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1.1 The Great Complexity Challenge

The inherent complexity of many man-made or naturally occurring

challenges—such as understanding the influence of human interference in

ecosystems or interacting biological processes—is widely acknowledged.

The ubiquitous networking paradigm has highlighted the elaborate webs

of interactions and interdependencies between living beings, objects and

processes. Yet we still lack an algorithmic framework capable of tackling

the complexity of the world in terms of representation and computation.

Thus, any step toward understanding—and predicting—the dynamics and

emergent phase transitions of complex systems would greatly contribute

to the advancement of science. Present-day societal challenges that could

benefit from this kind of knowledge are plentiful, and can be found in

fields ranging from the life sciences to economics and engineering. To some

extent, the mathematical analysis of complex systems can provide some in-

sights about the phase transitions that may occur over time [Haken (1980);

Fuchs (2013)]. However, this approach requires a great deal of effort and

does not scale well, becoming intractable as the number of factors involved

in a system increases.

What is more, the interactions that drive system transitions have to

be identified and formalised a priori by the modeller. In contrast, an ideal
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model building process should require as little information as possible about

a system’s actual behaviour. It should be enough to only describe how the

parts of a system interact, without building in any assumptions about when

feedback cycles might be triggered to snowball into fundamental global sys-

tem changes. In a model of this kind, the parts of the system that interact

according to sets of internal rules (and so without any external, higher-level

drivers of their collective behaviour) are known as ‘agents’. Each agent in

such a model is a self-contained entity with its own individually accessible

data, states and behaviours. The sequences of interactions among agents

and the traversal of their states in a computational simulation correspond

to the emergent feedback cycles and phase transitions of complex systems.

If we were able to detect patterns that are precursors to phase transitions

and patterns that correspond to the system’s global dynamics, we would

automatically become aware of emergent phenomena.

Inspired by some of the grand ideas in artificial intelligence, machine

learning, and artificial life, we present the SOMO (self-organised middle-

out) algorithm, a concept that might contribute to the outlined quest. Its

goal is dynamic abstraction, i.e. bottom-up learning given enough train-

ing examples and top-down validation to reaffirm or revoke the previously

learned concepts. We take this opportunity to present the SOMO con-

cept with an emphasis on its visionary aspects—how the idea could evolve

from its most recent conception, its current implementation, towards that

desirable, dreamed-about computer after me.

1.2 Self-organising middle-out abstraction

Early 2011 we presented the self-organised middle-out (SOMO) con-

cept [von Mammen et al. (2011)], an approach that automatically builds

abstractions bottom-up and validates and revokes them top-down—possibly

both at the same time but in respect to different model aspects. As it works

in both directions and as it bridges the gap between the orders of the model,

it can be considered to operate at the ‘meso’ level of analysis.

Its foundation is an unsupervised learning method that observes and

learns processes which occur—that is to say, emerge—during a computa-

tional simulation. A learned process pattern provides a shortcut to driving

the evolution of the simulation. Instead of considering the series of all

conditions that lead to the process’ changes one step at a time, it suffices

to recognise the emergence of the process. As a consequence, the detailed
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interactions are no longer executed but, whenever the according precon-

ditions hold, the observed side effects are enacted in the system. Such

automatically learned patterns may also be understood as abstracted pro-

cess descriptions and they hold the promise of helping us to understand,

explain, and compute complex phenomena in simple terms.

SOMO observes the simulation data and identifies process patterns, ‘bi-

ased’ only in terms of its representations (meaning that the way interaction

patterns are represented by SOMO can influence the kinds of patterns that

can be detected and so bias the result). The identified patterns are used

to refine the computational model that drives the simulation process being

observed. As the SOMO algorithm continues to observe and learn the pat-

terns that emerge from the simulation, it continually increases the model’s

level of abstraction by introducing hierarchies of abstracted patterns. It

is hoped that such hierarchies will to some extent coincide with the real-

world conceptual boundaries that we identify in natural systems, such as

the subdivision of the organisational complexity of animal anatomy into

cells, tissues and organs. Since such abstractions are inevitably subject to

noise and unknown conditions, we also introduce a confidence measure that

is associated with each abstraction.

In the next section (Sec. 1.3), we present a variety of concepts that are

both inspiring the SOMO algorithm and closely related to it. Section 1.4

introduces a (borrowed) example that nicely illustrates the emergence of

high-order physiochemical compounds. Based on this example, we outline

the SOMO concept in Sec. 1.5. Current SOMO implementations are ex-

plained in Sec. 1.6 and futuristic implementations around it are presented

in Sec. 1.7. In Sec. 1.8, we conclude with a short vision about SOMO’s

potentials.

