
Swarm-based Computational Development

Sebastian von Mammen, David Phillips, Timothy Davison, Heather Jamniczky,
Benedikt Hallgrı́msson, Christian Jacob

Abstract Swarms are a metaphor for complex dynamic systems. In swarms, large
numbers of individuals locally interact and form non-linear, dynamic interaction
networks. Ants, wasps and termites, for instance, are natural swarms whose individ-
ual and group behaviours have been evolving over millions of years. In their intricate
nest constructions, the emergent effectiveness of their behaviours becomes apparent.
Swarm-based computational simulations capture the corresponding ideas of agent-
based, decentralized, self-organizing models. In this work, we present ideas around
swarm-based developmental systems, including swarm grammars, a swarm-based
generative representation and our efforts towards the unification of this methodol-
ogy and towards improving its accessibility.

1 Introduction

Arithmetic operations drive computational processes by updating existing variables
or by infering new ones. The selection of operands determines a topology of depen-
dencies among data which may change over the course of a computational process.
In particular, intermediate computational results may control the flow of directives,
their sources and their targets. Ultimately, the purpose of a computational process
is to create or change information in accordance with goals such as data storage
and retrieval, communication, content creation, or data validation, visualization and
prediction (simulation).

Computational representations are abstraction layers which connect particular
models from a scientific domain (domain models) with corresponding models for a
provided simulation platform (platform models) [55]. Similar to knowledge repre-

sentations [59], special representations have been studied and designed in the con-
text of simulating developmental processes such as the formation of molecular struc-

Sebastian von Mammen e-mail: s.vonmammen@ucalgary.ca
University of Calgary, Canada

1

author's copy

s.vonmammen@ucalgary.ca

2 S. von Mammen et al.

tures [1], growth and proliferation of cell populations, and structural developments
at the organismal level [57].

Not only do these respective computational developmental representations serve
different modelling domains but they also rely on various mechanisms of abstrac-
tion. L-systems [57], for instance, emphasize the formation of structure based on the
generation of symbolic sequences by means of grammatical substitution [7]. Cellu-
lar automata (CAs), on the other hand, which are also considered one of the first
developmental representations, focus on pattern generation through state changes
[54]. Although mitosis and cell differentiation provide a scientifically adequate dis-
cretization that bridges from the domain model to the platform model, CAs and
L-systems primarily target development at the cellular level.

Focus areas of developmental models have been simulations of the life cycle of
cells as well as molecular and intercellular communication—touched upon by CAs
and further explored as random boolean networks (RBNs) [34]. Spatial reconfigu-
ration of cell colonies, e.g. through polarization and migration, and thereby changes
in the interaction topologies, also play significant roles in developmental systems
[61].

In this chapter, we present our work on swarm grammars (SGs), a developmental
representation that we have introduced to explicitly combine the ideas of established
developmental representations with those of artificial swarm systems. In particular,
production rules drive the life cycle of agents (representative of molecules and cells),
while the agents’ reactivity and motility continuously change the interaction topol-
ogy of the system. In the next section, we briefly outline work that relates to SGs.
Section 3 presents various swarm grammar representations that we have designed
over the years as well as means to breed SG configurations through evolutionary
computation [31, 41, 42, 46]. In this context, we also present SG examples in the
domains of art, architecture and biology [48, 44, 47]. Section 4 summarizes and
concludes our work.

2 Related Work

In the following, we want to build a terminological hierarchy based on patterns,
structures, and morphologies. A pattern is commonly defined as “an arrangement
or sequence regularly found in comparable objects or events”. A structure is “the
arrangement of and relations between the parts or elements of something complex”.
A morphology “[...] deals with the form of living organisms, and with relation-
ships between their structures” [49]. Morphologies describe the structures of or-
ganisms, whereas the recognition of their structural patterns reveals insight into the
complex arrangements of the parts of an organism. Consequently, the borders blur
between patterns and complex structures when facing the challenges of morpholog-
ical engineering. Reductionist [23] and quantitative [18] analyses of morphological
processes necessitate identification, measurement [20] and simulation of complex,
emergent processes [55] and integrating, multi-scale models [68]. Exploring these

Swarm-based Computational Development 3

scientific paths is exciting and important. In this chapter, however, we present our
findings that are mainly concerned with swarm grammars as a unified swarm-based
developmental representation.

2.1 Complex Patterns through State Changes

In cellular automata (CAs) lattice grids are populated with cells that change their
states—frequently represented as a binary digit—in accordance with their neigh-
bours [54]. As underlined by Giavitto et al.’s categorizations [16], CAs are dynamic
with respect to their states, but not in regard to their interaction topologies. Thus,
the development in CAs is limited to state-based pattern formations. These pat-
terns, however, may be seen as structure formations nevertheless. Wolfram intro-
duced four classes of complexity for patterns generated by the state evolution of
one-dimensional CAs [69]: Those that converge (1) to a homogeneous state (corre-
sponding to limit points), (2) to a heterogeneous state (corresponding to limit cy-
cles), those that exhibit (3) chaotic behaviour (corresponding to chaotic attractors),
and those that are (4) self-organizing, reaching attractors of arbitrary complexity
from random initial conditions.

2.2 Complexity Measures

Several aspects pose starting points to reveal the complexity of a (computational)
model, or the lack thereof. Shedding light on the formation and evolution of high-
order life forms, Schuster summarizes various approaches to measure complexity
[62]: (1) Ecological diversity can lead to systems occupying niches and yield in-
volved food webs. (2) Construction processes can add to the complexity of a system
by providing additional functionality such as providing shelter. (3) Formally, logical
depth can also measure a system’s complexity. Schuster relates systemic hierarchies
(from genes over cells to organisms) to logical depth and emphasizes its relevance
for biological systems. Hornby aims at the very same idea, introducing the scalable
metrics of modularity, reuse and hierarchy (MR&H), which he applies it to measure
structure and organization [20]. In the given context, scalability implies that the
complexity of a system increases with size. In a series of experiments, Hornby was
able to show that multiplication of the MR&H metrics and normalization by either
the design size or by the algorithmic information content (AIC), which accounts for
the shortest program to produce a given outcome, yield the desired scaling effect in
complexity.1

1
Ra, the average reuse of symbols during program execution works well as a structural measure

when normalized against the design size, whereas Rm, the average reuse of modules, yields a
scalable measure when divided by the system’s algorithmic information content [20].

4 S. von Mammen et al.

2.3 From Life-Cycles to Structure

Although we have introduced the notion of categories of complexity in the con-
text of CAs (Section 2.1), L-systems, too, can be subjected to structural measures
as described in Section 2.2). Lindenmayer and Prusinkiewicz designed L-systems
in order to retrace the growth of bacterial colonies and plants [57]. L-systems are
a formal system that combines the productivity of formal grammars with geomet-
rical information to direct and translate simulated development into three dimen-
sions. In particular, symbols that encode a geometrical command such as L (left),
R (right) or F (forward) are substituted in parallel in accordance with a set of pro-
duction rules. This is supposed to retrace the developmental stages of a naturally
growing structure. Special characters such as [or] that are part of the substitution
strings introduce compartmentalization, i.e. hierarchical information, into the struc-
tural outcome. Generally speaking, L-systems loose the appeal of universality that
can be claimed for CAs by introducing specialized operators that conduct structural
development in an iterative fashion.

