
Adaptive Agent Abstractions to Speed Up Spatial
Agent-Based Simulations

Abbas Sarraf Shirazia,∗, Timothy Davisona, Sebastian von Mammenb, Jörg
Denzingera, Christian Jacoba,c

aDept. of Computer Science, Faculty of Science, University of Calgary, Canada
bInstitut für Informatik, University of Augsburg, Germany

cDept. of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary,
Canada

Abstract

Simulating fine-grained agent-based models requires extensive computational
resources. In this article, we present an approach that reduces the number
of agents by adaptively abstracting groups of spatial agents into meta-agents
that subsume individual behaviours and physical forms. Particularly, groups of
agents that have been clustering together for a sufficiently long period of time
are detected by observer agents and then abstracted into a single meta-agent.
Observers periodically test meta-agents to ensure their validity, as the dynamics
of the simulation may change to a point where the individual agents do not form
a cluster any more. An invalid meta-agent is removed from the simulation and
subsequently, its subsumed individual agents will be put back in the simulation.
The same mechanism can be applied on meta-agents thus creating adaptive
abstraction hierarchies during the course of a simulation. Experimental results
on the simulation of the blood coagulation process show that the proposed
abstraction mechanism results in the same system behaviour while speeding up
the simulation.

Keywords: Agent-based simulation, Abstraction, Optimization, Online
learning

1. Introduction

Agent Based Models (ABM) provide a natural means to describe complex
systems, as agents and their properties have a convenient mapping from the
entities in real world systems. The interaction of agents in ABM gives rise to
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an interesting concept in the study of complex systems: emergent phenomena,
higher-level properties or behaviours that are not easily traceable in the lower-
level entities [1]. Moreover, ABM capture discontinuity in individual behaviours,
which is difficult when modelling with an alternative like differential equations
[2].

The flexibility of ABM comes at a computational cost. As the granularity
of a model increases, so do the computational resources needed to simulate
all of the interactions among the agents, which directly translates into longer
simulation times. Some researchers have restricted agent interactions to be only
among neighbouring agents in a two or three-dimensional lattice [3, 4]. However,
changing the interaction topography among agents is a necessary feature in
some models, e.g. developmental processes [5]. Others have utilized parallel
computing to meet the computational demands of ABM [6, 7]. Finally, many
researchers have proposed super-individuals [8]: agents that encompass other
agents, e.g. a single super red blood cell agent that subsumes and represents
thousands of individual red blood cell agents.

In this paper, we extend our previous work by proposing another type of
abstraction that aims to build adaptive hierarchies of spatial agents during the
course of the simulations. To this end, observer agents are immersed in the
simulation to monitor groups of agents. The observers try to detect a clus-
ter of agents that have adhered to one another for a sufficiently long duration
of time. Once an observer finds such a cluster, it abstracts the agents into a
single meta-agent that subsumes both the behaviour and the structure of the
individual agents in that cluster. As the dynamics of the simulation change,
groups of agents may no longer stick together and therefore the observer needs
to break down those meta-agents into their constituent individual agents. An
unsupervised validation mechanism ensures the validity of meta-agents by pe-
riodically monitoring whether they should continue to subsume their agents.
Since meta-agents have the same basic definition as the individual agents, the
same abstraction process is applied on them, thus making adaptive abstraction
hierarchies during the course of the simulation.

The remainder of this paper is organized as follows. Section 2 reviews related
works both in solving the problem of scalability and in dealing with higher-order
patterns in agent-based simulations. Section 3 gives a formal definition, along
with a computational timing analysis of our component-based agent framework
– LINDSAY Composer. Section 4 presents our abstraction framework with a
detailed description of the involved steps and algorithms. We conclude this
section with a computational timing analysis of our abstraction. In order to
demonstrate the effectiveness of this approach, we apply it to an agent-based
blood coagulation simulation and report the results in Section 5. Finally, section
6 provides a comparison between this work and our previous work, and presents
the concluding remarks.
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2. Related Work

Agent based models operate at the individual level and describe potentially
numerous behaviours for all of their constituent units. Simulating all of the
individual behaviours is therefore considered to be extremely computationally
intensive [2, 9, 10, 11, 12]. It has been suggested that abstracting higher-order
patterns could reduce the computational complexity of ABM without introduc-
ing much overhead [13, 12, 14]. In this section, we briefly describe the attempts
made to address the problem of scalability and performance in ABM, then we
review the works that motivated this research.

2.1. Scalability and Performance in ABM

Bonabeau points out that despite increasing computational power, simulat-
ing all the individual behaviours in ABM still remains a problem when it comes
to modelling large-scale systems [2]. Research in improving the scalability of
ABM is roughly categorized into two groups: (1) parallel computing, and (2)
grouping similar agents into a single agent.

The first category, parallel computing, tries to concurrently simulate clusters
of agents that interact primarily with one another without much intra-cluster
communication. Efficiency is improved as long as the time spent on synchro-
nization is much less than the time spent on computation [6]. Scheutz and
Schermerhorn developed a framework with two algorithms for the automatic
parallelization of ABM [6]. Particularly, they developed a separate algorithm
for spatial agents, as their location data can efficiently determine in what cluster
they should be simulated.

Along the same line, Lysenko and D’Souza propose a framework to use
Graphics Processing Units (GPU) to parallelize an agent-based simulation [7].
They utilize a technique in General Purpose Computing on GPUs called state
textures [15] to map each agent to a pixel. A pixel is defined by its colour
components: Red, Green, Blue, and Alpha (RGBA). Each numerical property
of an agent is thus mapped to a colour component. If an agent cannot be
squeezed into four floating point values, then extra colour buffers should be
used, which in turn adds to the complexity of the problem.