1.3 Optimising Graphics, Physics & AI

Various research interests and complementary research trends have been

driving the design of the SOMO concept:

• There is the concept of emergence that tries to capture novel prop-

erties and descriptions of (sub-)systems of higher orders [Baas and

Emmeche (1997)].

• There is the need for integrative approaches to representing, mod-

elling and simulating multi-scale systems—this challenge is cur-

rently addressed by passing up and down value sets from sepa-
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rate, sometimes fundamentally disparate, model components [Eiss-

ing et al. (2011); Horstemeyer (2010)].

• And, there is the need for abstraction: a model so comprehensive

as to span several degrees of scale, to host a large body of systems

and subsystems, and to independently consider their intricate be-

haviours quickly outmatches the computing capacities of even the

greatest of supercomputers.

Abstraction is not only the essence of model building in the first place

but it is also the key to expressive and efficiently solvable models. We pos-

tulate that a model should be as detailed and as comprehensive as possible,

while its (numeric) utilisation for the purpose of rather specific predictions

or simulations should automatically lead to model simplifications and ab-

stractions. Whenever possible, this should happen without jeopardising the

model validity; whenever necessary, the loss of accuracy the abstractions

cause should be made transparent. SOMO pursues this endeavour by build-

ing and maintaining hierarchies of abstractions learned from observation.

The higher the level of hierarchy, the fewer interactions have to be tested.

Such tests are typically intertwined with expensive condition queries—only

the state changes of the simulation will be performed to drive its evolution.

Similar shortcuts by means of hierarchical organisation have been con-

ceptualised and implemented in numerous other contexts. For instance, dif-

ferent levels of detail (LOD) of computer graphics resources such as meshes

(differing in the numbers of vertices) and textures (differing in the numbers

of pixels) are typically organised in hierarchies to allow for fast access to

the most commonly used assets, whereas the graphics scenes themselves are

often subjected to spatial partitioning hierarchies that allow algorithms to

quickly determine which graphics objects need to be rendered in a given

view port [Möller et al. (2008)].

There is a significant overlap between these culling techniques and mech-

anisms to speed-up the detection of collisions between geometric objects,

one of the foundational functionalities of physics engines—both rely on the

quick discovery of objects at specific locations. In general, the locations of

the geometries may change, which is why the spatial partitioning hierar-

chies are dynamically created and adjusted. Dynamic adjustments of the

bounding volume hierarchies are also required if the geometries themselves

are dynamic, for instance if they change their scale. In this case, a method

has been shown to yield rather good results that updates the upper half of

the hierarchy bottom-up if one of the geometries changes. The lower half
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is only updated selectively in a top-down fashion, as soon as the changed

geometry is accessed [Larsson and Akenine-Möller (2001)].

Hierarchical optimisations have also been deployed in the field of artifi-

cial intelligence. For example, costly automated planning routines can be

pruned early, if high levels of a hierarchy reflect the adherence of a plan’s

most critical variables [Sacerdoti (1974)]. Similarly, reflective agents need

to plan their coordination—hierarchical abstractions of their interaction

partners may increase their decision performance, too [Durfee (1999)].

1.4 Emergence and Hierarchies in a Natural System

In Rasmussen et al. (2001), an approach, or “Ansatz”, to capturing the

emergence of physicochemical compound objects with according emergent

properties is described. We want to use their example to illustrate the

mechanics of SOMO. In their experiments, attracting, repelling, and bond-

ing forces among charged monomers and water molecules are shown to

result in higher-order polymer and micelle formations—at each level, the

resulting compounds obtain novel physical and chemical properties. In the

model, hydrophobic monomers bind to hydrophilic monomers as well as to

polymerised hydrophobic monomers, which results in 2nd-order amphiphilic

polymers which, in turn, aggregate in 3rd-order micelle structures. At each

stage, the resultant compounds exhibit properties different from the under-

lying constituents; The aggregating nature of the process yields compounds

of greater size but it also leads to varying qualitative, geometric structures

and differentiated physiochemical behaviours. An adapted illustration of

the emergent process is shown in Figure 1.1.
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Fig. 1.1 (a) Hydrophobic and hydrophilic monomers immersed in water. (b) Polymers

emerge as hydrophobic monomers bind to hydrophilic monomers. (c) A micelle-like
structure forms based on aligned polymers with hydrophobic heads and hydrophilic tails.
These illustrations are adapted from Rasmussen et al. (2001).
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The higher-order objects form based on the interactions and (emer-

gent) relationships among the axiomatic objects of the given model. Often,

higher-order objects can be captured as spatial aggregations but in general

they should be regarded as networks of arbitrarily complex topologies. In

accordance with Baas and Emmeche (1997), the authors also stress that

emergent characteristics of a (sub-)system are observable in terms of its

interactions.

