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Scene synchronization in close coupled world
representations using SCIVE

Marc Erich Latoschik, Christian Froehlich, Alexander Wendler

Abstract— This paper introduces SCIVE, a Simulation Core
for Intelligent Virtual Environments. SCIVE provides a
Knowledge Representation Layer (KRL) as a central organizing
structure. Based on a semantic net, it ties together the data
representations of the various simulation modules, e.g., for
graphics, physics, audio, haptics or Artificial Intelligence (AI)
representations. SCIVE's open architecture allows a seamless
integration and modification of these modules. Their data
synchronization is widely customizable to support extensibility
and maintainability. Synchronization can be controlled through
filters which in turn can be instantiated and parametrized by
any of the modules, e.g., the AT component can be used to change
an object's behavior to be controlled by the physics instead of the
interaction- or a keyframe-module. This bidirectional inter-
module access is mapped by, and routed through, the KRL
which semantically reflects all objects or entities the simulation
comprises. Hence, SCIVE allows extensive application design
and customization from low-level core logic, module
configuration and flow control, to the simulated scene, all on a
high-level unified representation layer while it supports well
known development paradigms commonly found in Virtual
Reality applications.

Index Terms—Application Framework, Intelligent Virtual
Environment,, Simulation Core, Ubiquitous Computing,
Virtual Reality

1. INTRODUCTION

Developing Virtual Reality (VR) applications or real-time
simulations in general can be a complex task. Besides the
integration of a variety of hardware devices for input and
output, the desired simulation features often demand an
extensive combination of special purpose software modules,
e.g., for the simulation of graphics, sounds, collisions, physics
or haptics. Furthermore, advanced requirements for believable
worlds or intelligent environments frequently demand the
integration of Artificial Intelligence methods to either support
intelligent behavior of the application itself, e.g., in the area of
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smart graphics, ubiquitous computing and multimodal
interaction, or to provide autonomous entities---like agents--
with cognitive capabilities and access to a semantically
described environment.

There is already a multitude of tools and frameworks for
developing VR applications. In the next section, we will
briefly illustrate representative examples to shape out useful
and required as well as missing features which motivated us to
develop SCIVE. Its specific aspects will then be explained in
the following sections.

II. RELATED WORK

Dating back to Sutherland's early work on an HMD with
hidden line graphics [1], many real-time VR applications
center around the graphical representation since visual
perception is considered a primary sense to be stimulated for
immersive Virtual Environments. Real-time 3D computer
graphics encompasses work on rendering algorithms as well
as on graphics interfaces---from direct rendering APIs like
GKS [2] OpenGL or shader-based approaches to high-level
graphics data structures with advanced capabilities: Scene
graph tools like Open Inventor [3], OpenGL Performer, Open
Scene Graph, OpenSG [4] or X3D [5] follow an hierarchical
scene structure which additionally provides performance
optimizations, e.g., for picking, culling or state sorting.
Extension mechanisms, field route data propagation networks
as well as a scripting layer support the design of new
customized nodes and interconnected application graphs using
rapid prototyping mechanisms.

Several purpose-built VR development tools adopt these
concepts and additionally provide VR specific key features:
First, input/output device customizability and embedding [6]
is mandatory, see, e.g., AVANGO [7], Lightning [8], VR

Juggler [9] or commercially available ones like the
CAVELib™ or the WorldToolKit® Second, network
distribution features are commonly integrated, e.g., in

AVANGO [7], MASSIVE 3 [10], DIVE [11] or Net Juggler.
They either allow distributed rendering on cluster
architectures, hence again output device support, or to develop
shared virtual environments, e.g., for collaborative work.
Third, application programmers often require an entity
centered access to world states or world logic which is often
realized  using event mechanisms  as---illustrated
exemplarily---in Lightning [8].
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As pointed out in [12] a module based approach has several
advantages. But finding an abstract layer of module
interconnection schemes is still an open research topic. Here
FlowVR [12] favors a noncentrally managed approach
concerning module synchronization. The messages being
passed between the modules are processed by filters and
synchronizer-objects which resolve nonlocal constraints. In
contrast to this, one central synchronization scheme supported
by SCIVE bases on a delayed rule based conflict management
and resolution step.