At the same time, these geometrical directives render L-systems convenient for
describing structural development of natural systems such as plants [56, 70], includ-
ing simulated plants that interact with their environment [50, 51, 12]. Original work
in genetic programming of L-systems [24, 25, 26] has led to several platforms for
L-system evolution [53, 27, 52] and the breeding of virtual plants in a coevolution-
ary scenario, which even displays competitive arms-race situations [14]. Beyond
plants, L-systems have also been used to evolve virtual creatures and their control
networks [22, 21] as well as for the reconstruction of retina and blood vessel struc-
tures [36, 35].

The appeal of CAs is that the interaction topologies remain fixed, while patterns
develop based on state changes over time. In L-systems the substitution of existing
symbols effectively results in cell differentiation (state changes), the creation of
new or the deletion of existing symbols. Thus, the neighbourhood topology can
be altered as well as the next production step in the case of context-sensitive L-
systems. However, changes in the interaction topology in L-systems are limited to
the symbols’ immediate neighbours. When modelling molecular diffusion or cell
locomotion and migration in an agent-based manner, interaction topologies undergo
great dynamics (e.g. [61]). Giovatti et al. termed such systems D

2
S in which both

the states as well as the topologies are dynamic [16].

2.4 Breeding Solutions

The great degree of freedom with a D
2
S system brings about the challenge of a

largely extended configuration space. Evolutionary algorithms (EAs) are a means
to find sets of diverse, good solutions in such large search spaces. We applied ge-
netic programming techniques (GP) to breed swarm grammar systems interactively
[31] through the EVOLVICA genetic programming framework [27]. We bred swarm

Swarm-based Computational Development 5

grammars like a gardener in a three-dimensional, immersive environment [41]—
watering, weeding and recombining individual specimens that grow in a shared en-
vironment. Most recently, we let swarm grammars evolve that generated diverse
and interesting architectural models [42]. We describe these three evolutionary ap-
proaches in detail as part of the following section which presents different exten-
sions of swarm grammars.

3 Swarm Grammars

Our first swarm grammar systems were composed of two parts: (1) a set of rewrite

rules, which determine the composition of agent types over time, and (2) a set of
agent specifications, which define agent-type specific parameters that govern the
agents’ interactions [31]. Next, we assigned the required genotypical information
and the rewrite rules to individual agents which allowed for co-existing and co-
evolving swarm grammars [41]. At that point, we identified the distinction between
agent behaviours and rewrite rules as an artificially created artefact which we had
to overcome [42]. As a result, the individuals’ rewrite rules were extended and
turned into general agent rules [10, 11], including the special ability to create new
agents or construction elements and to remove existing ones. In analogy to bio-
chemical processes of secretion and diffusion [68], we refer to these abilities as
metabolic operations. Lastly, in order to make swarm-based modelling accessible to
non-computer scientists, we have been pushing toward a standardized swarm-based
modelling and simulation framework [46]. In the latter representation, the relation-
ships among swarm individuals are emphasized and the swarm agents’ behavioural
rules are streamlined and expressed in graphical notation. In this section, we are
going to present these different stages of swarm grammars and illustrate their re-
spective features. A brief overview of these stages is shown in Table 3.

representation motivation example section

basic swarm grammar swarm dynamics + growth agent-agent and agent- 3.1
environment interactions,
artistic exploration through
interactive evolution

decentralized SG individual behaviours artistic exploration through 3.2
interactive evolution

decentralized, event-based interactions breeding architecture through 3.3
rule-based SG automatic evolution
swarm graph grammar improve accessibility and simulation of biological 3.4

standardize simulation developmental processes

Table 1 Four evolutionary stages of swarm grammars.

6 S. von Mammen et al.

3.1 Swarm Grammars with Centralized Population Control

A basic swarm grammar system SG = (SL,∆) consists of a rewrite system SL =
(α,P) and a set of agent specifications ∆ = {∆a1 ,∆a2 , ...,∆an

} for n types of agents
ai. The rewrite system SL is a probabilistic L-system with axiom α and produc-
tion rules P, as described in [57] and [27]. In the simplest form of context-free
0L-systems, each rule has the form p

θ→ s, where p ∈ Ω is a single symbol over
an alphabet Ω , and s ∈ Ω ∗ is either the empty symbol (λ) or a word over Ω . The
replacement rule is applied with probability θ . Each agent ai is characterized by a
set of attributes, ∆ai

, which can include its geometrical shape, colour, mass, vision
range, radius of perception and other parameters that determine its overall dynamics
and interaction behaviour.

3.1.1 The Swarm Agents’ Interactions

Figure 1 depicts a common view of a swarm agent in three-dimensional space. We
configure the local flight behaviour of an agent according to a simple ‘boids’ model
as it comprises the general ideas of local and global attracting and repelling forces
[58]. More specifically, at each simulation step, an agent’s acceleration vector a is

set to a weighted sum
4
∑

i=0
civi, with ci ∈ [0;1] being the weights for normalized vec-

tors v0 to v4 that result from the computations of separation, cohesion and alignment
urges among local agents as well as from the individuals’ drive towards a global tar-
get, and the consideration of some noise. The weights ci are part of the individuals’
genotypes as they determine their flight behaviours.

As soon as it has run out of energy, an agent stops acting and is not considered by
the SL-system rules any longer. Energy levels are inherited through replication. The
energy level also influences certain properties of the built 3D structures such as, for
example, their size.

Several values characterize the construction elements or building blocks that are
placed in space by the swarm agents after it has flown for a certain number of itera-
tions Id . The shorter these intervals are, the smoother the appearance of the emerging

Fig. 1 The swarm agents
are typically represented as
pyramidal cones oriented
towards their velocity. An
agent’s field of perception is
determined by a radius r and
an angle β .

Swarm-based Computational Development 7

SLa = {A,{A→ BBB,B→ A}} SLb = {N,{N → NN}} SLc = {I,{I → I}}
(a) (b) (c)

Fig. 2 Swarm grammar agents interacting with their environment and their corresponding swarm
rewrite systems.

construction. The colour and the numbers of edges define the design of the cylindri-
cal shapes.

For example, a swarm grammar SGa = (SLa,∆a) with

SLa = (α = A,P = {A→ BBB,B→ A}), (1)
∆a = {∆A,∆B} (2)

will generate a sequence of swarm composition strings A, BBB, AAA, BBBBBBBBB,
etc. At each iteration step, either each type-A agent is replicated into three B agents,
or agents change from type B to type A. If A agents have no separation urge (c1 = 0),
and B-type agents do separate (c1 = 1.0), the generated swarm of agents creates a
tree-like structure as in Figure 2(a). Note that here and in the following examples
we assume θ = 1, that is a matching rule is always applied.