The second category of grouping similar agents deals with the granularity
of an agent. For example, super-individuals can represent groups of agents.
Scheffer et al. suggest assigning an extra variable to each agent to denote how
many agents it represents [8]. More advanced algorithms have been proposed to
find super-individuals during the course of a simulation. Stage et al. propose an
algorithm called COMPRESS to aggregate a cluster of agents into one agent [16].
They divide their algorithm into two stages to avoid applying a time-consuming
clustering algorithm on the space of all the attributes in all the agents. In the
first stage, they calculate a linear combination of attributes li for each agent i
by applying principal component analysis (PCA) [17]. Then this list is sorted
to find n clusters of agents with the largest gaps in li. In the next stage the
clusters are further subdivided based upon their variance until the variance is
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within a given range. The first stage maintains overall system variations while
the second stage reduces the intra-cluster variations.

COMPRESS is a static algorithm, in that once a cluster of agents is re-
placed by one agent, the original agents will not be released back into the sim-
ulation. Wendel and Dibble extend the static COMPRESS algorithm with the
Dynamic Agent Compression (DAC) algorithm in which higher-order agents are
created and destroyed based on the heterogeneity of agents in the system [18].
They define two special agents in their system: (1) container agents which are
the higher-order agents, and (2) a compression manager which handles all the
queries to individual agents thus making the container agents invisible to the
model. It also creates and destroys other agents. For example, upon receiving
a create request from the model, the compression manager decides if it has to
create a new individual or whether the create request can be ignored, as there
already exists an agent with the same attributes. In DAC, a container agent
monitors its encompassed agents, and upon detecting a difference in behaviour,
gives the changed agents to the compression manager as newly instantiated
individuals.

In a previous work [14], we have shown the speedup in the simulation by ab-
stracting individual rules in the agents. Particularly, we replace many individual
rules with one stochastic meta-rule that only depends on the simulation time
step. To that end, observers are preconfigured to monitor certain rules in the
simulation. The observers look for interaction patterns, i.e rules whose action is
executed with constant parameters. Once an observer successfully identifies an
interaction pattern, it acts as a meta-agent and replaces all the individual rules
previously maintained by the agents by a new stochastic meta-rule. Although
this abstraction does not create agent hierarchies, it results in a speedup in the
simulation.

2.2. Higher-Order Patterns in ABM

Emergence is the appearance of macro level patterns in a system that are not
described by the properties of its parts [19]. According to Müller [20], an emer-
gent phenomenon is either observed by an external observer (weak emergence),
or by the agents themselves (strong emergence), provided that they have the
knowledge to describe it. ABM provide a basis to observe emergent phenomena,
as the behaviour of the modelled system can be traced during the execution. In
this sub-section, we describe a few examples of higher-order, emergent phenom-
ena modelled with ABM.

Cellular automata are one of the most widely used tools to study macroscopic
patterns that emerge from the discrete, microscopic interactions in a 2D or 3D
lattice [21]. While continuous models (e.g. differential equations) fail to capture
the essentials of certain problems like self-reproduction of cells, such phenomena
can be studied when modelled as cellular automata [22]. Although each agent is
restricted to interact with its local neighbours, numerous higher-order patterns
have been studied using cellular automata, such as self-organization in Conway’s
Game of Life [23], pattern formation in biological systems [24], engineering
applications [25], and medical simulations [26].
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ABM can mimic the behaviour of mathematical models and at the same
time they give more power to the modeller. Bonabeau states that there is not
much experimental work in the field of pattern formation in spite of a large
body of theoretical analysis [27]. He claims that ABM can bridge this gap, as
they are amenable to experimental observations. Subsequently, he shows how to
derive the equivalent agent-based representation of a reaction-diffusion model.
Agents in his model perform a random walk and interact with the environment
by depositing or removing bricks at a rate calculated from the mathematical
formula of a reaction-diffusion system. He takes the agent-based model beyond
its original reaction-diffusion system by replacing the state-dependent variables
with short and long term memories in the agents.

Generally, higher-order patterns emerge when spatial agents act as a group.
For example, in crowd modelling, groups of people tend to walk together while
keeping their distance from other groups [28, 29]. Social segregation [30] is
another example in which different social (ethnical, racial, or religious) groups
tend to avoid other groups. Studying these systems promotes tolerance and so-
cial integration [31]. In an example from biological systems – blood coagulation
– the adhesion of platelet and fibrinogen molecules leads to the formation of a
blood clot within a damaged blood vessel wall [32]. One may observe a clot
as an emergent entity formed as the result of interactions among several other
smaller entities [33].

3. Agent Formalism

In this section, we formally describe our concept of agents. A formal def-
inition of agents helps us clarify our component-based agent architecture, e.g.
how we define an agent with regards to its constituent components, the inter-
dependency among components, etc. It further provides a basis to analyze the
computational complexity of our simulations. The timing analysis is used in the
next section to study the benefit of the abstraction mechanism in improving the
run-time of a simulation.

We use a generic definition of agents and show how our component-based
composition of an agent fits into this definition. In our framework, an agent is
defined by a 4-tuple:

agent = (Sit,Act,Dat, f) (1)

where Sit is the set of situations the agent can be in, Act is the set of actions
that it can perform, Dat is the set of value combinations for its internal data
areas, and f is a decision function [34]. At any point in time an agent decides
what actions to perform based on its current situation and its internal data.
This decision is captured by the decision function f : Sit×Dat→ Act.

