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In this article, we present our trans-disciplinary approach to teaching 
biomimetic computing and architectural design to graduate students in 
Architecture. In particular, we present our selection of topics, their initial, 
conceptual presentation to the students, their appropriation by the students 
through programming and examples of the students’ material 
implementations in architectural design projects. 

Introduction 

Multi-agent systems promote modeling of complex processes by 
researchers and designers without the need for a profound background in 
Mathematics.  Conceptual models can be directly translated into 
programming code and the consequences of a previously theorized model 
can visually unfold, undergo rigorous analysis, and experience iterative 
improvement. Agent-based modeling also empowers designers to apply a 
paradigm of self-organizing systems: swarms of reactive software agents 
engaging in complex interactions, potentially even reproducing 
constructive processes.  Experiencing and investigating complex systems 
in nature is another important aspect that promotes the outlined approach 
to design. Developmental processes in organisms, evolution, self-
organizing formations in cell populations or animal societies all serve as 
an invaluable source for inspiration and for comprehending the ways 
decentralized, self-organizing, emergent multi-agent models can carry 
fruits for research and design. 

In this work, we present our approach to teaching and training the ideas 
of agent-based modeling and related topics around complex biological 
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systems. We have established a trans-disciplinary course setup between 
computer science and architecture.  A computer science course on 
biomimetic computation provides the theoretical foundation and 
programming know-how for developing agent-based software simulations 
with a focus on developmental, generative, and interactive processes.  
Architecture students concurrently enroll in an Architecture research 
studio in which they have the opportunity to apply and evolve their agent-
based models developed in the computer science course. An inspiring 
feedback cycle emerges from the trans-disciplinary, theoretically founded 
and practically applied tandem of project-driven courses. 

The contents and the coursework are closely attuned to maximize the 
opportunity for mutual synergetic fertilization of skills and ideas. In the 
Computer Science course, students are first familiarized with the basic 
concepts of computational processes and algorithms using Processing.  
Units on coding basics culminate in live programming demos that apply 
the gathered knowledge about basic data structures and process flow.  
Simple yet colorful simulation examples are crafted from scratch in front 
of the class, thoroughly discussed and made available online for future 
reference. Subsequent lecture units present biological examples of 
concepts like developmental growth, self-organization and evolutionary 
processes. Corresponding programming codes are presented in class.  
Finally, students’ projects commence, maturing from the initial proposals 
over prototype implementations into original architectural design works 
(supported through the Architecture research studio). 

The Architecture research studio component of the endeavor provides 
an outlet through which these computational processes can be tested at a 
variety of architectural scales and formations.  By focusing on complex 
processes in heterogeneous urban environments, multi-agent systems serve 
as both a tool for mapping cities as well as for the production of 
architectural design techniques.  In our case, students are assigned a 
partially completed skyscraper in downtown Calgary as their site with the 
task of intervening in the typical procedural construction/assembly 
processes necessary to complete the tower.  The exercise challenges 
students to use agent-based models to graft into an already ongoing 
procedural process thereby augmenting its formal, visual and 
programmatic performance.  The results of the studio are series of new 
tower iterations using agent-based techniques developed and supported 
through the Computer Science course.  

These agent-based designs provide the material results of the trans-
disciplinary exercise, which are evaluated for the purposes of improving 
the next iteration of the experiment.  Methods are discussed that might 



allow students to improve upon previous years’ achievements and thus 
increase the intensity and intelligence of the models themselves over the 
course of time. 

Programming Nature 

Computation happens through manipulating data. Traditionally, 
sequences of instructions that determine how certain data are manipulated 
are subsumed under high-level commands, generally referred to as 
procedures, functions, macros, or methods. Methods can be associated 
with specific data objects that combine various kinds of information, e.g. 
symbolic strings, numeric data, or other data objects. A repeatedly 
occurring example would be a Person object, for instance person1 with the 
attributes name = “Susan”, age = 32 and gender = female. The execution 
of a method in respect to a Person object could, for instance, update 
Susan’s age to 33.  

