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Abstract. We utilize an agent-based approach to model the MAPK
signaling pathway, in which we capture both individual and group be-
haviour of the biological entities inside the system. In an effort to adap-
tively reduce complexity of interactions among the simulated agents, we
propose a bottom-up approach to find and group similar agents into a
single module which will result in a reduction in the complexity of the
system. Our proposed adaptive method of grouping and ungrouping cap-
tures the dynamics of the system by identifying and breaking modules
adaptively as the simulation proceeds. Experimental results on our sim-
ulated MAPK signaling pathway show that our proposed method can be
used to identify modules in both stable and periodic systems.

1 Introduction

A signaling pathway is a process by which a cell transfers information from its
external receptors to a target inside [1]. It usually consists of a cascade of bio-
chemical reactions carried out by enzymes. From a software engineering point
of view, a signaling pathway description is similar to a UML diagram describing
which components interact in the cascade. Playing a key role within the cell cy-
cle, the Mitogen-Activated Protein Kinase (MAPK) pathway is one of the most
documented signaling pathways in the literature.The MAPK pathway creates
responses to extracellular stimuli and regulates cellular activities, such as gene
expression, mitosis, differentiation, etc [2].

A multiagent system (MAS) can be composed of a number of agents inter-
acting with their neighbours as well as their environment. This paradigm is a
promising approach to model a biological system in which there are different
entities that interact locally [3,4,5,6]. One of the key challenges associated with
multiagent modeling is its high computational cost. Therefore, there should be a
mechanism for efficient usage of computational resources. Modularization is such
a mechanism in which the average behaviour of similar processes is learned, thus
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creating a higher-level algorithmic representation, which is then used instead of
the original, more elementary processes. However, in cases when the behaviour
of agents changes over time, a static modularization cannot be used. Instead, the
model should have the ability of adaptive modularization, in order to properly
reflect the dynamics of the underlying system.

The goal of this work is to propose such a modularization method and demon-
strate its effectiveness by example of the MAPK signaling pathway. To achieve
this objective, there are various issues to be addressed. The first issue is how to
group different agents into a module and learn their behaviour. Another issue
is whether and how to break or integrate modules whenever the dynamics of
the system is changed. Furthermore, the transition between different states of
the model should be seamless. This research will shed light on how to build a
smooth transition between various models in a complex and multiscale model
and therefore will serve as the first step to multiscale modeling of biological sys-
tems using multiagent systems.

The remainder of this paper is organized as follows. Section 2 reviews re-
lated work in the field of multiagent modeling of biological systems and multi-
scale modeling. Section 3 presents the details of our proposed method. Section
4 reports on the experiments conducted to demonstrate the performance of the
proposed method. Finally, concluding remarks are presented in Section 5.

2 Related Work

Amigoni and Schiaffonati [1] present a thorough analysis of multiagent-based
simulation of biological systems. In particular, they discuss three different mul-
tiagent approaches to model the MAPK signaling pathway. The first approach
[2], models every chemical reaction as agents, while the approach proposed in [7]
defines a multiagent system in which each intracellular component is an agent
that uses a blackboard mechanism to interact with other agents in the system.
The third approach [8], models each molecular entity as an agent. In this model,
a reaction is implemented as messages communicated among the agents.

A modularization approach for the MAPK signaling pathway is presented in
[9]. It works by finding the node with the maximum number of neighbours in the
biological interaction network. Further expansion of this node into a subgraph
is called a module. To this end, it is assumed that the graph of the network
is known beforehand and a static graph analysis is performed. Despite being a
static and intuitive algorithm, it serves as a starting point for the modularization
part of this research toward a multiscale model.

Another approach which is proposed by Papin et al. [10] tries to find modules
in an unbiased fashion using mathematically based definitions. These authors re-
viewed three different approaches to calculate correlated reaction sets (Co-Sets).
Co-Sets are groups of reactions in a network whose functional states are simi-
lar. Network-based pathways methods like elementary modes [11] and extreme
pathways [12] aim to optimize a flux-balance equation by finding sets of simi-
lar nodes. Another method is referred to as the flux coupling finder, which also
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minimizes or maximizes the ratio between all pair-wise combinations of nodes
[13]. Finally, a correlation coefficient is defined between each pair of nodes in the
network based on their reaction fluxes [14].