We employ the component-based approach introduced in LINDSAY Com-
poser [35, 36] to construct the agents in our simulations. A component, compi,
is a mini-agent that can be combined with other components to create agents
with aggregate functionalities:

compi = (Siti,Acti,Dati, f i) (2)
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With this in mind, an agent is re-defined as the composition of several com-
ponents:

agent = 〈comp1, comp2, · · · 〉 (3)

Sitagent ⊆ Sit1 × Sit2 × · · · (4)

Actagent ⊆ Act1 ×Act2 × · · · (5)

Datagent ⊆ Dat1 ×Dat2 × · · · (6)

fagent = 〈f1, f2, · · · 〉 = 〈f1 : Sit1×Dat1 → act1, f2 : Sit2×Dat2 → act2, · · · 〉
(7)

where Sitagent is a subset of all the combinations of Siti in the components of
an agent. While Actagent and Datagent are defined similar to Sitagent, fagent is
defined as a vector of all the decision functions. In other words, all the actions
chosen by the individual decision functions will be executed by the agent. It
should be noted that there is no internal conflict resolution between conflicting
actions. It is up to the system builder to avoid composing conflicting actions.

Behaviour components use a rule-based architecture in which Dat is re-
written as Intvar ×RS, where Intvar is a set of values for internal variables
and RS is a set of interaction rules, as defined in Equation (8).

RS = {(r1, ..., rk) | ri : if conditioni then execute acti} (8)

where acti ∈ Act, and conditioni is a statement about the situation the agent
is in and the actual values of the variables in Intvar.

For example, the red blood cell agent in Figure 1(a) is defined as a combina-
tion of four sibling components. (1) A transform component containing all the
information necessary to represent an agent in a three-dimensional space. (2)
A graphics component with the data about how to render this agent, e.g. the
mesh data. (3) A physics component containing all the physical properties like
the mass and friction, which enables this agent to undergo physical interactions
with other physical agents. (4) A behaviour component which includes the set
of interaction rules RS.

A component may depend on the situation or the data of another component.
The dependency of a component to other components is encoded in its Sit and
Dat, i.e. there might be Siti, Dati, or subsequently f i in a component that
looks up areas in Sitj and Datj of another component. In Figure 1(b), the
graphics component depends on the transform component to render a mesh
while the physics component updates the same transform component once a
physical force is applied to this agent. The physics component might also be
used to trigger the execution of a custom rule, e.g. an action by the agent when
it collides with another agent.

Components in LINDSAY Composer may delegate their decision functions
to an engine which in turn drives their execution at each frame of the simulation.
Specifically, a component may decide to share any of its Siti, Dati, Acti, or
f i with an engine. The link between a component to an engine is also encoded
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Figure 1: An example of a red blood cell agent which is composed of transform,
graphics, physics, and behaviour components. (a) The internal data in each
component, (b) The interdependency of the sibling components in the hierarchy
is denoted by dashed lines. Tr, Gr, Ph, and Be stand for the transform, graphics,
physics, and behaviour components, respectively.

in Dati, which specifies what engine to delegate to, along with the parameters
for that engine. This design explicitly formalizes the link between components
and engines. It also gives the components the freedom to share an engine or to
instantiate new engines based on their needs.

LINDSAY Composer includes the following default core engines which are
instantiated once the simulation starts: (1) the graphics engine which renders all
the graphics components onto the screen, (2) the physics engine which handles
all the physics components, and (3) the behaviour engine which executes the
rules in the behaviour components. In the simple scenario of a single scale sim-
ulation, each engine iterates through its components and updates them at each
frame. Figure 2 shows how each engine drives the execution of the delegating
components.

The explicit formalism of components, agents, and engines in LINDSAY Com-
poser makes it easy to analyze the performance of the agent-based simulations.
The time required to simulate an agent-based model in LINDSAY Composer
with a single processor is defined as follows:

TotalT ime = Tinit +

T∑
t=1

Stept (9)

Stept =
∑
i

stept(engi) (10)

where the initial time, Tinit is the time spent only at the beginning of the
simulation – for example to instantiate the default engines – and T is the length
of the simulation.

The graphics and physics engines are usually well-optimized, as their func-
tionality is limited to rendering and calculating the physical forces acting upon
objects. On the other hand, the behaviour engine is where every custom be-
haviour of an agent is executed, and is therefore the bottleneck of the simulation.
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Figure 2: Three default engines in LINDSAY Composer drive the execution of
components within agents.

As a result, we only focus on the performance of the behaviour engine:

Stept = stept(BehaviourEngine) =

N∑
i=1

BCompt,i =

N∑
i=1

Ri∑
j=1

rt,ij (11)

where N is the number of behaviour components, BCompt,i is the ith behaviour
component and rt,ij is the jth interaction rule in BCompt,i at time step t.

Without loss of generality, one can assume that all behaviour components
have the same number of interaction rules, i.e. R = max(Ri). The asymptotic
complexity of simulating the behaviour engine at each time step is calculated
as follows:

O(Stept) =

N∑
i=1

O(BCompt,i) =

N∑
i=1

R∑
j=1

O(rt,ij ) =

N∑
i=1

R∑
j=1

O(1) = N ∗R (12)

Equation (12) is a lower bound of O(Stept) since it assumes that the compu-
tational complexity of executing each interaction rule is O(1). This assumption
is correct when it takes O(1) for an agent to check the condition of a rule. In
other cases, agents might need to iterate over every other agent in the simulation
to check whether the condition part of a rule holds or not, hence Equation (12)
changes to O(Stept) = N2 ∗ R. This formula clearly shows that the run-time
of a simulation mainly depends on (a) the number of agents in the simulation,
and (b) the number of interaction rules for each agent. It can also be inferred
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Figure 3: The three rules – Log, Learning & Abstraction and Validation
– inside an observer are executed at specific time steps.

that simulating all the behaviours for all the agents requires a great deal of
computational resources. We propose an abstraction mechanism to address this
issue, which is discussed in the next section.