CH2 CH3COOH COOH

Polymer Polymer

Micelle

...

...

Fig. 1.2: Order

hierarchy.

We reflect the subsumption of individual elements by

emergent entities of greater order in a hierarchical struc-

ture. In the given case, polymers are built from monomers

and aggregate to form micelle-like structures (Fig. 1.2). As

Rasmussen et al. suggest, an observer needs to identify

the emerging units and their emergent properties [Ras-

mussen et al. (2001)]; In our approach such observers are

immersed in the simulation and observe the state and in-

teraction patterns of the model entities. The observers further simplify the

entities’ computational representations in accordance with the learned be-

havioural patterns. Individual entities and their behaviours are subsumed

by higher order entities that perform the learned patterns only in order

to prune the computational complexity. However, we do not postulate a

necessary coincidence between the learned high-order entities and emer-

gent entities that we ourselves would identify, as in the micelle-example.

Rather, we assume that there is a great chance that the learned patterns

and the ones recognised by humans overlap to some extent—it is possible

that the human-identified orders represent all but a small fraction of the

automatically generated abstractions. In order to clarify this distinction,

we step through an exemplary run of the SOMO algorithm in the next

section, using the self-assembly of micelles as a running example.

1.5 The Technical Concept of SOMO

For our approach, we consider the elements of a model agents, described

by their states and behaviours (for a more in-depth formalisation of the

agent concept, consider, for instance, Denzinger’s generic agent definition

[Denzinger and Winder (2005)]). In our example, we distinguish between

freely moving reactive agents that represent molecular compounds (similar

to artificial chemistries [Dittrich et al. (2001)]) and the environment they

are immersed in. In particular, in our running example, a large number
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of hydrophobic and hydrophilic monomers is immersed in an aqueous envi-

ronment. With the beginning of the simulation, the agents start to interact

with each other and with the environment based on their behavioural rules.

Together with the initial configuration of the system, these rules determine

the result of the simulation, and if correctly phrased, they would result in

the emergent phenomena described in the previous section.

1.5.1 Observation of Interactions

In addition to the model agents comprising molecular compounds and the

environment, the SOMO concept introduces observer agents that moni-

tor the interactions of the model agents as well as the conditions under

which they occur. In the context of the micelle-forming example, observers

do not have to make assumptions about the model agents’ internal states

and behaviours—only their actually triggered, externally observable state

boundaries (i.e., the observed boundaries of the domain over which the state

variable is defined) and state changes are relevant. However, the potency

of the observers can be increased by granting them access to the agents’

behavioural rule sets, to their internal states, and, thus, to their activated

rules1. Following the fundamental concept of cause and effect, the observed

interactions are recorded in terms of states and state changes. States that

lead to certain state changes are translated into boundary conditions, or

predicates, whereas state changes simple describe the transition from one

state attribute value to another. Boundary conditions of time (i.e., the

agents’ timing), proximity between agents, or their mere presence or ab-

sence come to mind. Conjointly occurring pairs of boundary conditions

and state changes are stored in interaction histories over a certain period

of time. A sliding time window reduces the storage required and lets the

observers “forget” rare or singular events.

In the example, a pair of hydrophilic and hydrophobic monomers may

attract each other, then stick together. A strong correlation between their

locations would emerge, quickly resulting in a static relationship between

their position states. The molecules might stick together over a long pe-

riod of time. An observer would identify this behaviour and infer from

the observations that these molecules will, under the given conditions, con-

tinue to stick together. Therefore, instead of continuously adjusting their

1Focusing on the observation of state changes deems simpler than considering the un-
derlying, responsible behavioural representations, as those would have to be correctly
interpreted and related to the simulation context by an external observer.
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locations based on their proximities at each time step of the simulation,

an abstraction is introduced into the model: For now, the monomers are

considered constantly attracted, or bonded. These bonded monomers, or

polymers, are likely to aggregate in a micelle-like organisation because of

the interplay with the aqueous environment: The polymers’ heads align

to face the water molecules, whereas their tails avoid them. Again, this

formation is recognised and learned by the SOMO observers.