In particular, Figure 2(a) displays 243 agents—which are visualized as pyramidal
shapes at the branch tips. Both occurring agent types A and B have an upward urge.
Since B-agents repel from each other, a bushy crown emerges. Figure 2(b) shows a
similar set of swarm grammar agents that is forced to climb up a wall, which they
cannot penetrate. Once the agents reach to the top of the wall, they are drawn to-
wards a fixed point above and behind the wall. The small flock of agents is visible
just ahead of the top branches. In Figure 2(c) agents are attracted towards a rotating
‘sun’ object, which makes them follow a spiral during their upward path. The struc-
ture on the right is constructed by a single agent, whereas the left structure involves
20 agents which are repelling from each other.

8 S. von Mammen et al.

Each step of applying the production rules (in parallel) represents a decision
point for all agents within the system. Contrary to L-systems [57], where only a
single ‘turtle’ is used to interpret a string, we employ a swarm of interacting agents.
We do not need to add navigational commands for the turtles within the grammar
strings, because the swarm agents navigate by themselves, determined by the agent
specifications as part of the SG system. More detailed examples of swarm grammar
rewriting that demonstrate further application aspects are given in [31].

3.1.2 Interactive Exploration of Swarm Grammar Spaces

Combining swarm systems with evolutionary computing has to our knowledge only
been considered in the context of particle swarm optimization (e.g., [63, 64]) and
in swarm-based music generating systems (e.g. [4, 33]). Emergence of collective
behavior has been investigated for agents within a three-dimensional, static world
[67], but this did not involve interactive evolution. Our Genetic Swarm Grammar

Programming (GSGP) approach incorporates both interactive, user-guided evolu-
tion as well as the utilization of emergent properties from interactions of a large
number of agents.

The rewrite rules and agent parameters are represented as symbolic expressions,
so that GP can be used to evolve both the set of rules as well as any agent attributes.
This follows our framework for evolutionary programming, EVOLVICA [27], where
all rewrite rules and agent parameters are encoded as symbolic expressions [39]. For
the examples we present here, only context-free rules with a maximum string length
of three (|s| = 3) are applied. We allow at most five rules and up to three different
types of swarm individuals per SG-genotype.

In our evolutionary swarm grammar experiments standard GP tree-crossover and
subtree mutations are the only applied genetic operators [27]. We use an extension
of Inspirica [39], one of our interactive evolutionary design tools, to explore the
potential of the described swarm grammar systems.

Figure 3 displays a screenshot of the Inspirica [39] user interface that helps to
interactively evolve swarm grammars. All windows display the construction process
as it occurs. All designs are true objects in 3D space, hence can be rotated, zoomed
and inspected in various ways. After assessment of the presented (twelve) structures,
the swarm designer assigns fitness values between 0 and 10 to each solution, and
proceeds to the next generation. By means of this approach, one can easily—within
only a few generations—create structures as illustrated in Figure 4.

The impact of the inter-breeding process, accomplished through crossovers of the
SL-system grammars and their associated agent parameters, is illustrated in Figure
5. The replication of an agent (as determined by the grammar) and its associated
constructions cease as soon as a swarm agent runs out of energy. Since the energy
level of an agent is linked to the radius of the built cylindrical shape, the structures
tend to look like naturally grown, with smaller tips at the ends. If the agents’ energy
loss, Ie, is very low, however, the radii of the cylindrical objects hardly decrease.
Since the energy level is one possible termination criterion, constructions that keep

Swarm-based Computational Development 9

Fig. 3 Screenshot of the
Inspirica GUI that enables
interactive evolution based on
Mathematica in combination
with its genetic programming
extension EVOLVICA.

(a) (b) (c) (d)

Fig. 4 Examples of Evolved Swarm Grammar Phenotypes: (a) Pointy yet smooth nodes connect
with long thin branches. (b) A flower-like structure created by a single mutation. (c) Spinning and
whirling groups of swarm agents create a woven 3D pattern. (d) An organismic structure with
growing tips.

their radii approximately constant often appear in tandem with vivid growth. These
effects are illustrated in Figures 2 and 4.

(a) (b) (c)

Fig. 5 Examples of the impact of interactive breeding: (a) and (b) show two phenotypes that were
interbred and whose offspring (c) successfully acquired characteristics of both parent structures.
Investigation of the genotypes confirms that a recombinational transfer of a recursively applicable
grammatical rule leads to the complex mesh structure in (c).

10 S. von Mammen et al.

3.2 SG Individuals with Complete Genotypes

In the previous examples (section 3.1.2) swarm grammars are simulated within sep-
arate spaces. In an immersive design ecology, however, one could grow large num-
bers of swarm grammar structures in a co-existing and co-evolutionary fashion. The
encountered phenotypes can then result from massive interactions of heterogeneous
swarms. For this to happen, each swarm agent has to carry the complete genetic
information of a swarm grammar SG = (SL,∆)—this also allows for realtime muta-
tions and crossbreeding of specimens in the virtual environment. This extension of
SGs is not unlike in multicellular organisms, where the complete genetic informa-
tion is passed from parent to daughter cells, and where the differentiation of a cell
is performed through reading and expressing specific genetic information.

3.2.1 Spatial Breeding Operators

Our immersive user interface integrates two aspects: visual representation and intu-
itive manipulation by an external breeder or designer. The latter mechanism is real-
ized by the already mentioned spatial breeding operators, or breeder volumes. Fig-
ure 6 shows a breeder volume that encloses several swarm grammar agents. Swarm
agents that pass through a volume (a sphere in this case) can be influenced in var-
ious ways. We use breeder volumes for the crossover and mutation operators, for
moving and copying swarm agents, and for boosting their energy levels. Analogous
to the watering of plants in a garden, fitness evaluations are only given implicitly by
providing more energy to selected groups of agents. In order to facilitate the selec-
tive evolutionary intervention, breeder volumes can be placed at fixed positions to
perform operations on temporary visitors with predefined frequencies. Additional
visuals allow to keep track of previous agent selections. Figure 6(b) depicts how
previously enclosed agents remain associated with the according breeder volume.
This relationship is visualized by the connecting lines.

Fig. 6 (a) By means of vol-
umetric tools the immersed
breeder can manually select
and tinker with the present
specimens. (b) Visual cues
such as connecting specimens
to breeder volumes via dashed
lines allow the breeder to
keep track of sets of selected
agents.