4. Adaptive Abstraction of Spatial Agents

The goal of the proposed abstraction is to adaptively reduce the number of
agents – N in Equation (12) – during the course of the simulation. We immerse
observer agents, or observers, in the simulation to monitor the agents and learn
their adhesion patterns. Observers are defined the same way any other agent
in the system is defined, i.e. through Equation (3) with only one behaviour
component. The behaviour engine executes the rules in the observers at each
time step during the course of the simulation.

Each observer has three rules in its behaviour component (Figure 3). An
observer constantly monitors the simulation space and logs certain informa-
tion about agents and their interactions. Once enough information is logged
(t > twait), the observer tries to detect and learn an adhesion pattern that de-
scribes which agents have been sticking together. If this pattern is detected, the
observer creates a meta-agent that subsumes other individuals or meta-agents.
In order to validate the behaviour of their meta-agents, observers periodically
check whether the deployment of the subsumed individual agents yields an out-
come different from the predictions of the learned pattern. If the discrepancy
between these two outcomes exceeds a given threshold τconf , the observer de-
stroys the meta-agent and restores the subsumed individual agents. The process
of learning and validating happens periodically resulting in an abstraction hier-
archy that is adaptive over the course of a simulation.

Table 1 summarizes the conditions and actions for each rule. We describe
each of the rules in Table 1 in the following subsections, and then we present a
computation analysis of our abstraction mechanism.
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Table 1: Three rules of each observer along with their condition and action.

Name Condition Action

Log always
UpdateGraph: logs in-
formation about agents
and their interactions

Learning &
Abstraction

(t > twait) && (t mod tlearn)
Abstract: detect pat-
terns and create meta-
agents

Validation Vinterval ≤ t ≤ Vinterval+Vlength
Validate: validate meta-
agents

4.1. The First Rule: Log

Observers are configured to maintain an adhesion graph GAdhesion = (V,E)
whose nodes are the agents in the simulation. An edge eij between two agents
denotes the strength of their adhesion, i.e. the longer two agents stick together,
the larger the weight of their edge wij is. At every time step, an observer loops
through the agents it is monitoring and updates the adhesion graph based on
Algorithm 1.

Algorithm 1 The Action: UpdateGraph(G = (V,E))

1: for all Agent agi do
2: compiphysics = agi.getDependency(PhysicsComponent);

3: partners = compiphysics.collisionPartners();
4:

5: for all Agent j in partners do
6: wij ← wij + ∆inc;
7: end for
8:

9: for all Agent j in Vi do
10: {Vi is the set of neighbours in G for agi}
11: if (wij > 0) && (j /∈ partners) then
12: wij ← wij −∆dec;
13: end if
14: end for
15: end for

UpdateGraph is the action of this rule that updates the adhesion graph. For
each monitored agent agi, its sibling physics component compiphysics is fetched
(line 2) to get the partners it is colliding with. Then for each collision partner j,
the value of the edge between the two agents is incremented by some value ∆inc

(line 6). There might be other agents that were colliding with agi in previous
time steps which are not colliding any more at this time step. Therefore, their

10



A
B C D E

(a)

A

B C
D E150 120

125
35

A

B C
D E150 120

125

D EM 35

(b) (c) (d)

Figure 4: (a) Five agents in the simulation space. (b) The adhesion graph G
maintained by the observer. (c) The modified graph G′ in which weaker links
(wij < 100) are removed. (d) The new adhesion graph G is constructed by
replacing agents A, B, and C with the new abstract agent M and restoring the
previous connections in the old adhesion graph.

corresponding edge should be decremented by a larger number (∆dec > ∆inc)
to ensure that once two agents stop colliding, their corresponding edge will be
quickly set to zero. This number could also depend on the current value of an
edge, but for simplicity we set it to be a constant number.

4.2. The Second Rule: Learning & Abstraction

An observer maintains an adhesion graph of agents. At certain intervals
(tlearn), the observer finds clusters of agents that have adhered to one another
for a sufficiently long duration of time, and subsequently, creates a meta-agent
that subsumes the individual agents in each of these clusters. Since the structure
of the meta-agents is the same as that of the individual agents, the same process
can be applied to meta-agents, thus creating abstraction hierarchies during the
course of the simulation.

Abstract is the action of the Learning & Abstraction rule which is de-
scribed in Algorithm 2. It first creates another graph G′ by removing all the
edges in the adhesion graph G whose weight is less than some threshold θ (line
1). In this new graph, an edge between two agents means that they have been
sticking together for an adequately long time. In the next step, we find all
the connected components in this graph. Each cluster of agents in a connected
component will be subsumed by a meta-agent.