Instead of using specialised observers, the agents that make up the

model can themselves observe interactions and the environment. In many

cases, however, it is desirable to separate SOMO logic and the simulation

model to maintain a clear distinction between the behaviours of the auto-

matically learned abstractions and the original model. Independent of the

kind of agent that takes on the task of observation and abstraction, the

observers are subjected to certain restrictions. First, they are subject to

an “event horizon”, i.e., they do not perceive the entire system but only

portions of it. This is due to the fact that an omniscient observer would

have to deal with a vast amount of data, nullifying the scalability benefits

SOMO was designed for and making it necessary to introduce limits of the

observations. Second, even though observers make no assumptions about

the model of an observed agent, they are limited to knowledge they have

been granted access to—they can only perceive states and state changes

they were designed to sense. Therefore, if interactions take place hidden

from the observers, for instance direct messaging between agents based on

hidden internal states, these interactions will not become part of the inter-

action history.

These restrictions bias the abstraction process. If the scope of the sim-

ulation is well-defined, these restrictions can be mitigated rather easily—

the SOMO agents can be distributed across the interaction space to cover

important “hot spots” and the system designer can ensure the agents’ abil-

ity to observe all relevant states and state changes. For more ambitious

projects, however, it might be necessary to create a wide variety of ob-

servers, capable of identifying many different kinds of interactions.

Heterogeneous configurations are also possible. For instance, a subset of

agents might be part of the original model and yet observe and abstract oth-

ers, whereas the remainder of the agent population might be either model

agents or observer agents. Naturally, hybrid agents, that play both roles,

are useful, if an abstraction hierarchy is part of the model. In the follow-

ing, in order to avoid additional case distinctions, we will only distinguish

between (1) a strict separation between observer and model agents, and (2)
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the capacity of all agents to observe and abstract.

1.5.2 Interaction Pattern Recognition and Behavioural Ab-

straction

The entries of the interaction history not only comprise some anonymous in-

formation about states and subsequent state changes but they also reference

the involved interaction partners. Similar to [Ramchurn et al. (2004)], we

use the interaction histories as databases for finding patterns in the agents’

interaction behaviours. Previously unknown patterns, or motifs, can be

identified in time series relying on various techniques such as learning par-

tial periodic patterns [Han et al. (1999)], applying efficient, heuristic search

[Chiu et al. (2003)], online motif search [Fuchs et al. (2009)], and even the

identification of patterns of multiple resolutions [Wang et al. (2010)]. Motif

detection is adapted to interaction histories by assigning symbols, e.g., A or

B, to specific log entries and finding patterns in the resulting strings, e.g.,

BBABCCBBABDA. In the given example BBAB is a motif candidate.

The recurring sequence of interactions contained in the motif as well as

the conditions that are part of it can be the basis for a behavioural abstrac-

tion. If interactions are recognised repeatedly, they can be abstracted in

several ways—most simply, the predicates are not always checked; in full

glory, a complex sequence of interactions can be fully abstracted and only

the aggregated side effects, i.e. the state changes, can be enacted in the

system. Hence, a motif that provides comprehensive information about the

interaction partners and the actual interactions, would allow to rewrite the

agent rules as efficient sequences of unconditional instructions, with source

and target agents readily in place.

A repeatedly occurring motif in the example system is the interaction

between hydrophilic head and hydrophobic tail of a polymer. As the effect

of this interaction stays the same once the monomers have bonded, it is

not necessary to check these conditions and calculate the result of the in-

teraction any longer. An observer that has monitored this interaction can

thus suspend the rules that cause the effect but rather enact it directly.

Of course, such an intervention requires direct access to the agents’ rule

bases and might not be possible in some systems (cf. Sec. 1.5.5). Instead

of suspending a specific agent’s behavioural rules directly, it’s possible to

subsume the agent as a whole. The next section will shed more light on

this approach of hierarchical agent subsumption.
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1.5.3 Creating and Adjusting Hierarchies

The polymer formation from simpler monomers provides an example for an

abstraction even more powerful than simplifying specific interaction rules:

If the agents keep interacting in a predictive manner, among each other and

with their environment, they can be subsumed by onemeta-agent that takes

their place and that exhibits their external behaviour without continuously

(re-)evaluating the interactions of its constituting elements. Recursive sub-

sumption of agents and meta-agents yields a hierarchy of ever more abstract

meta-agents.

The formation of hierarchies can be implemented by means of a set of

special operators. In order to establish a hierarchical relationship, an agent

might enter another agent. Alternatively, it might be adopted by another

agent. Both actions yield corresponding parent-child relationships between

the two agents. Such a parent-child relationship is reverted by raising a

child in the hierarchy.