A.Discussion

Believable virtual worlds require more then just graphics
and input/output handling. Multiple simulation modules are
required (see,e.g. [13]) to render animations, sounds, physics,
or haptics (to name just a few) or to include intelligent
behavior [14], e.g., for novel multi-modal interaction
techniques or the animation of autonomous agents in the
worlds. Such modules are either included in the VR
development tools on a case by case base, or they are
integrated a priori into holistic architectures as found in many
3D game engines like the Doom 3 Engine, the Unreal Engine
3, the Source Engine, the C4 Engine or the CryENGINE™.

Both, the case-by-case as well as the holistic architecture,
have their drawbacks when it comes to application
customization and longer-term reusability, persistence and
portability. The first one requires a deep understanding about
the internal algorithms and data structures of the utilized tool.
It requires extensive low-level implementation efforts to
customize or exchange a specific module, e.g., if a certain
software library is no longer available or if it is not available
on a given operating system. The holistic approach often
doesn't even allow an extensive modification. Either the
provided features meet an application's requirements or not. If
source access is granted, extending such a tool rises the same
problems as the first case, if not, the tool will render
inappropriate for the task. The following sections will
introduce aspects of a simulation core architecture for
intelligent environments which follows a modular approach. It
allows a fine grained control over simulation module data
exchange and synchronization while it minimizes module
dependencies.

III. CoNCEPTS AND ARCHITECTURE

SCIVE's general architecture provides the base mechanisms
to build intelligent real-time capable applications. Its design
incorporates concepts to latch simulation modules based on
concepts and techniques which proved to work satisfactory
regarding prior related work.

The architecture allows module interconnection schemes
ranging from simple loose coupling to a tight close coupling.

In the first case, a given module is infrequently contributing to
an overall world state, e.g., the module's simulation results
might only access down to one attribute of one specific entity
only once in a while with respect to the main simulation rate.
In the second case, a module might access the complete world
state, every entity and every attribute for every main
simulation step performed.

exchange

synchrani-
zation

inter-
action

Figure 1. Conceptual interconnection scheme: Every required module should
be able to exchange data with every other module ranging from single entity
attributes to complete world states. This requires facilities for data exchange
and control flow.

Modules
synchronization facility (see figure 1) which serves two

are conceptually coupled by a temporal

purposes: First, it bootstraps the system by loading the
required world representations for the modules to assure an
initial coherent state in all modules. Second, it triggers the
modules' local simulation loops asynchronously and controls
the following data collection, conflict resolution, and data
propagation steps.

This provides an implicit performance boost on parallel
architectures (using multiple cores, CPUs, or hosts). The
synchronization overhead is accepted in favor of a clean
design. It separates the necessary low-level application logic
in the conflict resolution step which is the requirement for the
following parametrization: So-called filters implement a
specific logic between attributes and hence control module
access to the world state, e.g., they determine the values of
attributes. A data exchange facility [15]---on the other
these different
representations of conceptually same attributes in the diverse
modules.

hand---translates values between

A.System configuration

General system setup and module configuration is provided
via an XML-format called SCML (Simulation Core Modeling
Language). SCML allows the application designer to specify
the modules in a declarative way along with some important
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parameters. The use of an external declarative format has
some advantages. The application designer can build
simulations without going deep into the source code of the
simulation core. This protects the user and the system equally.
Because SCML is based on XML it is quite comfortable to
use and the user only needs few---if any---programming
experience to design an application, for XML is quite intuitive
and easy to learn. The following shows an SCML-example
which sets up the three simulation modules:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE simulation SYSTEM "./scive.dtd">
<simulation>
<components>
<component type="Graphics">
<configuration path="OPENSG"/>
<priority level="normal"/>
<load-time rank="2"/>
<frequency clock="1"/>
</component>
<component type="Physics">
<configurationpath="share/xml_data"/>
<priority level="high" />
<load-time rank="3" />
<frequency clock="20" />
</component>
<component type="Semantic">
<configuration path="share/semnet.xml"/>
<priority level="normal"/>
<load-time rank="1"/>
<frequency clock="1"/>
</component>
</components>
</simulation>