Similar to subsuming instruction sequences, objects and their associated 
methods can be inherited by other object classes. An Employee class, for 
example, could expand the attributes and methods of the Person object 
class. This object-oriented programming approach represents the state-of-
the-art programming paradigm in software engineering. It is of great value 
because the programmer can immediately understand and work with 
complex code objects and use them for creating his own software. A 
comprehensive introduction to object-oriented programming is provided 
by [1]. 

Agent-based Programming 

Agent-based programming is an extension of the object-oriented 
approach. It turns passive data objects into active agents that act in 
accordance with their behavior, their situation and their available data [2]. 
One speaks of Multi-Agent Systems (MAS), if there are multiple agents at 
work. The programmer endows the agents with behaviors and properties in 
such a way that they work efficiently together and accomplish 
computationally challenging tasks. Potential benefits of MAS can be high 
robustness as failures in parts of the system can be compensated by intact 
agents or high efficiency as tasks can be performed in parallel and be 
assigned with respect to the involved agents’ specializations.  

MAS lend themselves naturally for designing biomimetic computational 
models, in which systems of molecules, cells, organs, organisms, or 



societies are retraced. Individuals in these systems act based on their own 
agenda and contribute to the emergence of high-level processes or designs 
[3]. The structural properties and the behaviors of living organisms have 
evolved to yield streamlined, adaptive metabolic processes to occupy and 
exploit ecological niches. The agent-based modeling approach allows the 
designer to directly map physiological properties and biological behaviors 
to computational representations. The only limitations are the knowledge 
and creativity of the designer on the one hand, and computational power 
on the other hand.   

Swarms 

MAS can be designed in many ways. One can, for instance, implement a 
centralized controller agent that oversees the ongoing processes and 
concerts the activities of the remaining agents as it sees fit. Inspired by 
biological systems, one can alternatively attempt to configure the agents in 
such a way that a centralized control is not required. A system of such 
decentralized agents brings a number of advantages: (1) It is generally 
more robust against failure as there is no crucial, central part that can go 
missing. (2) The computational cost for coordinating the agents is reduced 
by the agents making locally informed decisions. (3) If the task at hand can 
be divided into independent subtasks, they can be accomplished faster as 
there are no holdups. Besides such computationally intriguing properties of 
decentralized systems, there are other aspects that reach even further. For 
instance, they support the idea of simulating biological self-organization, 
where a system can reach self-maintaining states independent of its initial 
configuration [4]. In general, one can say that a decentralized system is a 
system whose agents can act freely, whereas any kind of control 
infrastructure introduces varying degrees of limitations in respect to the 
possible interaction processes. Of course, depending on the system, a rigid 
control infrastructure might actually be vital, like the coordination of our 
motor-sensory activity through the central nervous system.  Along these 
lines, we would like to underline that control infrastructures are the results 
of self-organizing processes themselves. Therefore, decentralized MAS, or 
swarms, seem to be the least biased, most direct, and thus, most profound 
approach to computational modeling. 

Development 

Ultimately, living organisms are biochemical structures that drive their 
own development, maintenance, and reproduction. These seemingly 
distinct objectives can all be reduced to systematic metabolic processes, 



that is the construction and destruction of products ranging from simple 
molecules to large molecular chains to cells and complex tissues [2].  
From this perspective, processes describe the flow of state changes, 
whereas structures refer to materializations that persist for a perceivably 
long period of time. Even this careful attempt to distinguish processes 
from structures emphasizes the role of the observer and it forces us to 
accept that structure and process are two closely interwoven aspects of life.  

Computational swarms can retrace developmental processes, if their 
interactions yield persistent structures. Swarm agents can create structures 
in numerous ways. They can, for instance, become part of a larger 
structure like simulated molecules in Artificial Chemistries [5]. They can 
deposit building blocks when building their nests like wasps [6], or hollow 
out tunnels and chambers like ants [7].  

Due to the swarm agents’ degrees of freedom, it is a challenge to assign 
them behaviors and properties that make them interact in a productive, 
coordinated fashion [8]. The structures built by a swarm, however, provide 
meaningful evidence of the swarm’s productivity [9], which can serve to 
find swarm configurations that yield desirable designs, for instance by 
means of evolutionary computation [10].  