Depending on whether the agents observe their own interaction histories

or specialised observers are used in the system, different kinds of behaviour

are possible:

• If an agent observes its own interaction history and detects that it

constantly interacts with another agent (or a group of other agents),

it can create a new agent, assign its own abstracted behaviour, en-

ter this new agent and deactivate itself. The newly created higher

order agent then adopts all other agents that formed the original

behaviour, adding their abstracted behaviour to its own, and de-

activating them as well.

• If specialised observers are deployed in the system, they create the

meta-agents and assign the agents to be subsumed to them. The

meta-agent then follows the same steps as above.

The end result in both cases is a meta-agent that behaves just like

the group of agents to the outside but does not need to evaluate internal

interactions. The polymer as well as the micelle are examples of structures

that can be abstracted in this fashion. In fact, the micelle shows how a

true hierarchy can form: in the course of the simulation, polymers form

first, are detected by the observers, and abstracted. Then, the polymers

form a micelle which is internally stable and behaves consistently towards

its environment. It can thus again be detected and abstracted so that

only interactions between the micelle and the water molecules have to be
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evaluated.

Repeated applications of these abstraction rules yield continuously

growing hierarchies with increasingly simplified behaviours. At the same

time, hierarchies are dissolved when no longer appropriate. For this pur-

pose, meta-agents repeatedly check for validity of the abstraction they rep-

resent by checking whether the original predicates still hold or by temporar-

ily disbanding the abstractions, checking for the occurence of the abstracted

interactions and either re-abstracting or abandoning the abstraction.

The subsumption of agents and their behaviours closely resembles the

concept of modularisation and crafting hierarchical code. Figure 1.3 shows

an according visual programming perspective on agents, their behaviours

and behavioural interrelations; individual operators (spheres) are recur-

sively nested to allow for the hierarchical design of behavioural modules,

whereas the connections between inputs and outputs (cones) determine

the flow of information at each hierarchical level [von Mammen and Ja-

cob (2013)]. The realisation of this visual modelling language has, in parts,

been motivated by the need of a generic, hierarchical representation of agent

behaviours.

1.5.4 Confidence Measures

The identification of motifs in the interaction history as well as the decision

to resolve a hierarchy are based on confidence estimation. There is a large

body of work around confidence in statistics [Kiefer (1977)] and its effective

standardisation for use in the natural sciences is a vivid research area [Louis

and Zeger (2009)]. Confidence measures are also used in computational

models of trust [Kiefhaber et al. (2012)]. The general idea is to estimate

the probability that a pattern occurs based on its preceding frequency over

a given period of time.

In SOMO, repeated observation of interaction patterns increases the

confidence value. A sufficiently great confidence value leads to abstraction.

The confidence value also determines the abstraction’s lifespan. Confidence

metrics that are too generous, i.e., that cause too long abstraction lifespans,

diminish the accuracy of a simulation. Abstracted behaviours are repeat-

edly checked for validity by either exposing the subsumed agents to the

environment and observing their behaviour again or by checking the pred-

icates that have been identified in the abstraction process. This check can

occur at fixed time intervals, at the designated end of the meta-agent’s

lifespan, or based on heuristics such as the degree of activity in its local en-
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Fig. 1.3 (a) Three quad-copter agents situated closely together. (b) Projection of the

agents’ behavioural operators and their interrelations into the agent space. (c) Focus on
the behavioural network. (d) Introspection of the agents’ behavioural modules reveals
hierarchically nested, lower-level operators and their connectivity.
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vironment. If the abstraction proves valid, confidence rises and the checks

become less frequent. However, if the abstraction proves invalid, confi-

dence sinks and the abstraction is either checked more often or abandoned

completely.

In case of miscalculations, the simulation could be reset to a previous

simulation state, adjusted and partially recomputed. This additional over-

head might make it hard to reach a gain in efficiency. On the other hand,

if confidence is assigned too cautiously to motifs, abstraction hierarchies

do not get a chance to form in the first place. Thus, a careful balance has

to be found. Learning methods as introduced in Sec. 1.5.6 can help find

suitable parameters for concrete scenarios.

1.5.5 Execution Model

Our stated goal is to create a learning abstraction mechanism that makes as

few assumptions as possible about the agents it is working with. However,

in order for behavioural abstraction and hierarchical abstraction to work,

the underlying execution model has to fulfil some requirements.

As mentioned before, behavioural abstraction requires that some of the

internal rules according to which an agent operates can be suspended by

an external entity. This is a natural assumption if agents observe them-

selves or if they can issue the rule’s temporary removal (e.g., to a global

simulation engine). However, if the agents are fully opaque and abstrac-

tion is performed by specialised observers, they need to be able to influence

them directly. As the system designer usually has complete control over the

simulation environment, it should be possible to implement such a feature

within the environment directly.

