetic computing and architectural design to graduate students in
Architecture. In particular, we present our selection of topics, their initial,
conceptual presentation to the students, their appropriation by the students
through programming and examples of the students’ material
implementations in architectural design projects.

Introduction

Multi-agent systems promote modeling of complex processes by
researchers and designers without the need for a profound background in
Mathematics. Conceptual models can be directly translated into
programming code and the consequences of a previously theorized model
can visually unfold, undergo rigorous analysis, and experience iterative
improvement. Agent-based modeling also empowers designers to apply a
paradigm of self-organizing systems: swarms of reactive software agents
engaging in complex interactions, potentially even reproducing
constructive processes. Experiencing and investigating complex systems
in nature is another important aspect that promotes the outlined approach
to design. Developmental processes in organisms, evolution, self-
organizing formations in cell populations or animal societies all serve as
an invaluable source for inspiration and for comprehending the ways
decentralized, self-organizing, emergent multi-agent models can carry
fruits for research and design.

In this work, we present our approach to teaching and training the ideas
of agent-based modeling and related topics around complex biological

author's copy

systems. We have established a trans-disciplinary course setup between
computer science and architecture. A computer science course on
biomimetic computation provides the theoretical foundation and
programming know-how for developing agent-based software simulations
with a focus on developmental, generative, and interactive processes.
Architecture students concurrently enroll in an Architecture research
studio in which they have the opportunity to apply and evolve their agent-
based models developed in the computer science course. An inspiring
feedback cycle emerges from the trans-disciplinary, theoretically founded
and practically applied tandem of project-driven courses.

The contents and the coursework are closely attuned to maximize the
opportunity for mutual synergetic fertilization of skills and ideas. In the
Computer Science course, students are first familiarized with the basic
concepts of computational processes and algorithms using Processing.
Units on coding basics culminate in live programming demos that apply
the gathered knowledge about basic data structures and process flow.
Simple yet colorful simulation examples are crafted from scratch in front
of the class, thoroughly discussed and made available online for future
reference. Subsequent lecture units present biological examples of
concepts like developmental growth, self-organization and evolutionary
processes. Corresponding programming codes are presented in class.
Finally, students’ projects commence, maturing from the initial proposals
over prototype implementations into original architectural design works
(supported through the Architecture research studio).

The Architecture research studio component of the endeavor provides
an outlet through which these computational processes can be tested at a
variety of architectural scales and formations. By focusing on complex
processes in heterogeneous urban environments, multi-agent systems serve
as both a tool for mapping cities as well as for the production of
architectural design techniques. In our case, students are assigned a
partially completed skyscraper in downtown Calgary as their site with the
task of intervening in the typical procedural construction/assembly
processes necessary to complete the tower. The exercise challenges
students to use agent-based models to graft into an already ongoing
procedural process thereby augmenting its formal, visual and
programmatic performance. The results of the studio are series of new
tower iterations using agent-based techniques developed and supported
through the Computer Science course.

These agent-based designs provide the material results of the trans-
disciplinary exercise, which are evaluated for the purposes of improving
the next iteration of the experiment. Methods are discussed that might

allow students to improve upon previous years’ achievements and thus
increase the intensity and intelligence of the models themselves over the
course of time.

Programming Nature

Computation happens through manipulating data. Traditionally,
sequences of instructions that determine how certain data are manipulated
are subsumed under high-level commands, generally referred to as
procedures, functions, macros, or methods. Methods can be associated
with specific data objects that combine various kinds of information, e.g.
symbolic strings, numeric data, or other data objects. A repeatedly
occurring example would be a Person object, for instance person1 with the
attributes name = “Susan”, age = 32 and gender = female. The execution
of a method in respect to a Person object could, for instance, update
Susan’s age to 33.

Similar to subsuming instruction sequences, objects and their associated
methods can be inherited by other object classes. An Employee class, for
example, could expand the attributes and methods of the Person object
class. This object-oriented programming approach represents the state-of-
the-art programming paradigm in software engineering. It is of great value
because the programmer can immediately understand and work with
complex code objects and use them for creating his own software. A
comprehensive introduction to object-oriented programming is provided
by [1].