Hands On Code 

We can only assume that a small group of students has been exposed to 
programming or 3D modeling before enrolling in our trans-disciplinary 
program. As a result, we have to guide them through the very first steps of 
a programming curriculum to arrive at the point where they are 
empowered to read and manipulate programming code or to be motivated 
to design and implement programs from scratch.  

Visual programming environments like Grasshopper/Rhino, Quartz 
Composer, or Max/MSP provide high-level interfaces that make it easy to 
compose intriguing programs by hiding implementation details that are 
usually unimportant for the designer. These environments can offer simple 
interfaces because they constrain the way designers think, i.e. by forcing 
them to follow a functional programming paradigm.  

In addition to the advantages of these environments, we teach the 
students in Processing [11], an environment that empowers them with the 
expressiveness of the established, object-oriented Java programming 
language. Understanding programming on the level of algorithmic 
instruction sequences and memory manipulation in terms of a generic 
programming language allows one to naturally understand other languages 



and high-level interfaces as well.  Furthermore, it enables the programmer 
to break out of an imposed programming paradigm, and in the case of our 
trans-disciplinary discourse, create the programming infrastructure for 
agent-based models and simulations. 

Surface as Architectural and Mathematical Territory 

Architectural form serves as a common territory where both visual and 
agent-based programming techniques can be deployed.  While students are 
being introduced to algorithmic approaches in the Computer Science 
course, the Architecture studio runs through a series of NURBS modeling 
exercises enabling students to tackle architectural problems of scale, 
massing and circulation while allowing students to become familiar with 
non-linear geometric relationships within those visual environments such 
as points, curves, surfaces and manifold spaces.  The results are designed 
not just for producing spaces for human inhabitation, but more so for the 
purpose of defining explicit mathematical territories for the students’ yet-
to-be-developed biomimetic code to inhabit and further articulate. 

The exercises continue to evolve in complexity by employing tactics of 
object instancing, duplication and formal reproduction. This is particularly 
useful in partially previewing problems and opportunities afforded by 
MAS. Principles of transformation, gradient change and morphological 
part-to-part behaviors in these architectural explorations establish 
programmatic strategies and aesthetic sensibilities that influence and 
inform students’ Computer Science projects. 

Getting Started with Swarm-programming 

Processing is widely used in architecture and art [12-14]. Writing a 
program, or sketch in Processing lingo, can be as simple as typing a 
drawing command such as line(0,0,100,100); into its editor window and 
clicking the play button (Fig. 1(a)). Comprehensive documentation and 
references are accessible through Processing’s menu. Fig. 1(b) shows a 
simple interactive Processing sketch that, when started, changes the 
simulation window size to 170 by 80 pixels, sets its background color to 
black (color value: 0) and sets the paint color to white (value: 255). For as 
long as this sketch is running, a circle of radius 5 will be drawn where the 
mouse pointer hovers over the simulation window—resulting in a squiggly 
line in the given example.  



 
     (a)      (b) 

Fig. 1 (a) Processing offers an easy-to-use editor and various predefined drawing 
commands such as line(). (b) Code inside the setup() method is executed when the 
simulation is started.  draw() is executed repeatedly until the simulation is 
stopped. 

Fig. 2 shows a basic swarm-programming infrastructure in Processing 
code. In its setup() method, new Agent objects are created. Their locations 
are set to somewhere on the canvas (dimensions: width x height). The 
newly created Agent objects are stored in a list called swarm. The draw() 
method iterates through this swarm list, executes each swarm agent’s act() 
method and renders it as a circle on the canvas. In the given example, the 
whole swarm may inform each agent’s actions. As a result, the swarm list 
is used as the interactionCandidates parameter of the agents’ act() method. 
Instead of interacting, i.e. changing its or its partner’s state, the agents in 
the given example only indicate with whom they would interact by 
drawing a line to each other. A distance lower than 15 between two agents 
is the criterion for interaction in the given case.  