For hierarchical abstraction, we assume that execution of the agents

follows the hierarchy as well. First, root nodes are considered for execution.

Their children are considered recursively, only if they are active, i.e. if they

are not suspended. Deactivating child nodes instead of removing them

from the simulation entirely is necessary in order to check the abstractions’

validity. Their (inactive) maintenance as part of the simulation hierarchy

also serves to update their states as part of abstracted high-level behaviours.

Since simulations are usually closed systems, it is safe to assume that

a benevolence assumption holds. This means that no agent in the system

has an incentive to deceive the observers and information about states and

state changes is provided freely and without inhibition.
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1.5.6 Learning SOMO: Parameters, Knowledge Propaga-

tion, and Procreation

As an unsupervised learning approach, the self-organised middle-out learner

will have to be able to learn about itself and thus become self-aware in a

sense. A simple example is the requirement to learn which abstractions

worked in the past and which failed to show the desired benefits. If ab-

stractions had to be quickly dissolved, the SOMO observer that created

them obviously did something wrong. Either its observations were faulty

or the parameters were sub-optimal, e.g., the confidence value that is used

to estimate when it is safe to assume that an interaction actually occurs

repeatedly.

On the other hand, multiple SOMO observers deployed in the system

should be able to learn from each other. An abstraction that has proven

valid for one observer should not have to be learned by other observers

in the system. Instead, patterns should be propagated and the knowledge

acquired should be spread throughout the system. This way, the SOMO

learner becomes an organic, learning, improving system within the system

that constantly revises and improves its knowledge about the environment

and itself by the meta-interaction of the individual observers.

Thus, SOMO agents learn on two levels: they adapt and improve their

individual learning and abstraction parameters to become well suited for

the niche they occupy in the simulation; and they exchange knowledge with

each other and incorporate this knowledge in their decision making process.

The former kind of learning can be performed based on the data the

agents collect and based on the perceived results of the actions performed

by the agents. If a behavioural abstraction has proven unstable, the agent

can, e.g., increase the confidence value at which it abstracts behaviour. It

would thus have to be more certain that a behaviour occurs repeatedly

in the same fashion before abstracting it. More excitingly, however, an

additional feedback loop can be added to a SOMO learner that uses the

data collected by the agent to simulate different sets of parameters and the

results they would have yielded. Such a simulation-within-the-simulation

can use an evolutionary algorithm (EA) to evolve and test a population of

parameter sets, simulate the learner’s behaviour and use a fitness function

that checks whether the parameters would have found abstractions that

have actually proven valid. A parameter set with a high number of valid

abstractions gets a higher fitness value and may be adopted. The EA can

run concurrently and change the parameter settings whenever better results
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are obtained than possible with the current parameters. A similar approach

has, e.g., been used to create and simulate new traffic light switching rules

in a traffic-control scenario [Prothmann et al. (2011)].

The latter kind of learning, in which patterns, motifs, parameter sets,

etc. are propagated in the system can be implemented using gossiping al-

gorithms [Eugster et al. (2007)]. These consensus approaches are built

around local communication in which information is primarily exchanged

with neighbours, aggregated, and spread through the system. As the com-

munication is limited to a small number of agents, the system is scalable

and since information is always disseminated along several trajectories, the

system is robust. A major concern in the design of such algorithms is

“eventual consensus”, i.e., ensuring that at one point, all agents have ac-

cess to the information. Fortunately, the SOMO learning approach does

not have this requirement as even local knowledge exchange can improve

its efficiency and thus, relatively simple gossiping protocols can be used.

Whenever a SOMO agents learns a new set of parameters, a new motif,

or that a certain abstraction has proven valid, it can provide this infor-

mation to other agents in its neighbourhood. These recipients can elect

to use this information, e.g., because they are situated in a similar envi-

ronment, or discard them. They can also elect to augment or redact the

information and send them on to their own neighbours. This way, knowl-

edge spreads through the system and allows the learning agents to profit

from the experiences of others. Similar techniques have, e.g., been used

to spread reputation information in multi-agent systems [Bachrach et al.

(2009)].

For the transmittal of information between SOMO learners, a language

for the knowledge of the agents has to be defined. Apart from using it in

the exchange of information, it can also be used to store the knowledge

between simulation runs. This way, different runs of the same simulation

can profit from knowledge learned previously and—if the simulations are

similar enough—different simulations can re-use knowledge learned previ-

ously. A SOMO learner that is repeatedly used in the same setting can

thus evolve along with the simulation and improve over time.