Figure 4(a) illustrates an example of learning in which there are five agents
in the simulation space. Agents A, B, C, and D are colliding while agent E is
detached. Figure 4(b) shows the adhesion graph of an observer that is monitor-
ing this simulation. Assuming that θ is 100, the new graph G′ is constructed by
removing the edge between Agents C and D whose value is 35. In the next step
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Algorithm 2 The Action: Abstract(G, θ)

1: G′ = (V, {eij : ∀eij ∈ E s.t. eij > θ});
2: clusters = connectedComponents(G′); {each cluster: a set of agents}
3: for all Set<Agent> aCluster in clusters do
4: if aCluster.size() ≤ 1 then
5: continue;
6: end if
7: Agent meta agent = new Agent();
8: {composing the hierarchy of the meta agent}
9: TransformComponent meta transform = new TransformComponent();

10: PhysicsCompositeComp meta body = new PhysicsCompositeComp();
11: BehaviourComponent meta behaviour = new BehaviourComponent();
12: meta agent.add(meta transform);
13: meta agent.add(meta body);
14: meta agent.add(meta behaviour);
15: for all Agent anAgent in aCluster do
16: meta agent.add(anAgent);
17: for all Component comp in anAgent do
18: if isGraphicsComponent(comp) then
19: continue; {nothing happens to the graphics component}
20: end if
21: if isPhysicsComponent(comp) then
22: comp.active = false; {the physics component is disabled}
23: {and attached to the composite meta body}
24: meta body.attach(comp);
25: end if
26: if isTransformComponent(comp) then
27: meta transform.origin += comp.origin;
28: comp.makeRelativeTo(meta transform);
29: end if
30: if isBehaviourComponent(comp) then
31: comp.active = false;
32: for all Rule r in comp do
33: if meta behaviour.contains(r) == false then
34: meta behaviour.add(r);
35: end if
36: end for
37: end if
38: end for
39: end for
40: meta transform.origin /= aCluster.size(); {making the average}
41: {the addition of meta agent will be reflected in G, c.r. Fig. 4(d)}
42: update(G, meta agent);
43: state = waitToValidate; {setting up the validation mechanism}
44: conf initial = 50%;
45: end for
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Figure 5: Three agents A, B, and C are subsumed by a meta-agent M . The
meta-agent aggregates unique rules in its behaviour component resulting in a
reduction of 10 individual rules to 4 rules in M .

(line 2), the connected component algorithm finds a cluster that contains more
than one agent (Figure 4(c)). Subsequently, a meta-agent M is created and the
adhesion graph G is updated to reflect the subsuming meta-agent (Figure 4(d)).

The components of the new meta-agent are configured as follows:

1. The behaviour component is the aggregation of all the unique rules in the
subsumed agents.

2. A physics composite component encompasses individual physics compo-
nents. From now on, the physics engine calculates the forces on this
composite structure instead of the individual structures.

3. The origin of the transform component is the average origin of all the sub-
sumed agents. Since the graphics component depends on a single trans-
form component as its sibling, we do not disable individual transform
components. In addition, all the transform components in the subsumed
agents will become relative to the meta-agent’s transform component to
ensure proper movement of all the sub-parts when the meta-agent moves.

Figure 5 shows the representative data structures of the three subsumed
agents in Figure 4, along with the structure of the meta-agent. Since the graph-
ics engine requires that only one transform component be present as the sibling
of each graphics component, the meta-agent also maintains each parent indi-
vidual agent along with its transform and graphics components. The efficiency
gains are a result of aggregating the rules in the behaviour component of each
individual agent into the meta-agent such that only the unique rules are added
to the meta-agent.

13



D

Tr
D

Gr
DA

M

Tr
A

Gr
A

B

Tr
B

Gr
B

C

Tr
C

Gr
C

N

Ph TrBe

r1 r2 r3 r4
Tr
M

Figure 6: Assuming that agent D has the same structure as that of agent A,
agents D and M form the new meta-agent N in the next learning cycle.

The newly created meta-agents have a behaviour and a physics component,
which enable them to undergo physical interactions as a whole, and also to
execute their rules at each time step. This scale-free representation of meta-
agents allows for further abstractions, as meta-agents are not any different from
individual agents, and therefore they can be abstracted in the same way. For
example, Figure 6 shows the next learning cycle in which agents D and M form
the next meta-agent N .

An important consideration is to make sure that meta-agents show valid
behaviours, as the dynamics of the system might change and individual agents
might not stick together any longer. In this case, a validation mechanism should
be in place to ensure that the meta-agent is destroyed and the individual agents
are returned to the simulation. To this end, the observer sets up the starting
state for the validation phase at the end of Algorithm 2. Also, it assigns an
unbiased confidence value (conf initial = 50%) to the learned hierarchy (line 44).
The validation mechanism is discussed in the next section.

4.3. The Third Rule: Validation

After some time, a learned hierarchy might not be valid any more. The
observer needs to ensure that a learned hierarchy is valid to be simulated. As
the abstraction is an online process taking place as the simulation proceeds,
there is no future expected data to conduct a supervised validation algorithm.
As a result, the observer has to rely on unsupervised measures to validate a
learned pattern. One such measure is the discrepancy between the outcome of
the expected behaviour and the deployed behaviour of a learned hierarchy.

Algorithm 3 shows the proposed validation mechanism. At regular time
intervals Vlength, the observer releases a subset of the abstracted agents back
into the simulation (line 6). After the validation period Vlength, the observer re-
abstracts those test agents (line 13) and regulates the confidence value (line 16)
based on the difference between the behaviour of the test agents compared to the
behaviour expected by the observer. In particular, if the individual test agents
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stick together in the validation period, the confidence value will be increased. A
confidence measure below a given threshold indicates that a learned hierarchy is
not valid any longer and that the observer has to break the learned abstraction
by releasing its subsumed agents into the simulation (line 20).