The example shown in Fig. 2 has two purposes. First, it shows how a 
very generic swarm-programming infrastructure can be created. Second, it 
indicates the potential interactions by drawing lines between subsets of 
agents. Extensions to the Agent class in respect to its attributes and its act() 
method infuse the model with meaning. The designer/programmer, 
therefore, has to decide what the agents represent, what their relationships 
are, which control instances and constraints should be applied, and how 
emerging processes and structures inform each other. 



 
Fig. 2 A basic swarm-programming infrastructure in Processing code. The draw() 
method executes the act() method of a list of Agent objects. 

Explorations of Biomimetic Design 

The students in our program are asked to develop a sense for dynamic 
swarm systems and explore how they can impact the creation of 
architecture. In this section, we outline several examples of student 
projects that cover a range of conceptual and programmatic ideas. 

Sentient Surfaces 

 Jared Brookes and Michael Scantland worked on an extension of the 
previous programming example. Agents serve as the vertices of a mesh 
and their neighbor relations translate into the mesh topology. Movements 
of agents can thus dynamically reconfigure the surface. Fig. 3 shows a 



basic setup of an according simulation of sentient surfaces. Fig. 4 depicts 
exploration states of the emerging mesh dynamics. 

 

   
(a) (b) (c) 

Fig.3 In sentient surfaces, agents serve as mesh vertices and their movements 
reconfigure the structures. (a) A single agent drags its neighbors out of the mesh. 
(b) Conceptual illustration of perception thresholds between two sentient surfaces. 
(c) Attracting and repelling forces among the agents result in rough surface 
configurations. 

  
(a) (b) 

Fig. 4 Behavior studies of sets of dynamic swarm surfaces. (a) Repelling field 
conditions between a pair of swarm surfaces yield erratic, frayed structures. (b) 
One agent shoots through several swarm surfaces.  

Scantland’s studio project with Julie Brache paralleled the sentient 
surface investigation through the deployment of a nodal network 
distributed throughout the tower site. While addressing a different 
frequency and scale of modulation in the studio project, displacement of 
interior spaces and replacement of exterior structure formed an integrated 
relationship between differential programs.  Fig. 5(a) diagrams the 
responsive relationship between exterior structure, interior space and 
building envelope generated by grafting the two systems together. Fig. 



5(b) illustrates the exterior view of the tower as the nodal network weaves 
through the building.  

 

 
(a) (b) 

Fig.5 (a) Grafting Strategy  (b) Exterior Perspective (authors: Scantland + Brache) 

Creating Space through Diversity 

Ryan Palibroda approached the organization of land occupation from a 
2D perspective. Agents keep pushing each other in accordance with their 
preferences until a steady state is reached (Fig. 6). 
 

  
(a) (b) 

Fig. 6 (a) Agents of a specific type form clusters as they push agents of other 
types away. (b) Opposing forces between different agent types result in 
organically shaped high-density areas. 

Ryan Trefz also experimented with different agent types (Fig. 7). In 
addition to repelling forces, Trefz relied on the whole array of boid urges 
to inform his agents’ flight: alignment, cohesion, separation [15]. 
Differently configured agents can be distinguished through size and hue. 

 



  
(a) (b) 

Fig. 7 Cluttering and clustering flocking formations to inform a dynamic 
architecture inspired by Craig Reynolds’ boids [15] and Nicholas Reeves’ 
Mascarillons [16]. 

Trefz and Palibroda collaborated in studio to produce a tower whereby 
the building exterior operated like a solar landscape.  While the exterior 
borrowed tactics from Palibroda’s displaced fields (Fig. 8(a)), interior 
spaces were formed by tracing flocking positions into structural networks 
(Fig. 8(b)). 

 

                   
                                         (a)                        (b) 

Fig. 8 (a) Hotspots embedded within the building facade operate as attractors for 
(b) interior conditions that trace the position of flocking particles through space.  

Carving Structures 

Chris Vander Hoek explored subtractive generation of architectural 
spaces. In his project, commuting swarms (Fig. 9(a)) carve out cubic 
volumes that recursively decompose into eight smaller cubes on collision 
with a swarm individual (Fig. 9).  