Agent-based Programming

Agent-based programming is an extension of the object-oriented
approach. It turns passive data objects into active agents that act in
accordance with their behavior, their situation and their available data [2].
One speaks of Multi-Agent Systems (MAS), if there are multiple agents at
work. The programmer endows the agents with behaviors and properties in
such a way that they work efficiently together and accomplish
computationally challenging tasks. Potential benefits of MAS can be high
robustness as failures in parts of the system can be compensated by intact
agents or high efficiency as tasks can be performed in parallel and be
assigned with respect to the involved agents’ specializations.

MAS lend themselves naturally for designing biomimetic computational
models, in which systems of molecules, cells, organs, organisms, or

societies are retraced. Individuals in these systems act based on their own
agenda and contribute to the emergence of high-level processes or designs
[3]. The structural properties and the behaviors of living organisms have
evolved to yield streamlined, adaptive metabolic processes to occupy and
exploit ecological niches. The agent-based modeling approach allows the
designer to directly map physiological properties and biological behaviors
to computational representations. The only limitations are the knowledge
and creativity of the designer on the one hand, and computational power
on the other hand.

Swarms

MAS can be designed in many ways. One can, for instance, implement a
centralized controller agent that oversees the ongoing processes and
concerts the activities of the remaining agents as it sees fit. Inspired by
biological systems, one can alternatively attempt to configure the agents in
such a way that a centralized control is not required. A system of such
decentralized agents brings a number of advantages: (1) It is generally
more robust against failure as there is no crucial, central part that can go
missing. (2) The computational cost for coordinating the agents is reduced
by the agents making locally informed decisions. (3) If the task at hand can
be divided into independent subtasks, they can be accomplished faster as
there are no holdups. Besides such computationally intriguing properties of
decentralized systems, there are other aspects that reach even further. For
instance, they support the idea of simulating biological self-organization,
where a system can reach self-maintaining states independent of its initial
configuration [4]. In general, one can say that a decentralized system is a
system whose agents can act freely, whereas any kind of control
infrastructure introduces varying degrees of limitations in respect to the
possible interaction processes. Of course, depending on the system, a rigid
control infrastructure might actually be vital, like the coordination of our
motor-sensory activity through the central nervous system. Along these
lines, we would like to underline that control infrastructures are the results
of self-organizing processes themselves. Therefore, decentralized MAS, or
swarms, seem to be the least biased, most direct, and thus, most profound
approach to computational modeling.

Development

Ultimately, living organisms are biochemical structures that drive their
own development, maintenance, and reproduction. These seemingly
distinct objectives can all be reduced to systematic metabolic processes,

that is the construction and destruction of products ranging from simple
molecules to large molecular chains to cells and complex tissues [2].
From this perspective, processes describe the flow of state changes,
whereas structures refer to materializations that persist for a perceivably
long period of time. Even this careful attempt to distinguish processes
from structures emphasizes the role of the observer and it forces us to
accept that structure and process are two closely interwoven aspects of life.

Computational swarms can retrace developmental processes, if their
interactions yield persistent structures. Swarm agents can create structures
in numerous ways. They can, for instance, become part of a larger
structure like simulated molecules in Artificial Chemistries [5]. They can
deposit building blocks when building their nests like wasps [6], or hollow
out tunnels and chambers like ants [7].

Due to the swarm agents’ degrees of freedom, it is a challenge to assign
them behaviors and properties that make them interact in a productive,
coordinated fashion [8]. The structures built by a swarm, however, provide
meaningful evidence of the swarm’s productivity [9], which can serve to
find swarm configurations that yield desirable designs, for instance by
means of evolutionary computation [10].

Hands On Code

We can only assume that a small group of students has been exposed to
programming or 3D modeling before enrolling in our trans-disciplinary
program. As a result, we have to guide them through the very first steps of
a programming curriculum to arrive at the point where they are
empowered to read and manipulate programming code or to be motivated
to design and implement programs from scratch.

Visual programming environments like Grasshopper/Rhino, Quartz
Composer, or Max/MSP provide high-level interfaces that make it easy to
compose intriguing programs by hiding implementation details that are
usually unimportant for the designer. These environments can offer simple
interfaces because they constrain the way designers think, i.e. by forcing
them to follow a functional programming paradigm.