As the technology advances, the prospect of making a multiscale model be-
comes more prominent. In [15], different issues and trends in multiscale modeling
of complex biological systems are addressed. In [16], a software framework for
multiscale model integration and simulation is proposed; however, no specific
modeling techniques are described. There are a few physical multiscale models,
e.g. CPM [17], and Synergetics [18]. However, as of yet, there is no universally
adopted theoretical or computational framework for the assembly of multiscale
biological models [19].

Bassingthwaighte et al. identify a systems approach for developing multiscale
models which includes six steps [20]: (1) defining the model as its highest level
of resolution, (2) designing reduced-form modules, (3) determining the range of
validity of the reduced form modules, (4) monitoring the variables of the sys-
tem, (5) replacing higher resolution models with reduced form modules, and
finally, (6) validating the performance of the multiscale model against available
real data. They further identify issues that must be addressed by any attempt
to multiscale modeling. Examples of these issues are parameter identification of
closed-loop systems, the identification of input-output delays, and the imposi-
tion of known constraints. Their work is among very few attempts to identify
challenges ahead of multiscale modeling from a computer science perspective.

3 Adaptive Modularization in a Multiagent Environment

Modularization is the process of identifying modules within a network that are
functionally similar. By replacing the behaviour of individual nodes with the be-
haviour of their enclosing module, the complexity of the network will be reduced.
This way, a large network can be efficiently analyzed using a reduced number
of nodes. Modularization is usually a static process in which modules are found
before the simulation starts. Furthermore, most modularization approaches as-
sume that the agent interaction graph is completely known as a whole. This
assumption is restrictive, especially in the case of extended networks where the
number of nodes is very large. Furthermore, analyzing the global graph is not
scalable, since with the introduction of each new node the analysis must be per-
formed again. As a result, we propose that the multiagent paradigm can be used
to tackle the problem of scalability and also complexity of large graphs.

A multiagent system usually has no top-down control unit, which operates
on the whole system. Agents cooperate or compete autonomously to perform
various tasks. Contrary to traditional systems, a MAS agent only knows about
its local interactions. Consequently, agents can form their local directed graph
of interaction. Agents can cooperate and share their information (in this case,
their interaction graph) with other agents. This way, they can form groups or
modules in a bottom-up fashion.

In our proposed approach, we aim to find, integrate and break modules dy-
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namically as the simulation proceeds. Based on the system dynamics, we expect
our algorithm to find different modules that act together over a period of time.
To this end, we must address several issues as described in [20]. How and when
to integrate nodes to form a module, how to learn the behaviour of a module,
and how to monitor the validity of modules are among the issues that we address
in this section.

3.1 Creating Modules

In our system, agents are associated with an interaction graph as well as an inter-
action history for all their neighbours. The weight of an edge in their interaction
graph is equal to their correlation coefficient with their neighbour. A correlation
coefficient between two statistical variables indicates their linear dependancy. A
zero correlation coefficient means that two variables are independent, while +1
or -1 shows highly correlated variables. The more two variables are correlated,
the more similar their function is. In case there is a series of n measurements of
agents s and t in the form of si and ti, where i = 1, 2, ..., N , their correlation
coefficient (ρst) is defined as follows:

ρst =
∑N

i=1(si − s̄)(ti − t̄)
(n− 1)σsσt

(1)

where s̄ and t̄ are the mean values, and σs and σt are standard deviations of s
and t, respectively.

Having a local weighted graph, each agent then periodically checks if its
correlation coefficient with each neighbour is greater than some threshold (τedge).
If so, they form an initial module and repeat this process to identify a cluster
of agents that are highly correlated (Algorithm 1). Fig. 1 shows an example in
which Agent A finds Agent C and Agent E, and they form a module. The set of
new neighbours is the union of all neighbours of the underlying nodes. Having
formed such a module, the next step is to train this new module, so that it learns
and imitates the group behaviour of its underlying nodes.