The example SCML fragment illustrates the top-level
definition of an application supporting three different modules
which are interconnected to produce a coherent simulation of
a believable artificial environment. Each module's definition
is encapsulated in a component environment by specifying
the module's specific type. In case of the example, a combined
module for the graphical output and the user interaction, a
module for the physical simulation of the world and a
semantic-module which provides a semantic net for the
knowledge representation layer [15] are defined. Additional
parameters in the component environment configure the
modules and their interconnection inside the SCML-
definition: The configuration-parameter either specifies
the path to a specific file used by the module---as specified
for the Semantic-component in the example fragment---or
in case of the Physics-component, the path to a directory
with model definitions. The other displayed parameters
(load-time, frequency and priority) are used for the
temporal synchronization, which will be discussed in detail in
the following section.

IV. TEMPORAL SYNCHRONIZATION

Since the different simulation modules run asynchronously
and each with a different update frequency, they have to be
synchronized to ensure a consistent state of the simulated
world. The different clock rates are necessary to guarantee
accurate computation of the specific simulation-data. For
example, the physics engine requires a higher clock rate than
the graphics renderer. While the renderer computes one frame
the physics simulator may has to compute twenty internal
steps to ensure a mathematical accurate result. These
differences become even clearer when we take a look at
haptics feedback. A module computing haptics feedback
needs a minimum update frequency of approximately 1000
hertz to give the user a realistic sensation. Hence inter-
module synchronization becomes important to keep module
data consistent with each other.

The temporal synchronization within SCIVE is divided into
two basic areas. On the one hand the so called macrotemporal
area and on the other hand the microtemporal area. While the
macrotemporal area covers all the steps which are required at
the startup of the system, as well as those steps executed when
loading new modules at runtime, the microtemporal area
includes those, which are executed for every master
simulation step.

A.Macrotemporal Processing

This section deals with the necessary steps for the
macrotemporal computing of the simulation. This includes
initializing of the modules as well as loading of the simulation
data. As mentioned above in Section III-B, the specification
of the modules is accomplished via SCML. SCML also
includes some parameters important for the temporal
synchronization. Such a parameter is the load-time-
parameter, which has to be specified for every module
participating in the simulation. This parameter determines the
position of the module in the initialization-order of the
simulation. The components are initialized in ascending order
according to their 1oad-t ime-parameter.
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Figure 2. Macrotemporal processing of SCIVE

To give an impression of what steps are executed during the
macrotemporal processing of SCIVE, we will present the
necessary actions on the basis of the sequence diagram in
figure 2. It illustrates the macrotemporal processing of the
SCIVE-framework with three simulation-modules (Graphics,
Physics and Semantic). The bracketed numbers---(i)---
represent the numbers according to the various steps in the
sequence diagram.

The first step (1) starts-up the system and initializes
SCIVE. This process parses the SCML-configuration
including the definition of the desired modules and processes
this information internally. Once SCIVE has gathered all
necessary information from the SCML-file, each component
is loaded along with their parameters (2-4). When properly
initialized, the Semantic-module parses the database specified
in SNIL (Semantic NET INTERCHANGE LANGUAGE) (5). After the
database has been parsed, SCIVE saves the data for the
different modules in separated maps, and loads them along
with the required representations for the data-exchange
mechanism inside each specific module. The next steps (9-20)
trigger the initial data-synchronization for every participating
simulation module: SCIVE sends a sync-signal to each
module which tells them to synchronize their data. After the
modules with a ready-to-sync-signal, SCIVE
propagates the data-values to each module registered for them.

answer

This initial data-synchronization ensures that a consistent
world state exists between the modules. Once this consistent
state is established, SCIVE signals the modules to start their
own processing loops (21-23). The processing of the different
components is displayed in steps (24-26) and will be
elucidated in the following section.

B.Microtemporal Processing

Microtemporal processing within SCIVE will be illustrated
for an example application which---since SCIVE doesn't
predefine any application architectures---here centers around
the graphics representation as the central world state.