(a) (b)

The visualization interface enables the moving, rotating, and zooming of the
camera, or the saving and restoring of specific views and scenario settings (Fig. 7).
Most of these procedures are already incorporated in the agent software environ-

Swarm-based Computational Development 11

ment BREVE which we use as our display and simulation engine [67]. In addition
to aspects of visualization, the supervising breeder is equipped with tools to select,
group, copy, and move swarm grammar agents. This enables the breeder (designer)
to influence the course of evolution within the emerging scenario. The set of possi-
ble manipulations also includes mutation and crossover operators to manually trig-
ger changes of the genotypes that encode the swarm grammar rules and the agent
parameters.

3.2.2 The Swarm Grammar Gardener

Figure 7 illustrates how a breeder can influence the emerging building processes
within a simple ecology of swarms. In Figure 7(a) two swarm agents have built a
cylindrical structure with a small side branch. Both agents, which have run out of
energy, are still visible at the top left and to the right of this construction. In the
next step (Fig. 7(b)) a breeder sphere is introduced so that it encloses the agent
on the right. Through a contextual menu, this agent is ‘revived’ by replenishing
its energy reservoir. Subsequently, the agent resumes its building process, gener-
ates an additional side branch and extends the overall structure further to the right
(Fig. 7(c)). A similar procedure is applied to the agent on the left. It is captured by
the breeder sphere and triggered to first replicate, i.e., make copies of itself, and then
resume construction (Fig. 7(d,e)). This generates further expansions of the structures
and—after further energy boosts (Fig. 7(f))—results in the structure depicted in Fig-
ure 7(g). The pattern continues to grow until the agents run out of energy again.

This is only an example of how external manipulation by a breeder, the ‘gar-
dener’, can influence the agent behaviors, the building or developmental processes.
Their evolution as agents can change their respective control parameters during
replication. Agents of a specific type share a swarm grammar, but agent groups
can be copied as well, so that they inherit a new copy of their own swarm grammar,
which may also evolve over time. This can be accomplished either automatically or
through direct influence from the gardener. Figure 8 gives a few examples of evolved
swarm grammar ecologies and extracted structures at different stages during their
evolution.

3.2.3 Swarm Constructions in the Arts

In the examples above, the aesthetic judgement of a breeder drove the evolution
of swarm grammars. This works particularly well when an artist searches for in-
novative expressions of certain artistic themes. Swarm grammar constructions are
special in that the dynamics of their construction processes are captured within the
emerging structures. Local interactions determine the placement of construction el-
ements and the flight formations of the swarm. Inherent in any swarm system, the
agents’ actions and reactions result in a feedback loop of interdependencies [43].
The diagram in Figure 9 hints at the complex relationships that arise in boid sys-

12 S. von Mammen et al.

(a) (b) (c)

(d)

(e) (f) (g)

Fig. 7 Illustration of Interactive Manipulation of Swarm Grammar Agents by an External Breeder.
(a) Two agents create an initial structure. (b) A breeder sphere locally infuses energy. (c) Further
growth is initiated by the additional energy. (d-e) Replication of an agent triggers further parallel
construction. (f-g) Expansion of the structure is continued after another energy influx.

tems [58]. Here we don’t even consider indirect communication beyond the ever
changing neighbourhood relations between the swarm individuals: A swarm agent
i perceives a set of neighbours that determine its acceleration. Its changed location,
in turn, affects those swarm mates that perceive i as a neighbour. The emerging dy-
namics are captured in structures that exhibit liveliness and spontaneity, contrasting
themes, rhythmic movements, tension, organic looks, and rigid forms.

Consequently, the artistic interpretation of SG structures can support artistic work
in several ways. For example, we composed pieces of computer-generated SG struc-
tures and traditionally painted motives [47] and looked at inspiring themes and con-
cepts of artistic works as a whole [48]. Within these explorations—inspired by the
architectural potential of swarm grammars—the artist (S.v.M.) combined a collec-
tion of swarm structures to create surreal, artificial worlds (Figure 10 (a) and (b)).
In about 40 interactive evolutionary experiments, the artist bred the sets of swarm
grammar structures displayed in Figure 10 (c) and (d).

During the evolutionary runs, the artist followed two main objectives. First, ro-
bust looking beams should emerge that form a structural mesh, thus opening vast
spaces. Secondly, fuzziness, continuity and the resemblance to organic forms should
warrant the authenticity of the generated virtual worlds. The colour gradients in
the backgrounds emphasize the wholesome, fluent structural architecture in Figure
10(a) and the liveliness and dynamics caught in the erratic structures of Figure 10(b)
with warm and cold colour palettes, respectively.

Swarm-based Computational Development 13

Fig. 8 Collage of Designs Generated by Swarm Grammars. The figure in the centre illustrates a
swarm grammar garden ecology, within which the surrounding designs were created.

Fig. 9 The black arrows
in the upper box show the
direction of influence between
perception, action and state
of a swarm agent i. The S-P
tuples stand for the state and
perception modules of other
agents that interact with agent
i.

Perception

Swarm
 Agent i

State

Action

S P

S P

S P

S P

S P

S P

neighbors of iagents seeing i

3.3 Rule-based Swarm Grammars

As a second generalization of our SGs, we wanted to go beyond fixed parameters,
such as the regularly timed application of reproduction rules or the continuous place-
ment of construction elements. SG rules are now expanded by conditions that each
individual agent would relate to, e.g., specific internal states or perception events.
An example of such a rule-based genotype is illustrated in Figure 11.

14 S. von Mammen et al.

(c)

(a) (b) (d)

Fig. 10 Diptych of the two pieces (a) caméléon and (b) bighorn sheep. Acrylic medium on canvas,
23” x 38”. Selections of swarm grammar structures bred for the diptych are displayed in (c) and
(d), respectively. (S.v.M., 2008)

Fig. 11 An example of a
behavioural rule of a swarm
grammar agent. Instead of
continuous construction and
regularly timed reproduction,
this rule triggers the repro-
duction of two agents (types
A and B) and the construc-
tion of a rod whenever the
acting individual perceives a
construction template.

<RULE>

</RULE>

</HEAD>

</BODY>

<HEAD>

<BODY>

Construction Rod

Construction Template

Reproduction A B

3.3.1 Breeding Architecture

Perception-induced rule execution allows for indirect, so-called stigmergic com-
munication by which social insects, such as ants, termites and some wasp and
bee species, are assumed to coordinate large parts of their construction behaviours
[19, 5, 6]. Stigmergy can then be harnessed to create assortments of innovative ar-
chitectural SG designs by means of computational evolution [42, 44]. In order to
automatically drive the evolutionary processes, we need a way to assign fitnesses to
SG specimens. There are several aspects that should be taken into account when it
comes to the measuring of structural complexity, as we have outlined in section 2.2.

In addition to the analysis of the genotype of a swarm grammar, two aspects can
be incorporated into the fitness assignment of an evolutionary algorithm: (1) the con-
struction processes and (2) the emerging structures. Structural analysis is either very

Swarm-based Computational Development 15

course grained, considering for example the overall volume and the proportions, or
computationally very costly, for instance when attempting to identify hierarchies
and re-occurring modules. Therefore, we put an emphasis on the observation and
classification of the construction processes.