Algorithm 3 The validation algorithm

1: {t is the simulation time step}
2: if (state == waitToValidate) && (t mod Vinterval == 0) then
3: state = validating ;
4:

5: {undo the abstraction for a subset of abstracted agents}
6: testAgents = undoAbstraction(Vratio);
7: end if
8:

9: if (state == validating) && (t mod (Vinterval + Vlength) == 0) then
10: state = waitToValidate;
11:

12: {re-abstract test individuals}
13: reAbstract(testAgents);
14:

15: {regulate the confidence value based on the performance of individuals
against what was expected}

16: conf = regulate();
17:

18: {if the confidence is less than a threshold, break down the learned ab-
straction}

19: if conf < τconf then
20: breakAbstraction();
21: state = noValidation;
22: end if
23:

24: end if

4.4. Computational Analysis of the Proposed Abstraction Mechanism

The introduction of observers adds an overhead to the run-time of the simu-
lation. On the other hand, a successful abstraction should reduce the run-time
shown in Equation (12). Therefore, an analysis to identify the parameters of
the abstraction is necessary. To this end, we define the run-time of a simulation
in the presence of an observer as follows:

Stept = N ′ ∗R+ Stept(log) + Stept(learn) + Stept(validate) (13)

N ′ = αN +M (14)

15



where N ′ is the number of agents in the simulation, α is the percentage of the
unsubsumed agents and M is the number of meta-agents. Ideally, we want to
abstract as many agents as possible (α→ 0%) into a single meta-agent (M = 1).

Calculating the timing for the first rule is straight-forward. Since each in-
dividual agent has a bounded number of collision partners, the inner loops in
Algorithm 1 are executed in constant time and therefore, Stept(log) is equal to
the number of agents in the system, i.e. Stept(log) = N ′.

The performance of the second rule depends on how the adhesion graph is
implemented. Generally, finding connected components in a graph G = (V,E)
requires O(|V |+|E|) where |V | is the number of nodes in the graph, i.e. N ′ in the
adhesion graph. Assuming that the addition of the unique rules in the behaviour
component of a meta agent requires O(R), the time required to execute the
second rule is calculated as follows:

Stept(learn) =

{
N ′ + |E|+N ′ ∗R if (t mod tlearn) == 0
0 otherwise

(15)

where |E| is the number of the edges in the adhesion graph and R is the maxi-
mum number of interaction rules in a behaviour component.

The last rule – validation – simply involves monitoring a subset of subsumed
agents in meta-agents and requires the following time:

Stept(validate) =

{
Vratio(1− α)N if Vinterval ≤ t ≤ Vinterval + Vlength
0 otherwise

(16)
where Vratio is the percentage of the subsumed agents whose original structure
is restored in the validation cycle.

5. Experiments

The proposed self-organized learning and abstraction method can be em-
ployed in any agent-based simulation in which individual agents form groups
of agents by sticking together spatially. Biological simulations are particularly
suitable applications as biological entities are formed from the aggregation of
smaller entities. Our agent-based framework, LINDSAY Composer is a part
of LINDSAY Virtual Human [36] – a 3-dimensional model of human anatomy
and physiology. Blood coagulation is one of the early simulations implemented
in this framework, which belongs to a family of simulations to study the cir-
culatory system (Fig. 7). While explaining the circulatory system and its
simulation is beyond the scope of this paper, we applied our proposed method
to an agent-based simulation of blood coagulation, which will be described in
the next subsection.

5.1. Model Setup

Blood coagulates at wound sites because of the interplay of various bio-agents
such as platelets, fibrinogens, and serotonins. If a collagen protein around the
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Figure 7: The blood coagulation simulation is a part of a family of simulations,
designed to study the circulatory system in LINDSAY Virtual Human.

wound site collides with a platelet, the platelet becomes activated. In case that
an activated platelet collides with the wound site, it secretes several chemicals
which in turn activate more platelets in the blood vessel. Gradually, a network
of fibrinogens together with a platelet plug form a clot around the wound site,
as shown in Fig. 7(c)1.

We identified eleven agents for this simulation, as listed in Table 2. Figure
8 shows the initial setup of the agents that exist at t = 0. The emitter agent
produces platelets and fibrinogens and randomly positions them in a small vol-
ume at the right side of the blood vessel. A horizontal flow field moves all the
platelets and fibrinogens along the blood vessel. There is a vertical flow field
that pushes the agents to exit through the wound hole. Consequently, the agents
exit the blood vessel either through the wound or once they reach the end of the
blood vessel. Once the agents exit the blood vessel, they are no longer needed
in the simulation and removed by the two destructors at both exits.

Most of the agents in Table 2 have a behaviour component consisting of a set
of rules. Agents can share some rules while at the same time having their own
unique rules. Although thrombin and serotonin agents, and also red and white
blood cell agents share the same behaviour rules, they collide with other agents

1The blood coagulation simulation in this paper extends the experiment reported in [14].
It also lists all the agent structures, along with their rules and parameters. The time it takes
to form a clot is different in each experiment as a result of different values of the parameters,
which makes them non-identical.
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Table 2: Agent description

Agent Types Description

Platelet, Fibrino-
gen, Serotonin, and
Thrombin

Their interaction results in the formation of the clot.

Red and White
blood cells

They participate in the formation of the clot by get-
ting stuck in the wound site.

Destructor
Removes the agents it is colliding with from the sim-
ulation.

Emitter
Adds new agents into the simulation space and po-
sitions them randomly in a pre-defined volume.

Flow field
Applies a fluid flow force onto the agents thus moving
them along a given direction.

Blood Vessel
Defines a volume in which the flow fields move other
agents.

Wound The wound site that interacts with platelets.