Hence, the first step in the sequence-diagram displayed in
figure 3 synchronizes the graphics-module's data with the
other participating components (1). As a result, all simulation
modules now initially work on the data which was generated
in the prior master simulation step. The sync-signal is
answered by a ready-signal (2) from the graphics module and
SCIVE propagates the data to the other modules (3-4). The
next steps consist of the parallel computations of the other
simulation modules (in this case the Physics- and the
Semantic-module). Steps number (6-7) start the processing of
these modules inside their own update frequencies. The
processing itself is displayed in (8-9). Once the modules finish
computation, they synchronize their results with each of the
other modules, again through SCIVE's data-exchange
mechanism (9-12).

]
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2: readyToSync

3: propagateValue

4: propagateValue >
5: Compute Step B

6: MainLoop
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Figure 3. Microtemporal processing of SCIVE

The final step in the microtemporal processing is the
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rendering of the computed scene. SCIVE tells the renderer to
display the scene (14) and the graphics renderer executes its
render-loop (15). Occurring conflicts between the different
simulation modules are resolved via filters, which will be
explained in the following section.

V. ConTrOLLING FLOW

The concurrent access to the central database by the various
simulation modules could lead to an inconsistent world state
resulting in wrong or unexpected behavior of entities, if the
attribute would not be guarded or controlled in some way.

Here, SCIVE provides a special type of a data propagation
graph utilizing a system of connections and filters. For
example, in a simple configuration filters can forward the
output of the physics module to one entity, a second entity can
be controlled by the skeletal animation, and yet another entity
can be controlled by the user interaction. In more complex
scenarios, the filters can compute new values for controlled
entity attributes by combining outputs of two or more
modules or filters. SCIVE offers various filters that can
change attribute values directly or indirectly, e.g., a developer
can choose whether he wants an object to be dragged by
directly setting the new position in all modules (including the
physics module) or by applying appropriate forces generated
by the physics engine. Filters can be instantiated manually or
by the various simulation modules which allows automatic
flow control by the application logic, e.g., if the multi-modal
interpretation module triggers a drag action, a filter is set in
place which binds the interaction target entity to the
interaction module.

A.Conflict resolution core

The filter-based data-flow is provided by SCIVE's conflict
resolution component. It is an optional facility but it provides
the necessary functionality for the design of complex
interconnected applications. It can be completely enabled and
disabled on the fly. With disabled conflict resolution, each
value change will be immediately applied to the central
database and the databases of the modules, overwriting all
earlier changes. With enabled conflict resolution, all value
changes (triggered as events by SCIVE) will be delayed until
the beginning of the final render stage. In this case, the
requested state changes will be stored to use them as input for
the filter stage. During this stage, filter can 1) forward an
event, 2) combine it with other events and the relating values,
or 3) completely block it. The order of events is less important
for the conflict resolution since it applies filters with respect
to the event source and its simulating feature. The last filter in
the chain is connected back to the attribute container in the
main database. After the evaluation of filters and propagation
of changes, all modules must be informed about the rejected

changes. This additional step is necessary, because the module
that has requested the change, has possibly already changed its
internal state and representation.

B.Filters

Connections and filters establish an event propagation
graph. They receive events they have registered for. Filters can
process computations on the signaled attribute values and
finally produce new signals. In addition, instead of returning
events, a filter can trigger execution of specific actions in the
simulation modules, e.g., to apply some forces in the physics
module or to generate a new animation which simulates an
agent's reaction to external influences (as eventually triggered
by the other modules). A certain required action often can be
implemented with different methods and hence filters. For
example, dragging of an entity can be implemented by setting
the new position as a result from the interaction module which
basically follows the user's "drag" hand or by applying some
forces by the physics module to the entity. In the basic SCIVE
interconnection, the interaction module can just change the
position where the actual action is determined by the current
filter.

The following filters realize the required functionality for
the example application.

1) Last module pass through. This is the same as if no
conflict resolution is done.

2) Random module selection pass through.

3) Specific module pass through.

4) Prioritized module list selection. Pass the events from a
priority sorted list of modules. If queue is empty for a
chosen module, take the next lower prioritized module.

5) Physics module pass through. Apply forces to the entity
for all other events with position changes.

6) Skeletal animation module pass through. Generate a
dynamic animation and blend it with the current
animations for all other events with position changes.