In particular, in a series of SG breeding experiments for architectural design,
we promote productivity, diversity and collaboration, and we prevent computational
outgrowth of the generated structure. Our detailed evolutionary approach to auto-
matic SG evolution is presented in [42]. In order to reward productivity, the SG
constructions are compared with (simple) pre-defined structures. More specifically,
construction elements built inside a pre-defined cubic shape contribute positively to
an SG’s fitness, whereas constructions outside the cube decrease it. This is similar
to an approach we used in [45]. Diversity is traced as the total number of expressed
agent genotypes, as well as the number of deployed construction materials or con-
struction mechanisms. In order to foster collaboration between the SG agents, we
observe the numbers of perceived neighbours averaged over all active agents and
over time. Low values of perceived neighbours imply that no direct interactions are
taking place, whereas large values mean that the agents are trapped within small
spaces. Randomly initialized swarm grammar systems can quickly exhaust the pro-
vided computing power: Fast, possibly unconditional sequences of SG rule appli-
cations may result in exponential agent reproduction. Temporarily, such explosions
of activity could be beneficial, for example in designs that produce large numbers
of ramifications. In the long run, however, such an overwhelming demand on com-
puting requirements has to be avoided. As a simple means to prevent prohibitive
outgrowth, yet allowing for temporary leaps of activity, we set a time limit for the
computation of one specimen. Thus, we filter inefficient SGs during the evolution-
ary experiments.

Three examples of architectural SG models are displayed in Figure 12. The
flowing and organic shapes built by the bio-inspired, generative SG representation
promise to support the design efforts of architects [44, 60]. Utilizing the extended
swarm grammar model to breed architectural designs is not only interesting from a
creative and innovative perspective on aesthetics, but it also bears the potential for
optimizing architectural designs in respect to ecological and economical aspects.
Such ecological criteria could be temperature regulation and ventilation [15], adap-
tation of building structures to the surrounding landscape, utilization of sun exposed
structures for electric power generation, and other evolvable and measurable fea-
tures [17].

3.3.2 Driving Evolution with EvoShelf

In order to further the design and the analysis of evolutionary design, we have de-
veloped EvoShelf [8], a reliable storage/retrieval system for computational evolu-
tionary experiments and a fast browser for genotype and phenotype visualization
and evaluation (Figure 13). Through EvoShelf we have been able to discover that
our preliminary breeding experiments (section 3.3.1) tend to produce over-fitting

16 S. von Mammen et al.

(a) (b) (c)

Fig. 12 The displayed architectures are the result of automated evolutionary computation pro-
cesses. They emphasize the dynamics of the swarm-driven construction process.

SG populations and predominantly promote the variety of deployed construction
elements.

Fig. 13 We were able to improve our architectural SG experiments by means of our management
and analysis software EvoShelf.

Figure 14(a) depicts a corresponding, representative FitnessRiver plot that was
created by EvoShelf. Our FitnessRiver visualization method stacks the fitness values
of individuals on top of each other. The fitness of an individual is proportional to
the width of its current. Different colours are used to distinguish between succes-
sive individuals. Discontinuing currents indicate the removal of an individual from
the evolutionary process. In the FitnessRiver visualization the x-axis represents the
sequence of generations. The shown plot exposes stagnating and fluctuating fitness

Swarm-based Computational Development 17

development after about 100 generations. A bias towards specific construction ma-
terials deployed by the SG specimens could be identified in star plots representing
phenotypic features as seen in the corners of the SG visualizations in Figure 14(b).
Based on these investigations we are able to adjust our fitness functions and the
configuration of our breeding experiments [8].

0 50 100 150
250 300

generation

ac
cu

m
ul

at
ed

 fi
tn

es
se

s

0 10 20 30 40

50 60 70 80 90

100 120 140 160 180

200 220 240 260 280

(a) (b)

Fig. 14 EvoShelf provides the user with quick visualization methods for global fitness trends and
local comparisons, as in (a) the FitnessRiver plot and (b) star plots of the specimens’ features,
respectively.

3.4 A Streamlined, Accessible Swarm Simulation Framework

Rule-based swarm systems seem to be a good fit to capture biological models [29,
30, 28, 32]. However, there are several hurdles that make it hard to deploy swarm
models in fields outside of computer science:

1. The predicates and actions that drive the simulations—e.g. the detection of a
chemical signal or the deposition of a particle—depend on the modelling do-
mains and usually have to be re-implemented for different experiments. Still,
many of these operations can be abstracted, parametrically adjusted and reused
in different contexts. The integration of these operations into a rule-based for-
malism also makes it possible to utilize functionality from various computational
engines such as physics engines or general differential equation solvers within a
single modelling framework.

2. Depending on the degree of specificity of a rule’s condition and its associated
actions, a theoretically simple interaction can result in an over-complicated rep-
resentation. A graphical description of the predicates and the associated actions
can amend this issue.

18 S. von Mammen et al.

3. As swarm simulations often exhibit complex behaviours, little details—for ex-
ample the order of execution and the discretization steps in a simulation—can
greatly influence the outcome. Therefore, we think it is crucial to design models
based on a unified algorithmic scheme.

We have devised swarm graph grammars (SGGs) to alleviate some of the chal-
lenges discussed above [46]. SGGs provide a graphical, rule-based description lan-
guage to specify swarm agents and a generalized algorithmic framework for the
simulation of complex systems. Fundamental operations such as the creation or
deletion of programmatic objects, as provided by formal grammars, are part of the
SGG syntax. Through SGGs we can capture (metabolic) functions at multiple bi-
ological scales. We can capture processes of secretion and diffusion [68] as well
as consumption/removal and production/construction [38]. As a consequence of the
graph-based syntax, SGGs capture the simulation state in a global graph at each
computational step. Thereby, the continuous re-shaping of an interaction topology
of a dynamic system is traced and interdependencies that emerge over the course of
a simulation can be represented graphically.

3.4.1 SGG Rule Description

An SGG agent’s behaviour is described by a set of rules (Figure 15). Each rule tests
a set of predicates (solid edges on the left-hand side) and executes a set of actions
(dashed edges on the right-hand side) in respect to the acting agent itself (reference
node) or other agents. Nodes represent individual agents or sets of agents. In Figure
15, the acting agent is displayed as an orange node with a black border. Other agents
or agent groups are depicted as grey nodes. The application of the rule is associated
with a frequency and a probability. Sets of predicates can attempt to identify an arbi-
trary number of agents. The relative location, i.e. the two-dimensional coordinates,
of the node on the left-hand side of the rule is matched with its appearance on the
right-hand side of the rule. If a node does not reappear on the right-hand side, it im-
plies that its corresponding agent has been removed. If a node appears at a location
that is unoccupied on the left-hand side, a new node is created. Figure 15(a) shows
an example rule. This rule is applied with a probability of p = 0.3 at every fourth
time step (∆ t = 4) of the agent simulation. One (arbitrarily chosen) node that fulfills
predicateX and predicateY is affected by actionJ and actionK. Also note that a new
node is created and is initialized, for which no reference had existed before. In case
there are at least 6 nodes that fulfill predicateZ, they will all be removed.