In addition to the advantages of these environments, we teach the
students in Processing [11], an environment that empowers them with the
expressiveness of the established, object-oriented Java programming
language. Understanding programming on the level of algorithmic
instruction sequences and memory manipulation in terms of a generic
programming language allows one to naturally understand other languages

and high-level interfaces as well. Furthermore, it enables the programmer
to break out of an imposed programming paradigm, and in the case of our
trans-disciplinary discourse, create the programming infrastructure for
agent-based models and simulations.

Surface as Architectural and Mathematical Territory

Architectural form serves as a common territory where both visual and
agent-based programming techniques can be deployed. While students are
being introduced to algorithmic approaches in the Computer Science
course, the Architecture studio runs through a series of NURBS modeling
exercises enabling students to tackle architectural problems of scale,
massing and circulation while allowing students to become familiar with
non-linear geometric relationships within those visual environments such
as points, curves, surfaces and manifold spaces. The results are designed
not just for producing spaces for human inhabitation, but more so for the
purpose of defining explicit mathematical territories for the students’ yet-
to-be-developed biomimetic code to inhabit and further articulate.

The exercises continue to evolve in complexity by employing tactics of
object instancing, duplication and formal reproduction. This is particularly
useful in partially previewing problems and opportunities afforded by
MAS. Principles of transformation, gradient change and morphological
part-to-part behaviors in these architectural explorations establish
programmatic strategies and aesthetic sensibilities that influence and
inform students’ Computer Science projects.

Getting Started with Swarm-programming

Processing is widely used in architecture and art [12-14]. Writing a
program, or sketch in Processing lingo, can be as simple as typing a
drawing command such as line(0,0,100,100); into its editor window and
clicking the play button (Fig. 1(a)). Comprehensive documentation and
references are accessible through Processing’s menu. Fig. 1(b) shows a
simple interactive Processing sketch that, when started, changes the
simulation window size to 170 by 80 pixels, sets its background color to
black (color value: 0) and sets the paint color to white (value: 255). For as
long as this sketch is running, a circle of radius 5 will be drawn where the
mouse pointer hovers over the simulation window—resulting in a squiggly
line in the given example.

 (a) (b)

Fig. 1 (a) Processing offers an easy-to-use editor and various predefined drawing
commands such as line(). (b) Code inside the setup() method is executed when the
simulation is started. draw() is executed repeatedly until the simulation is
stopped.

Fig. 2 shows a basic swarm-programming infrastructure in Processing
code. In its setup() method, new Agent objects are created. Their locations
are set to somewhere on the canvas (dimensions: width x height). The
newly created Agent objects are stored in a list called swarm. The draw()
method iterates through this swarm list, executes each swarm agent’s act()
method and renders it as a circle on the canvas. In the given example, the
whole swarm may inform each agent’s actions. As a result, the swarm list
is used as the interactionCandidates parameter of the agents’ act() method.
Instead of interacting, i.e. changing its or its partner’s state, the agents in
the given example only indicate with whom they would interact by
drawing a line to each other. A distance lower than 15 between two agents
is the criterion for interaction in the given case.

The example shown in Fig. 2 has two purposes. First, it shows how a
very generic swarm-programming infrastructure can be created. Second, it
indicates the potential interactions by drawing lines between subsets of
agents. Extensions to the Agent class in respect to its attributes and its act()
method infuse the model with meaning. The designer/programmer,
therefore, has to decide what the agents represent, what their relationships
are, which control instances and constraints should be applied, and how
emerging processes and structures inform each other.

Fig. 2 A basic swarm-programming infrastructure in Processing code. The draw()
method executes the act() method of a list of Agent objects.

Explorations of Biomimetic Design

The students in our program are asked to develop a sense for dynamic
swarm systems and explore how they can impact the creation of
architecture. In this section, we outline several examples of student
projects that cover a range of conceptual and programmatic ideas.

Sentient Surfaces

 Jared Brookes and Michael Scantland worked on an extension of the
previous programming example. Agents serve as the vertices of a mesh
and their neighbor relations translate into the mesh topology. Movements
of agents can thus dynamically reconfigure the surface. Fig. 3 shows a

basic setup of an according simulation of sentient surfaces. Fig. 4 depicts
exploration states of the emerging mesh dynamics.