The wuser can implement additional filters e.g. for
calculating an average value of the incoming events. The
conflict resolution set-up defined for the example application
allows to simulate physical-based animations on the fly and to
mix them with motion captured or pre-calculated animation
data. This example illustrates SCIVE's powerful extensibility
which is utilized at this point to produce believable
interactions of skeletal animated characters with the
environment in real time. In order to react to physical forces, a
physical representation of the character is built up which, on
the one hand, influences other physical bodies and, on the
other hand, reports the displacement of the character caused
by collisions back to SCIVE. In case of a collision, the
established filter interconnection decides how to react to the
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displacement. The agent could just drag the affected parts
back, wobble, or fall down. The reaction can depend on the
force and the place of the impact. Figure 4 shows the
generated animation as result of a collision between a
character and a static object as well as the interaction between
the animated and a dynamic object.

Figure 4. The animated agent filter in action. The motion captured animated
agent collides with a relatively heavy (the column) and a lighter (the stone)
obstacle in its predetermined path. The collision signals the activation of an
animation blending filter which controls the colliding body parts for the
specific time interval whereas the collision objects stay under physics control.

C.Filter application

SCIVE's supports filter application via rules which assign
filters to certain scene parts. These parts can have different
granularities from one attribute of one entity to all attributes
in the scene. Prioritization of rules ensures that attributes
already connected by a given rule will not be reconnected by
lower prioritized rules. For example, a scene with a skeletal
animated agent can be described by this two rules:

1) Assign "all properties of object A" to
"Skeletal AnimationFilter"
2) Assign "all properties in scene" to "PhysicsOnlyFilter"

The second rule doesn't influence the object A (the agent),
because the first rule has a higher priority.

The created filter graph can be changed on the fly by
inserting and removing rules. To drag an entity X, the
following new rule has to be installed just before the other
two:

3) Assign "position of object X" to "InteractionFilter"

This results in the disconnection of the position attribute of
entity X from the "PhysicsOnlyFilter" and its connection to
the "InteractionFilter". At the interaction end, this rule is
simply removed to establish the initial application logic.

This prioritized application of rules, which describe what
the user wants to happen in the scene, provides a convenient
way to create and assign the---possibly---multitude of required
filters. Each rule takes just few lines of code or script that---at

the end---defines complex filter graphs which will now
automatically be created and removed. This lets application
designer focus on application semantics rather then to care
about the proper connection of filters and attributes.

VI. CoNcLusION

This paper has illustrated the basic concepts and
mechanisms of SCIVE, a real-time simulation development
system for intelligent applications. SCIVE's architecture
follows a modular approach which considers long term project
requirements as well as application design aspects. It provides
a Knowledge Representation Layer which initially serves as an
interconnecting representation for the various
simulation modules' representations. In addition, the KRL
provides semantic based access to the scene's entities as well
as a unified access to scene semantics. SCIVE defines a
simulation application as a set of simultaneously working---
freely exchangeable and customizable---modules for the
diverse simulation aspects. Data exchange between the
independent world representations as well as synchronization
between the independent simulation loops can conveniently be
configured on a high level which includes the definition of
general application logic down to per-attribute changes via the
filter and rules concept. SCIVE's general approaches are
motivated by, and currently applied to several applications in
the area of multi-modal
environments and Al supported virtual prototyping. Its
capability to integrate physics, animation, Al, etc. for building
intelligent agents has just been demonstrated following the
example and is currently utilized to design a large scale
continuously running virtual world for agent interactions.

Besides SCIVE's basic application oriented extension
mechanisms which will incrementally add more modules,
filters, and rules, we are currently exploring two technical
optimizations: First, to map the parallel
interconnection scheme to node---and hence network---
distribution using a multi-agent architecture (Distribution is
currently provided by two connected graphics and VR
modules: OpenSG and AVANGO). Second, to optimize the
temporal synchronization and conflict resolution component
to signal modules in case of unnecessary computations.
SCIVE's Al base formalism offers
possibilities which we just began to explore by modeling
ontology bindings for multimodal interaction, knowledge
supported virtual construction, and game-engine oriented
world state. In combination with, and as a control instance for
the conflict management, it could provide the basis for a high-
level semantic description even of complex simulations.

involved

communication in virtual

inherent

various extension
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