3.4.2 Swarm-based Embryogeny & Morphological Development

Swarm graph grammars enable us to closely collaborate with researchers from other
disciplines such as architecture, biology or medical sciences. Following the foot-
steps of previous works in artificial embryogeny and morphogenetic engineering
[9, 2, 37, 3, 13], we have begun to investigate simulations of biological develop-

Swarm-based Computational Development 19

predicateX

predicate Z
(>6)

p = 0.3

Δt = 4
predicateY

predicateX
actionJ

actionK

initialize

g
r
o

w

not mature

p = 1.0

Δt = 1 grow

m
a
t
u

r
e Growth

Factor

close to p = 1.0

Δt = 1

(>0)

mature
produce
mitogen

p
r
o

li
f
e
r
a
t
e

initialize

mitogen

p = 1.0

Δt = 1 reset

(a) (b)

Fig. 15 (a) An SGG rule that queries the reference node itself (orange), other individuals (grey) and
sets of interaction candidates. The consequence of the rule defines the interactions, such as deletion
of nodes and initialization of a new node. (b) Three rules to describe a simple developmental
process model.

mental processes. In a series of (at this point naive) experiments we integrated high-
level SGG agent behaviours (growth, maturation and proliferation) with physical
mechanics (collision and impulse resolution). Figure 15(b) shows the applied SGG
rules which configure cells to grow until they reach maturity (predicates not mature

and mature). Mature cells that are close to a Growth Factor increase their internal
mitogen concentration which in turn instigates proliferation (modelled as reset of
the acting cell and initialization of a second cell).

Accordingly, in the simulation shown in Figure 16, tissue cells (blue: not mature;
red: mature) within the vicinity of a signalling molecule (green) start to proliferate.
Collision resolution through an embedded physics engine allows the cells to assem-
ble2. The emerging protuberance is slanted to the right in accordance with the initial
distribution of signalling molecules.

Initially, we were surprised to see that the protuberance in Figure 16 turned out
symmetrical, despite its one-sided development. We speculated that this was due to a
lack of simulated cell polarization. However, after a series of systematic simulations,
we found out that the effects of polarization would, in combination with prolifera-
tion, still be overturned by the physics interactions and again result in spherically
distributed, aggregated cells (Figure 17).

Using this same agent-based approach, we have begun tracing embryogenic de-
velopments in mice. Volumetric embryo data provides a basis to populate initial
tissue layers with cells (Figure 18). Basic intra- and inter-cellular interactions will
then dictate the shaping of existing and the creation of new tissue layers as shown
in the mesh-deformation in Figure 19. Here sentient swarm agents play the role of
vertices on a graphical surface. In this context, dynamic mesh generation and ma-
nipulation could become part of the agents’ sets of possible actions [66].

2 In the given experiment we rely on the Bullet physics engine, http://bulletphysics.org

20 S. von Mammen et al.

t = 177 t = 385 t = 695

1

t = 1287 t = 1754 typical interaction graph
(here for t = 500)

Fig. 16 The proliferation of mature cells (blue: premature; red: mature) is dependent on the prox-
imity to growth factors (green). At any time of the simulation, large numbers of agents are informed
by growth factors leading to typically dense but homogeneous graphs that reflect their interactions.

(a) (b) (c)

(d) (e) (f)

Fig. 17 (a)-(c) show the same proliferation process as in Figure 16 but with only one initial cell
(growth factors are illustrated as black cubes); (d)-(e) show two simultaneously growing protuber-
ances, whereas the cells on the right-hand side obtain a polarization aligned towards the polariza-
tion signal to the right (black box).

4 Summary and Conclusion

Inspired by the construction abilities of social insects, we started investigations into
virtual constructive swarms [31]. We designed swarm grammars (SGs) as a com-
putational developmental representation that combines the ideas of artificial swarm

Swarm-based Computational Development 21

(a) (b) (c) (d)

Fig. 18 (a) We start with a volumetric scan of a mouse embryo, (b) zoom into the region of interest
and (c)-(d) populate it with swarm agents.

(a) (b) (c)

Fig. 19 Swarm agents occupy the vertices of a three-dimensional surface which is deformed based
on their interactions and movements.

simulations3 with the compositional regulation expressed by formal grammars [7].
L-systems are a prominent approach to translate formal grammars (rewrite rules)
into the realm of developmental models [40] (section 3). SGs allow for completely
unrestrained interaction topologies and provide a simple way to integrate interac-
tions beyond population control and fixed local neighbourhood relationships, which
represents an expansion from the more constrained L-systems.

In an iterative process of unification and extension of the initial swarm gram-
mar representation, we first incorporated a complete swarm grammar genotype into
each swarm agent (section 3.2), then started describing its behaviour as a set of
perception-reaction rules (section 3.3). The original idea of using grammatical pro-
duction to determine the composition of the swarm population became part of a
more generic agent-based representation [10, 11]. To even further the modelling ca-
pacity of swarm-based simulations, we designed swarm graph grammars (SGGs) as

3 Artificial swarms can be considered a special case of agent-based modelling with a focus on large
numbers of locally interacting individuals and the potential of emergent phenomena which cannot
be inferred from the individuals’ abilities.

22 S. von Mammen et al.

a means to graphically represent swarm agent interactions and to explicitly model
inter-agent relationships that might influence the dynamics of the simulations (sec-
tion 3.4). Swarm graph grammars provide a modelling language that can be used
for interdisciplinary investigations. In a collaborative project, we have begun trac-
ing complex developmental processes in mice (section 3.4.2).

An expanded degree of freedom in SG representations required systematic ex-
ploration of configuration spaces. We addressed this challenge by means of com-
putational evolution [31, 41, 42]. In particular, we relied on interactive evolution to
explore structural spaces (section 3.1.2) that inspired artistic works [48, 47] (section
3.2.3). We furthered this approach by the possibility to breed large swarm grammar
ecologies in virtual spaces (sections 3.2.1 and 3.2.2). We promoted structural com-
plexity by considering the frequency and diversity of interaction processes among
swarm agents in order to generate interesting architectural designs (section 3.3.1).
More systematic investigations in accordance with scalable complexity measures as
outlined in section 2.2 might yield a better performance in the context of breeding
innovative designs.

With the evolution and exploration of swarm grammars, we have been building
methodologies and toolkits that support modelling and simulation of developmen-
tal systems in a multitude of domains. Evolutionary computation techniques enable
us to find swarm system configurations to trace more or less desired or innovative
outcomes for artistic or scientific simulations. However, we are aware that there
are several major obstacles to be addressed before our methodologies can become
instrumental for broad application. Currently, we focus on two issues. First, we at-
tempt to reduce the computational complexity that inevitably arises from offering
a very generous and expressive representation [65]. Second, we are constantly en-
gaged in improving the usability and accessibility of our modelling representation
itself.