In settings in which the simulation is highly dynamic, an additional

meta-learning approach can be used. At the start of the simulation, SOMO

learners are spread evenly within the simulation space. If a SOMO agent

finds itself in a highly dynamic environment, with many entities to observe

and many interactions, it can procreate by spawning a duplicate of itself.

This new agent carries the same knowledge as its father and can become
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active in the same area. Thus, the SOMO system self-organises towards a

structure in which learning takes place in those locations where it is most

beneficial and where most interactions occur.

While the outlined meta-learning approaches should improve SOMO’s

ability to find valid abstractions and simplify the simulations, they incur

additional computational cost as well as increase the memory requirements.

Therefore, the use of these faculties has to be evaluated carefully for each

new simulation setting and the trade-off between the resources required for

meta-learning and the benefit has to be analysed.

1.6 Current implementations

In several publications, Sarraf Shirazi et. al present the exploration and ex-

tension of SOMO implementations in the context of biological simulations

[Sarraf Shirazi et al. (2010, 2011a,b, 2012 (in press); Jacob et al. (2012); von

Mammen et al. (2012); Sarraf Shirazi et al. (2013 (submitted)]. Therein, the

application domain slightly shifted from protein-interaction networks (in

context of the MAPK signalling pathway) towards cell-cell/cell-membrane

interaction systems (in context of blood coagulation processes). More im-

portantly, the model representations underwent an evolution as well: Sarraf

Shirazi and his colleagues (one of them is an author of this chapter, S. von

Mammen) first learned clusters of intertwined functions of gene expression

rates by correlating their results—initially by means of artificial neural

networks, then by means of genetic algorithms. The second iteration of

implementations featured rule-based multi-agent representations and sets

of learning observer agents that logged and subsumed the activities of the

agents in the simulation. For instance, blood platelets and fibrinogens that

are stuck together are subsumed by meta-agents with reduced rule sets and

which represent the blood clot.

Current SOMO implementations have shown the effectiveness of the

concept. In early experiments the number of tests performed as part of the

simulation was successfully reduced. In later experiments, Sarraf Shirazi

et al. were able to show that the overall performance, also considering the

computational overhead needed for observing and dynamic learning, can

be improved.

The original SOMO concept foresees the possibility to expose SOMO

agents without prior knowledge to an arbitrary multi-agent simulation to

automatically infer hierarchies of patterns from the observed processes. In
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order to reach this desirable goal, numerous challenges still have to be

addressed. The universal deployment of the SOMO concept requires, for

instance, a generic learning mechanism for identifying arbitrary patterns

(e.g., learning classifier systems [Wilson (1995)]), a universal approach to

measuring and comparing confidence values and an accordingly tuned re-

inforcement learning mechanism, as well as a comprehensive formalisation

of representation and algorithms.

An example of a meso-level abstraction algorithm with a more technical

focus has been presented by Steghöfer et al. (2013) with the HiSPADA algo-

rithm. The Hierarchical Set Partitioning Algorithm for Distributed Agents

forms abstraction hierarchies within an agent society based on scalability

metrics. If an agent system solves a computationally intensive problem that

is defined by the individual agents (such as scheduling in power manage-

ment scenarios) and that can be hierarchically decomposed, intermediaries

can be introduced to solve parts of the original problem. Each intermediary

solves a sub-problem that is defined by the agent it directly controls. The

runtime of the problem solver depends on the number of agents controlled

by an intermediary. If it exceeds a certain threshold, an additional layer of

intermediaries can be introduced to divide the controlled agents. An inter-

mediary acts as a black box to the outside, much like the meta-agents in the

hierarchical abstraction. However, the intermediary is not the result of a

learning process based on the interaction patterns of the agents but merely

a result of an internal constraint violation. Nevertheless, the concept has

proven to improve scalability in large systems and provides a starting point

for future research.

1.7 Awareness beyond virtuality

It has already been shown that current implementations of SOMO are capa-

ble of pruning computational complexity in multi-agent based simulations

and identifying emergent processes. A broadly deployable, unbiased SOMO

implementation would make it possible to compute models with large num-

bers of approximate constants, such as in our perceived reality. This would

make it possible to integrate vast quantities of scientific facts, across all

levels of scale and scientific disciplines, for consideration in simulations.
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1.7.1 Integration & emergence

The result would be virtually unlimited computing power for models with

large numbers of approximate constants—as in our perceived reality. Vast

amounts of scientific facts, across all levels of scale and scientific disciplines,

could be integrated for consideration in simulations. The development of

an organism could be computed bottom-up from a single fertilised cell.