(a) (b) (c)

Fig.3 In sentient surfaces, agents serve as mesh vertices and their movements
reconfigure the structures. (a) A single agent drags its neighbors out of the mesh.
(b) Conceptual illustration of perception thresholds between two sentient surfaces.
(c) Attracting and repelling forces among the agents result in rough surface
configurations.

(a) (b)

Fig. 4 Behavior studies of sets of dynamic swarm surfaces. (a) Repelling field
conditions between a pair of swarm surfaces yield erratic, frayed structures. (b)
One agent shoots through several swarm surfaces.

Scantland’s studio project with Julie Brache paralleled the sentient
surface investigation through the deployment of a nodal network
distributed throughout the tower site. While addressing a different
frequency and scale of modulation in the studio project, displacement of
interior spaces and replacement of exterior structure formed an integrated
relationship between differential programs. Fig. 5(a) diagrams the
responsive relationship between exterior structure, interior space and
building envelope generated by grafting the two systems together. Fig.

5(b) illustrates the exterior view of the tower as the nodal network weaves
through the building.

(a) (b)

Fig.5 (a) Grafting Strategy (b) Exterior Perspective (authors: Scantland + Brache)

Creating Space through Diversity

Ryan Palibroda approached the organization of land occupation from a
2D perspective. Agents keep pushing each other in accordance with their
preferences until a steady state is reached (Fig. 6).

(a) (b)

Fig. 6 (a) Agents of a specific type form clusters as they push agents of other
types away. (b) Opposing forces between different agent types result in
organically shaped high-density areas.

Ryan Trefz also experimented with different agent types (Fig. 7). In
addition to repelling forces, Trefz relied on the whole array of boid urges
to inform his agents’ flight: alignment, cohesion, separation [15].
Differently configured agents can be distinguished through size and hue.

(a) (b)

Fig. 7 Cluttering and clustering flocking formations to inform a dynamic
architecture inspired by Craig Reynolds’ boids [15] and Nicholas Reeves’
Mascarillons [16].

Trefz and Palibroda collaborated in studio to produce a tower whereby
the building exterior operated like a solar landscape. While the exterior
borrowed tactics from Palibroda’s displaced fields (Fig. 8(a)), interior
spaces were formed by tracing flocking positions into structural networks
(Fig. 8(b)).

 (a) (b)

Fig. 8 (a) Hotspots embedded within the building facade operate as attractors for
(b) interior conditions that trace the position of flocking particles through space.

Carving Structures

Chris Vander Hoek explored subtractive generation of architectural
spaces. In his project, commuting swarms (Fig. 9(a)) carve out cubic
volumes that recursively decompose into eight smaller cubes on collision
with a swarm individual (Fig. 9).

(a) (b) (c)

Fig. 9 (a & b) Commuting swarms carve out cubic volumes. Upon collision
between a swarm individual and a volume, it recursively decomposes into eight
cubes until it completely disappears. (c) Future city optimized for mid-air traffic
flow.

His studio project with Arthur Coudeville used the same particle swarm
to generate a 3D voronoi extrusion from the building base in order to
extend the interiority of the tower into the adjacent plaza (Fig. 10(a)).
Physical explorations focused on fabrication and assembly techniques that
subtract from adjacent spaces.

 (a) (b)

Fig. 10 (a) Aerial perspective (b) Sectional study model carves away from the
subterranean parking lot below the site.

Procreating Particles

Jonathan Choo and Fadilah Hamid applied their knowledge of agent-
based modeling in a simulation written in MEL, the scripting language of
the Maya rendering software. A predefined space is populated with agents
(Fig. 9(a)) that attract and repel each other (Fig. 9(b)) and procreate on
collision. The inter-agent relations translate into a smooth surface with
hollow spaces (Fig. 9(c) and Fig. 10).

(a) (b) (c)

Fig. 9 (a) Slowly a predefined volume is populated with agents (represented as
spheres). (b) Attracting agents are colored in bright red. (c) A smooth mesh
encloses the interacting agents.

(a) (b)

Fig. 10 (a) An architectural site is redefined by interacting particles. (b) The
interior space of the resulting space.