References

1. Banzhaf, W.: Artificial chemistries - towards constructive dynamical systems. Solid State
Phenomena pp. 43 – 50 (2004)

2. Bentley, P.J., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an
evolutionary design problem. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-1999) (1999)

3. Beurier, G., Michel, F., Ferber, J.: A morphogenesis model for multiagent embryogeny. In:
Proceedings of the 10th International Conference on the Simulation and Synthesis of Living
Systems (ALIFE X) (2006)

4. Blackwell, T.: Swarming and music. Evolutionary Computer Music pp. 194–217 (2007)
5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Sys-

tems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New
York (1999)

6. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-
Organization in Biological Systems. Princeton Studies in Complexity. Princeton University
Press, Princeton (2003)

Swarm-based Computational Development 23

7. Chomsky, N.: Three models for the description of language. Information Theory, IRE Trans-
actions on 2(3), 113–124 (1956)

8. Davison, T., von Mammen, S., Jacob, C.: Evoshelf: A system for managing and exploring
evolutionary data. In: Proceedings of Parallel Problem Solving from Nature (PPSN) (2010)

9. De Garis, H.: Artificial embryology: The genetic programming of an artificial embryo. Dy-
namic, Genetic, and Chaotic Programming (1992)

10. Denzinger, J., Kordt, M.: Evolutionary on-line learning of cooperative behavior with situation-
action-pairs. In: ICMAS, pp. 103–110. IEEE Computer Society (2000)

11. Denzinger, J., Winder, C.: Combining coaching and learning to create cooperative character
behavior. In: CIG. IEEE (2005)

12. Deussen, O., Hanrahan, P., Lintermann, B., Mech, R., Pharr, M., Prusinkiewicz, P.: Realistic
modeling and rendering of plant ecosystems. In: SIGGRAPH 98, Computer Graphics, Annual
Conference Series, pp. 275–286. ACM SIGGRAPH (1998)

13. Doursat, R.: Organically grown architectures: Creating decentralized, autonomous systems by
embryomorphic engineering. Organic Computing (2007)

14. Ebner, M.: Coevolution and the red queen effect shape virtual plants. Genetic Programming
and Evolvable Machines 7(1), 103–123 (2006)

15. Farmer, G., Guy, S.: Visions of Ventilation: Pathways to Sustainable Architecture. Department
of Architecture, University of Newcastle upon Tyne, Newcastle upon Tyne,(UK) (2002)

16. Giavitto, J.L., Michel, O.: Modeling the topological organization of cellular processes. Biosys-
tems 70(2), 149–163 (2003)

17. Gowri, K.: Green building rating systems: An overview. ASHRAE Journal 46(11), 56–60
(2004)

18. Hallgrı́msson, B., Boughner, J.C., Turinsky, A., Parsons, T.E., Logan, C., Sensen, C.W.: Ge-
ometric morphometrics and the study of development. Advanced Imaging in Biology and
Medicine pp. 319–336 (2009)

19. Hölldobler, B., Wilson, E.O.: The Ants. Springer-Verlag, Berlin-Heidelberg (1990)
20. Hornby, G.S.: Measuring complexity by measuring structure and organization. In: D. Srini-

vasan, L. Wang (eds.) 2007 IEEE Congress on Evolutionary Computation, pp. 2017–2024.
IEEE Press, Singapore (2007)

21. Hornby, G.S., Pollack, J.B.: Body-brain co-evolution using L-systems as a generative encod-
ing. In: L. Spector, E.D. Goodman, A. Wu, W.B. Langdon, H.M. Voigt, M. Gen, S. Sen,
M. Dorigo, S. Pezeshk, M.H. Garzon, E. Burke (eds.) Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2001), pp. 868–875. Morgan Kaufmann, San
Francisco, California, USA (2001)

22. Hornby, G.S., Pollack, J.B.: Evolving l-systems to generate virtual creatures. Computers &
Graphics 25, 1041–1048 (2001)

23. Hu, D., Marcucio, R.: A SHH-responsive signaling center in the forebrain regulates craniofa-
cial morphogenesis via the facial ectoderm. Development 136(1), 107 (2009)

24. Jacob, C.: Genetic l-system programming. In: PPSN III - Parallel Problem Solving from
Nature, Lecture Notes in Computer Science, vol. 866, pp. 334–343. Springer, Jerusalem, Israel
(1994)

25. Jacob, C.: Evolving evolution programs: Genetic programming and l-systems. In: J.R. Koza,
D.E. Goldberg, D.B. Fogel, R. Riolo (eds.) Genetic Programming 1996: First Annual Confer-
ence, pp. 107–115. MIT Press, Cambridge, MA, Stanford University, Palo Alto, CA (1996)

26. Jacob, C.: Evolution and co-evolution of developmental programs. Computer Physics Com-
munications, Special Issue, Modeling Collective Phenomena in the Sciences (1999)

27. Jacob, C.: Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann Pub-
lishers, San Francisco, CA (2001)

28. Jacob, C., Barbasiewicz, A., Tsui, G.: Swarms and genes: Exploring λ -switch gene regulation
through swarm intelligence. In: CEC 2006, IEEE Congress on Evolutionary Computation
(2006)

29. Jacob, C., Burleigh, I.: Biomolecular swarms: An agent-based model of the lactose operon.
Natural Computing 3(4), 361–376 (2004)

24 S. von Mammen et al.

30. Jacob, C., Litorco, J., Lee, L.: Immunity through swarms: Agent-based simulations of the
human immune system. In: Artificial Immune Systems, ICARIS 2004, Third International
Conference. LNCS 3239, Springer, Catania, Italy (2004)

31. Jacob, C., von Mammen, S.: Swarm grammars: growing dynamic structures in 3d agent
spaces. Digital Creativity: Special issue on Computational Models of Creativity in the Arts
18(1), 54–64 (2007)

32. Jacob, C., Steil, S., Bergmann, K.: The swarming body: Simulating the decentralized defenses
of immunity. In: Artificial Immune Systems, ICARIS 2006, 5th International Conference.
Springer, Oeiras, Portugal (2006)

33. Jones, D.: Atomswarm: A framework for swarm improvisation. Applications of Evolutionary
Computing pp. 423–432 (2008)

34. Kauffman, S.: The origins of order. Oxford Univ. Press New York (1993)
35. Kókai, G., Tóth, Z., Ványi, R.: Modelling blood vessel of the eye with parametric l-systems

using evolutionary algorithms. In: W. Horn, Y. Shahar, G. Lindberg, S. Andreassen, J.C. Wyatt
(eds.) Artificial Intelligence in Medicine, Proceedings of the Joint European Conference on
Artificial Intelligence in Medicine and Medical Decision Making, AIMDM’99, vol. 1620, pp.
433–443 (1999)