D
es

tru
ct

or

Wound

Flow Field

Destructor

Flow
 Field

Em
itter

Figure 8: The simulation state at t = 0, the emitter agent produces platelets and
fibrinogens which are moved by the flow fields inside the blood vessel. There is
a hole in the wound site through which some agents exit the blood vessel. Two
destructors remove agents that are not needed any longer.
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in different ways, since their physical structures are different. In the following,
we describe the rules for each agent:

Platelet

r1: Self Activation
if (agent is deactivated) AND (agent is colliding
with either an activated platelet or the wound)
then activate the agent

r2: Fibrinogen Activation
if (agent is activated) AND (agent is colliding
with a deactivated fibrinogen)
then activate the colliding fibrinogen

r3: Adhesion-1
if (mass > 0) AND (agent is activated) AND (agent
is colliding the wound)
then set mass to 0

r4: Adhesion-2
if (mass > 0) AND (agent is activated) AND (agent
is colliding with an activated platelet or an
activated fibrinogen)
then set mass to 0

r5: Secretion
if (agent is activated) AND (rand() > 3%)
then secrete randomly a new thrombin or serotonin

r6: Random Walk
if (TRUE) then random walk in the space

Fibrinogen

r1: Self Activation: same as r1 in Platelet

r2: Adhesion-1: same as r3 in Platelet

r3: Adhesion-2: same as r4 in Platelet

r4: Random Walk: same as r6 in Platelet

Thrombin and Serotonin

r1: Chase
if (TRUE) then accelerate toward a randomly
selected, deactivated platelet

r2: Random Walk same as r6 in Platelet

Destructor
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r1: Destruct
if (agent is colliding with another agent)
then remove the colliding agent
from the simulation

Emitter

r1: Generate
if (t mod 15) then generate 2 platelet and
2 fibrinogen agents with random positions

Flow field

r1: Move
if (TRUE) then apply a physical force on all the
agents inside the given volume

Red and White Blood Cell

r1: Random Walk: same as r6 in Platelet

We ran the simulation for 1500 time steps 10 times. Each simulation started
with 3 agents and ended with nearly 180 agents. Figure 9 shows the run-time
of the three engines in the simulation. It confirms our previous claim that
the behaviour engine is the bottleneck of the simulation. The physics and the
graphics engine have a constant run-time independent of the number of the
agents while the run-time of the behaviour engine grows approximately linearly
with the number of agents. The linear growth of the run-time of the behaviour
engine stems from the fact that none of the rules actually search in the list of
the agents, hence it follows the asymptotic complexity of O(N ∗R), as explained
in Section 3.

5.2. Observer Setup

In addition to the individual agents, we add one observer to the simulation.
Table 3 lists all the important parameters in our system. The observer moni-
tors the simulation space and updates the adhesion graph based on Algorithm
1. After the observer monitors the simulation long enough (twait), at specific
intervals (tlearn) it finds the connected components and subsequently, creates
the meta-agents. The meta-agents subsume the individual agents according to
Algorithm 2. In predefined intervals, Vinterval, the observer randomly chooses
a subset of the subsumed individuals in every meta-agent and restores their
original hierarchy. The size of this subset is determined by Vratio. After some
time, Vlength, the observer puts the individual agents back in the subsuming
meta-agent and validates its abstractions based on the resulting interactions
compared to the expected result. The confidence of the learned pattern is reg-
ulated accordingly. If the confidence of a pattern is less than some threshold
τconf , the according meta-agent will be removed and its subsumed agents will
be put back in the simulation.
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Figure 9: Run-times of the three engines along with the number of agents per
simulation time step. The run-time of the graphics engine is almost at zero.

Table 3: System parameters

Parameter Name Symbol Value

Adhesion incremental weight ∆inc 1
Adhesion decremental weight ∆dec 5

Delay before learning twait 400
Learning interval tlearn 100

Cutoff threshold for the adhesion graph θ 200
Validation interval Vinterval 50
Validation length Vlength 10
Validation ratio Vratio 10%

Confidence threshold τconf 0.4
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5.3. Results

Figure 10(a) shows the run-time of the behaviour engine in the presence
of the abstraction mechanism. Compared to the normal run of the simulation
(Figure 9) in which there are almost 180 agents at the end of the simulation, the
abstraction mechanism reduces this number to 120. Speeding up the simulation
is the immediate result of this abstraction. The larger peaks in Figure 10(a)
denote the learning intervals (tlearn) while the smaller peaks happen at the
validation phase (Vlength). Figure 10(b) depicts the cumulative run-time of the
simulation comparing a normal run against a run with the observer. Adding
the observer introduces no measured overhead while at the same time reducing
the total run-time of the simulation from 180 seconds to 140 seconds resulting
in a 20% reduction of the run-time.

Figure 11 shows the agent adhesion graph in a sample run at t = 900, in
which five connected components are distinctive by their colours. There are
37 agents in the biggest cluster (enclosed by a dashed line) consisting of 16
platelets, 9 fibrinogens, 9 red blood cells, and 3 meta agents. Together, they
have 16∗6+9∗4+9∗1+3∗6 = 159 rules. On the other hand, the resulting meta-
agent will only have 6 rules, as fibrinogens and red blood cells share the same
rules defined in a platelet. Therefore, creating a new meta-agent will reduce the
number of rules to be checked by 153. This reduction in the number of rules is
mainly responsible for speeding up the simulation.

To verify that the abstraction mechanism produces the same or a similar
behaviour as that of a normal simulation, we studied how the clot is formed
during the course of the simulation. The clot concentration simply measures
how many platelets, fibrinogens, or red blood cells are attached to the wound.
We compare the result of ten normal runs of the simulation against ten runs
of the simulation with the abstraction and report the result in Figure 12. This
result suggests that the choice of values for the parameters resulted in the same
system behaviour while at the same time speeding up the simulation.