   
(a) (b) (c) 

Fig. 9 (a & b) Commuting swarms carve out cubic volumes. Upon collision 
between a swarm individual and a volume, it recursively decomposes into eight 
cubes until it completely disappears. (c) Future city optimized for mid-air traffic 
flow. 

His studio project with Arthur Coudeville used the same particle swarm 
to generate a 3D voronoi extrusion from the building base in order to 
extend the interiority of the tower into the adjacent plaza (Fig. 10(a)).  
Physical explorations focused on fabrication and assembly techniques that 
subtract from adjacent spaces.   

  

      
              (a)                           (b) 

Fig. 10 (a) Aerial perspective (b) Sectional study model carves away from the 
subterranean parking lot below the site. 



Procreating Particles 

Jonathan Choo and Fadilah Hamid applied their knowledge of agent-
based modeling in a simulation written in MEL, the scripting language of 
the Maya rendering software. A predefined space is populated with agents 
(Fig. 9(a)) that attract and repel each other (Fig. 9(b)) and procreate on 
collision. The inter-agent relations translate into a smooth surface with 
hollow spaces (Fig. 9(c) and Fig. 10). 

   
(a) (b) (c) 

Fig. 9 (a) Slowly a predefined volume is populated with agents (represented as 
spheres). (b) Attracting agents are colored in bright red. (c) A smooth mesh 
encloses the interacting agents. 

 

  
(a) (b) 

Fig. 10 (a) An architectural site is redefined by interacting particles. (b) The 
interior space of the resulting space. 



Program Evaluation & Future Work 

We learned much in this first attempt at a trans-disciplinary program.  
Success manifested through a combination of algorithmic and biological 
foundations offered through the Computer Science course while the 
Architecture research studio provided a space for exploration and 
application of those techniques in the context of the built environment.  
Problems developed in the studio were in turn framed as means for 
evolving the projects in the Computer Science course.  We found that 
enthusiasm was renewed on both fronts with the constant unfolding of new 
problems, innovative solutions and range of applications. 

The Computer Science projects did suffer from starting only after a 
number of weeks of introductory coding exercises were completed.  As 
such, group projects did not have the full term to evolve and develop.  
Future course iterations will employ instructor-generated podcasts of basic 
lessons that students will make use of while initiating their own projects 
early in the term in order to mitigate the issue. 

The Architecture research studio did provide an appropriate moment in 
the curriculum to engage this kind of material (in the sixth term of a six-
term graduate program) given a developed knowledge during their first 
two and a half years of graduate education.  However, the Computer 
Science course is seen as introductory and would certainly serve as a 
valuable skill to have earlier in a graduate curriculum (Architecture, 
Computer Science or otherwise).  A looser but perhaps more profound 
connection might exist between the Computer Science course and an 
Architecture studio positioned earlier in a graduate program, thus giving 
students more opportunities to experiment with and develop their coding 
skills as they continue through school.  

We view the premise of decentralized control in both Computer Science 
and Architecture as fundamental to the advancement of our own research 
and in both disciplines at large.  By producing a pedagogical framework 
whereby swarms, natural systems and Architecture operate within an 
interchangeable space, each can inform the others in unique and useful 
ways; envisioning biomimetic code as Architecture, Architecture as nature, 
and nature as codified milieu.  While the courses reinforce one another by 
structuring the exchange of information between one another, less resolved 
are the structures that might produce continuity and evolution from one 
year to the next.  By archiving code packages developed in previous 
course iterations, incoming students could develop those definitions 
further, hybridize multiple definitions together or if nothing is attractive to 
them, start something from scratch, thus broadening the “gene pool.”  This 



gives code developed in a given term the chance to “go on living” after a 
course iteration has ended. 

Another line of continuation might make a selection of previously 
developed definitions available to an Architecture research studio with the 
charge that they design with/make use of them in an architectural capacity.  
This is already a model in use whereby swarm code developed by Taron is 
released to Architecture students for use as a generative design tool.  
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