36. Kókai, G., Ványi, R., Tóth, Z.: Parametric l-system description of the retina with combined
evolutionary operators. In: Genetic and Evolutionary Computation Conference, GECCO-99.
Orlando, Florida, USA (1999)

37. Kumar, S., Bentley, P.: Biologically inspired evolutionary development. Evolvable Systems:
From Biology to Hardware pp. 99–106 (2003)

38. Kumar, S., Bentley, P. (eds.): On Growth, Form and Computers. Elsevier Academic Press,
London (2003)

39. Kwong, H., Jacob, C.: Evolutionary exploration of dynamic swarm behaviour. In: Congress
on Evolutionary Computation. IEEE Press, Canberra, Australia (2003)

40. Lindenmayer, A.: Developmental systems without cellular interactions, their languages and
grammars. Journal of Theoretical Biology 30(3), 455–484 (1971)

41. von Mammen, S., Jacob, C.: Genetic swarm grammar programming: Ecological breeding like
a gardener. In: D. Srinivasan, L. Wang (eds.) 2007 IEEE Congress on Evolutionary Computa-
tion, IEEE Press, pp. 851–858 (2007)

42. von Mammen, S., Jacob, C.: Evolutionary swarm design of architectural idea models. In: Ge-
netic and Evolutionary Computation Conference (GECCO) 2008, pp. 143–150. ACM Press,
New York, NY, USA (2008)

43. von Mammen, S., Jacob, C.: The spatiality of swarms — quantitative analysis of dynamic
interaction networks. In: Proceedings of Artificial Life XI, pp. 662–669. MIT Press (2008)

44. von Mammen, S., Jacob, C.: Swarm-driven idea models - from insect nests to modern ar-
chitecture. In: C. Brebbia (ed.) Eco-Architecture 2008, Second International Conference on
Harmonisation Between Architecture and Nature, pp. 117–126. WIT Press, Winchester, UK
(2008)

45. von Mammen, S., Jacob, C., Kókai, G.: Evolving swarms that build 3d structures. In: CEC
2005, IEEE Congress on Evolutionary Computation, pp. 1434–1441. IEEE Press, Edinburgh,
UK (2005)

46. von Mammen, S., Phillips, D., Davison, T., Jacob, C.: A graph-based developmental swarm
representation & algorithm. In: ANTS 2010: Seventh International Conference on Swarm
Intelligence. Springer (2010)

47. von Mammen, S., Wissmeier, T., Wong, J., Jacob, C.: Artistic exploration of the worlds of
digital developmental swarms. LEONARDO (2010)

48. von Mammen, S., Wong, J., Jacob, C.: Virtual constructive swarms: Compositions and inspira-
tions. In: Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2008, Lec-

ture Notes in Computer Science, vol. 4974, pp. 491–496. Springer-Verlag, Berlin-Heidelberg
(2008)

49. McKean, E. (ed.): The New Oxford American Dictionary. Oxford University Press (2005)
50. Mech, R., Prusinkiewicz, P.: Visual models of plants interacting with their environment. In:

SIGGRAPH’96, pp. 397–410. ACM SIGGRAPH, New York, New Orleans, Louisiana (1996)

Swarm-based Computational Development 25

51. Michalewicz, M.T. (ed.): Plants to Ecosystems: Advances in Computational Life Sciences.
CSIRO Publishing, Collingwood, VIC, Australia (1997)

52. Michel, F., Beurier, G., Ferber, J.: The turtlekit simulation platform: Application to complex
systems. In: Proceedings of Workshop Sessions at the 1st International Conference on Signal
& Image Technology and Internet-Based Systems (IEEE SITIS05), pp. 122–128. IEEE Press
(2005)

53. Mock, K.J.: Wildwood: The evolution of l-system plants for virtual environments. In: IEEE
Conference on Evolutionary Computation, pp. 476–480. IEEE Press, New York, Anchorage,
AL (1998)

54. von Neumann, J., Burks, A.W.: Theory of self-reproducing automata. University of Illinois
Press, Urbana and London (1966)

55. Polack, F.A.C., Andrews, P.S., Ghetiu, T., Read, M., Stepney, S., Timmis, J., Sampson, A.T.:
Reflections on the simulation of complex systems for science. In: ICECCS 2010: Fifteenth
IEEE International Conference on Engineering of Complex Computer Systems, pp. 276—285.
IEEE Press (2010)

56. Prusinkiewicz, P., Hammel, M., Hanan, J., Mech, R.: Visual models of plant development. In:
G. Rozenberg, A. Salomaa (eds.) Handbook of Formal Languages. Springer, New York (1997)

57. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer-Verlag
(1996)

58. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Computer Graph-
ics 21(4), 25–34 (1987)

59. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education (2010)
60. Van der Ryn, S., Cowan, S.: Ecological Design. Island Press (2007)
61. Salazar-Ciudad, I.: Tooth Morphogenesis in vivo, in vitro, and in silico. Current Topics in

Developmental Biology 81, 342 (2008)
62. Schuster, P.: How does complexity arise in evolution. Complex. 2(1), 22–30 (1996)
63. Settles, M., Nathan, P., Soule, T.: Breeding swarms: a new approach to recurrent neural net-

work training. In: GECCO ’05: Proceedings of the 2005 conference on Genetic and evolu-
tionary computation, pp. 185–192. ACM Press, New York, NY, USA (2005)

64. Settles, M., Soule, T.: Breeding swarms: a ga/pso hybrid. In: GECCO ’05: Proceedings of the
2005 conference on Genetic and evolutionary computation, pp. 161–168. ACM Press, New
York, NY, USA (2005)

65. Shirazi, A.S., von Mammen, S., Jacob, C.: Adaptive modularization of the mapk signaling
pathway using the multiagent paradigm. In: Proceedings of Parallel Problem Solving from
Nature (PPSN) (2010)

66. Smith, C.: On vertex-vertex systems and their use in geometric and biological modelling.
Ph.D. thesis, University of Calgary (2006)

67. Spector, L., Klein, J., Perry, C., Feinstein, M.: Emergence of collective behavior in evolv-
ing populations of flying agents. In: Genetic and Evolutionary Computation Conference
(GECCO-2003), pp. 61–73. Springer-Verlag, Chicago, IL (2003)

68. Walker, D.C., Southgate, J.: The virtual cell–a candidate co-ordinator for ’middle-out’ mod-
elling of biological systems. Briefings in Bioinformatics 10(4), 450–461 (2009)

69. Wolfram, S.: Cellular automata as models of complexity. Nature 311, 419–424 (1984)
70. Yu, J.: Evolutionary design of 2d fractals and 3d plant structures for computer graphics. Mas-

ter’s thesis, Department of Computer Science, University of Calgary (2004)