To further study the validation mechanism, we introduced an abrupt change
in the behaviour of the simulation at t = 1000, when we dissolve the clot by
detaching the agents from the wound. As a result, there will be almost no
platelet, fibrinogen, or red blood cell attached to the wound at t = 1200. We
undo this new change at t = 1500 to let the clot form again. Figure 13 compares
the behaviour of our proposed abstraction mechanism with that of the original
simulation. The validation mechanism ensures that the system behaviour will
adapt to the changes in the simulation – turning the validation off would result
in an inaccurate system behaviour.

6. Discussion and Conclusion

We introduced the concept of abstraction to boost the speed of agent-based
simulations by means of a light-weight observer agent that monitors the simula-
tion space and abstracts groups of individual agents to higher-order meta-agents
which in turn are subject to further abstractions. While the notion of observers,
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Figure 10: Run-time with and without the observer, (a) Run-time per simulation
time step, (b) Cumulative run-time.
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Figure 11: The agent adhesion graph in a sample run at t = 900 in which there
are 5 clusters of connected components, in which the biggest cluster is enclosed
by a dashed line. The weight of an edge between two nodes denotes the strength
of their adhesion.
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Figure 12: System behaviour in terms of the clot concentration, i.e. the number
of platelets, fibrinogens, and red blood cells around the wound, reported over ten
runs of the simulation with and without the proposed abstraction mechanism.
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along with the steps to do an abstraction are shared between this work and our
previous work [14], there are substantial differences between them:

1. The agent framework is explicitly defined in this work. This enables us to
find the computational complexity of our agent-based simulations, with
or without an abstraction mechanism.

2. The objective of the work presented here is to create agent hierarchies by
constantly abstracting many individual agents to one meta-agent, which
can go under the same abstraction. In contrast, the algorithm in [14] ab-
stracts many individual rules into one meta-rule, which does not change
the agent structure. More precisely, the goal of this newly proposed ab-
straction mechanism is to reduce N in Equation (12), while the goal of
our previous abstraction was to reduce R in Equation (12).

3. The proposed abstraction in this paper only works on spatial agents. It
uses the notion of proximity among agents as a heuristic indicator to
abstract them. Our previous abstraction mechanism can work on any
type of agents [14].

4. The observers in this paper maintain a directed graph of agents. The
weight of an edge between two agents denotes their proximity strength.
We apply a connected component algorithm in the learning phase to find
a group of agents. The observers in [14] maintain a list of executed rules;
they apply a k -means algorithm to find a dense cluster of rules whose pa-
rameters are constant. In the validation step, an observer in this work puts
back a few abstracted agents in the simulation while an observer in [14] re-
activates an individual rule in a few selected agents. Therefore, although
both abstractions have three rules – Log, Learning & Abstraction, and
Validation – their actual implementations are completely different.

Our proposed abstraction mechanism was applied to an agent-based simu-
lation of blood coagulation, in which bio-agents stick together to form a clot
around the wound site thus preventing further bleeding. We showed that the
adaptive abstraction results in the same system behaviour but with a 20% faster
run-time. We emphasized the role of our unsupervised validation algorithm to
ensure the validity of meta-agents.

The proposed abstraction mechanism creates self-organized, dynamical hi-
erarchies during the course of a simulation. Studying the emerging patterns
in such hierarchies is of great interest, particularly in the case of biological
simulations in which new entities at higher levels are formed as the result of in-
teractions among lower level entities. For multi-scale modelling, a stable, higher
order entity can be used in other time or spatial scales to manage the computa-
tional burden of the simulation. This could eliminate the need for exponential
increases in computation power to model such systems.
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[23] M. Gardner, Mathematical Games: The fantastic combinations of John
Conway’s new solitaire game “life”, Scientific American (1970) 120–123.

[24] A. Deutsch, S. Dormann, Cellular Automaton Modeling of Biological Pat-
tern Formation, Birkhäuser Boston, 2005.

[25] X.-S. Yang, Y. Young, Cellular Automata, PDEs, and Pattern Formation,
Handbook of Bioinspired Algorithms and Applications (2010) 12.

28



[26] R. M. Amorim, R. S. Campos, M. Lobosco, C. Jacob, R. W. dos Santos,
An Electro-Mechanical Cardiac Simulator Based on Cellular Automata and
Mass-Spring Models., in: G. C. Sirakoulis, S. Bandini (Eds.), ACRI, volume
7495 of Lecture Notes in Computer Science, Springer, 2012, pp. 434–443.

[27] E. Bonabeau, From classical models of morphogenesis to agent-based mod-
els of pattern formation., Artificial life 3 (1997) 191–211.

[28] G. Vizzari, L. Manenti, An agent-based model for pedestrian and group
dynamics: experimental and real-world scenarios, in: Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Sys-
tems - Volume 3, AAMAS ’12, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 2012, pp. 1341–1342.

[29] M. Batty, Agent-based pedestrian modelling, Advanced spatial analysis:
the CASA book of GIS (2003) 81.

[30] T. C. Schelling, Dynamic Models of Segregation, Journal of Mathematical
Sociology 1 (1971) 143–186.

[31] M. Abdou, N. Gilbert, K. Tyler, Agent-Based Simulation Model for Social
and Workplace Segregation, in: Proceedings of the 8 Annual Conference
of European Social Simulation Assoc., Brescia, pp. 1–12.
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