As we believe SOMO to be principally capable of developing awareness

for previously unknown emergent phenomena—both in-silico and in-vivo—

the organism’s systems would be identified automatically. The recognised

patterns are expressed in algorithmic rather than traditional mathematic

representations, and therefore human-readable and comparable to human

reasoning.

1.7.2 Model inference

What is more, the SOMO concept need not be limited to virtual simula-

tions. Heuristic learning methods could supply feasible solutions for gaps in

theories, for which empiric researchers haven’t provided answers yet. How-

ever, instead of limiting SOMO to virtual simulations, it could operate on

top of a smart sensory network (SOMO net), an advanced wireless sen-

sor networks (cf., e.g., [Akyildiz et al. (2002)]). Enhancing SOMO sensory

nodes with effectors would further introduce the capability of self-directed

inquiry. At this point, the SOMO net could turn into a self-reflective ma-

chinery similar to the one developed by Lipson and Pollack (2000) that also

grew, the other way round, into a system to automatically infer complex,

non-linear mathematical laws from data sets by avoiding trivial invariants

[Schmidt and Lipson (2006)]. SOMO net enhanced in this way would be

able to autonomously perform observational analysis and pro-active investi-

gations to further accelerate the generation of comprehensive and accurate

scientific models.

1.7.3 SOMO net

In addition to the sensory functionalities present in a subset of nodes of

the envisioned SOMO net, all the nodes would have to provide a runtime

environment for a SOMO agent. To begin with, the initialised, networked

SOMO agent—a conceptual descendant of the SOMO observer as deployed

in virtual simulation environments—would sense and transmit data to its

neighbours and, in turn, aggregate any received information. The analogies
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to distributed learning approaches are obvious, especially in the context of

wireless sensor networks [Predd et al. (2006)]. However despite the common

notion of a global learning task, distributed data sources, and efforts to fuse

the aggregated data, the SOMO reaches further.

Quickly, a SOMO agent would learn patterns in the sensed and received,

transmitted data and refine its sensing configuration and communication

connectivity based on the greatest information gain: it would direct its

inquiries to areas of interest, i.e., sensor ranges or nodes that provide (from

its perspective) unpredictable information. Depending on the confidence

values associated with the learned patterns, the original data sources would

be queried once in a while in order to test the abstractions’ validity.

As the learned patterns would reference the learning context, i.e., the

network location and connectivity of the learning agent, the abstracted

information can be passed down the network, enriching the other agents’

data bases, without causing confusion. Whenever possible, patterns could

be subsumed in higher level abstractions, the validation process stretching

across the network.

The self-organised, decentralised learning and validation algorithm

would ensure that the system under observation is described at several

levels of abstraction, based on the input on numerous nodes with their in-

dividual perspectives. At the same time, it would ensure that the processing

and communication costs of the networked nodes is minimised—which is

of crucial importance for the efficacy and longevity of a wireless sensor

network.

1.7.4 SOMO after me

SOMO and SOMO nets would make correlations between processes appar-

ent that have never been thought of before. These new insights, could, due

to the immense complexity that SOMO promises to handle, help to build

sustainable, progressive, evolving economic and ecological infrastructures

for the great challenges of human kind.

At the same time, accessible methodologies for large-scale data mod-

elling and exploration would become an (even more) important limiting

factor. In order to counter this arising challenge, we have been developing

INTO3D, an integrated visual programming and simulation environment

[von Mammen and Jacob (2013)]. Combined with SOMO’s computing abil-

ities such environments could make model-building and simulation feasible

and attractive to non-scientists, or rather, they could turn anyone into a
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scientist and revolutionise everyday life.

1.8 The future of SOMO

In summary, the SOMO algorithm and SOMO nets hold the promise of

revealing hitherto unsuspected correlations between processes. Such new

insights, and the immense complexity that SOMO can handle, would help to

build the sustainable, progressive and evolving economic and ecological in-

frastructures for tackling the major challenges humankind faces today. Our

current work on SOMO is focused on pattern detection in observed inter-

actions and the possibilities for propagating knowledge about abstractions

through the system. Once the implementations of SOMO have reached

maturity, we envisage that research can shift to analysing how the learned

abstractions and features correlate with the behaviours we find in higher

order emergent phenomena. Whether we will find striking similarities, or

instead discover these to be two completely different forms of complex sys-

tems, remains an exciting open question at this time.
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