Program Evaluation & Future Work

We learned much in this first attempt at a trans-disciplinary program.
Success manifested through a combination of algorithmic and biological
foundations offered through the Computer Science course while the
Architecture research studio provided a space for exploration and
application of those techniques in the context of the built environment.
Problems developed in the studio were in turn framed as means for
evolving the projects in the Computer Science course. We found that
enthusiasm was renewed on both fronts with the constant unfolding of new
problems, innovative solutions and range of applications.

The Computer Science projects did suffer from starting only after a
number of weeks of introductory coding exercises were completed. As
such, group projects did not have the full term to evolve and develop.
Future course iterations will employ instructor-generated podcasts of basic
lessons that students will make use of while initiating their own projects
early in the term in order to mitigate the issue.

The Architecture research studio did provide an appropriate moment in
the curriculum to engage this kind of material (in the sixth term of a six-
term graduate program) given a developed knowledge during their first
two and a half years of graduate education. However, the Computer
Science course is seen as introductory and would certainly serve as a
valuable skill to have earlier in a graduate curriculum (Architecture,
Computer Science or otherwise). A looser but perhaps more profound
connection might exist between the Computer Science course and an
Architecture studio positioned earlier in a graduate program, thus giving
students more opportunities to experiment with and develop their coding
skills as they continue through school.

We view the premise of decentralized control in both Computer Science
and Architecture as fundamental to the advancement of our own research
and in both disciplines at large. By producing a pedagogical framework
whereby swarms, natural systems and Architecture operate within an
interchangeable space, each can inform the others in unique and useful
ways; envisioning biomimetic code as Architecture, Architecture as nature,
and nature as codified milieu. While the courses reinforce one another by
structuring the exchange of information between one another, less resolved
are the structures that might produce continuity and evolution from one
year to the next. By archiving code packages developed in previous
course iterations, incoming students could develop those definitions
further, hybridize multiple definitions together or if nothing is attractive to
them, start something from scratch, thus broadening the “gene pool.” This

gives code developed in a given term the chance to “go on living” after a
course iteration has ended.

Another line of continuation might make a selection of previously
developed definitions available to an Architecture research studio with the
charge that they design with/make use of them in an architectural capacity.
This is already a model in use whereby swarm code developed by Taron is
released to Architecture students for use as a generative design tool.

References

1. Booch G, Maksimchuk R, Engle M, Young B, Conallen J, Houston K (2008)
Object-oriented analysis and design with applications, 3rd edition, Addison-
Wesley Professional

2. Wooldrige MJ (2009) An Introduction to MultiAgent Systems, 2nd edition,
John Wiley & Sons Ltd.

3. Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau, E
(2003) Self-Organization in Biological Systems, Princeton Studies in
Complexity, Princeton University Press

4. Banzhaf W (2004) Artificial Chemistries – Towards Constructive Dynamical
Systems in Solid State Phenomena 97-98: 43-50

5. Dittrich P, Ziegler J, Banzhaf W (2001) Artificial Chemistries – A Review in
Artificial Life 7:225-275

6. Karsai I, Penzes Z (1993) Comb Building in Social Wasps: Self-organization
and Stigmergic Script in Theoretical Biology 161,4:505-525

7. Hölldobler B, Wilson EO (1990) The Ants, Springer Berlin-Heidelberg
8. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence: From

Natural to Artificial Systems, Oxford University Press
9. Jacob C, von Mammen S (2007) Swarm Grammars: Growing Dynamic

Structures in 3D Agent Spaces in Digitial Creativity 18:54-64
10. von Mammen S, Jacob C (2008) Evolutionary Swarm Design of Architectural

Idea Models, Genetic and Evolutionary Computation Conference (CECCO),
143-150, ACM Press

11. Aesthetics and Computation Group, MIT Media Lab (2010) Processing online
at: http://processing.org

12. Erdman D, Lee C (2010) online http://davidclovers.com/
13. Kokkugia (2010) online http://kokkugia.com/
14. Reas CEB (2010) online http://reas.com/category.php?section=works
15. Reynolds C (1987) Flocks, Herds, and Schools: A Distributed Behavioral

Model, SIGGRAPH Conference Proceedings 4:25-34, ACM Press
16. Nembrini J, Reeves N, Poncet E, Martionli A, Winfield A (2005)

Mascarillons: Flying Swarm Intelligence for Architectural Research, Swarm
Intelligence Symposium, 225-232, IEEE Press