3.2 Learning the Group Behaviour

A module has to subsume the behaviour of its underlying nodes by abstracting
from their behaviour. In other words, the new module has to replace its associ-
ated nodes and produce the same outputs as if there were individual agents in
the system. The learning algorithm can employ neural networks, time series, or
any other function approximation algorithm. No matter what learning algorithm
is used, each node has to have an interaction history to be used during the learn-
ing phase. In our approach, we used a three-layer feed-forward neural network
with back propagation learning algorithm [21] to train the network. This way,
we also have control over the speed of learning.

The structure of the neural network is determined by its inputs, the number
of nodes in the hidden layer, and the outputs. Since in our model, agents are not
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Algorithm 1 Module Indentification
m = current module;
Module new module;
Queue q;
q.Enqueue(m);
new module.Add(m);
while !q.empty() do
Module head = q.Dequeue();
for all Agent s in head do

for all Agent t in s.Neighbours()
do

if |ρst| ≥ τedge then
new module.Add(t);
q.Enqueue(t);

end if
end for

end for
end while
return new module;

Algorithm 2 Validity Monitoring
m = current module;
needToBreak = false;

for all Agent s in m do
for all Agent t in s.Neighbours() do

if |ρst − ρ′
st)| > τvalid then

needToBreak = true;
break;

end if
end for

end for

if needToBreak then
simulation.remove(m);
for all Agent s in m do
simulation.add(s);

end for
end if

aware of their dependent agents (in fact, they only know about their outgoing
edges), the output of the network should simply be all of the underlying nodes (in
the example of Fig. 1, outputs are Agent A, Agent C, and Agent E ). Regarding
the input to the network, there are different design choices. The first one would
be to assign external incoming edges and ignore internal connections (Agent D
in Fig. 1). An alternative approach is to consider internal nodes as well. This
way, the neural network has more meaningful sets of data to be trained with. As
for the number of nodes in the hidden layer, we follow a simple rule-of-thumb
and assign it to be the number of inputs + 2.

3.3 Monitoring the Validity of Modules

Once a module is found and trained, it subsumes the behaviour of its underlying
nodes. Due to the dynamic behaviour of the system, at some point, the module
might show invalid behaviours. To address this issue, we check the validity of each
module periodically. Nonetheless, we need an indicator to compare the current
and expected behaviour of the module. A heuristic indicator is the previous
correlation coefficients of the underlying nodes before they form a module (ρ′

st).
According to Algorithm 2, we compare the current correlation coefficients of the
module to previous values for each individual node, if the difference is larger
than some threshold, we consider the module invalid and consequently break it
into its underlying nodes.
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Fig. 1: Example of an interaction graph. The edges denote the correlation co-
efficients. (a) Agent A, Agent C, and Agent E form a module, (b) The new
neighbours of this module are Agent B and Agent D.

4 Experiments on the MAPK Signaling Pathway

Our proposed adaptive modularization approach can be employed in any system
where there are different agents interacting locally. Signal transduction pathways
are such ideal candidates, as for most of them there is quantized data available.
In general, a signal transduction pathway starts with an external stimulus in a
cascade of biochemical processes, which in turn results in a change of state in a
cell. In the MAPK signaling pathway [22], a hypothetical enzyme E1 stimulates
the cell and results in an increase in production of MAPK-PP enzyme (Fig. 2(a)).
In another model [23], a negative feedback loop causes sustained oscillations in
the production of MAPK-PP (Fig. 2(b)).

(a) (b)

Fig. 2: (a) The MAPK signaling pathway (from [22]), and (b) The MAPK sig-
naling pathway with a negative feedback (from [23]).
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4.1 Agent-based Model of the MAPK Signaling Pathway

Contrary to the differential equation-based approach discussed above, in our
model each substance is considered to be an independent entity which is loosely
defined as an agent. For each agent, the interaction graph defines its relations
with the substances that appear in its update formula3. Fig. 3 shows the complete
interaction graph for the signaling pathways of Fig. 2.
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Fig. 3: Agent graphs for the MAPK signaling pathways of Fig. 2.

To validate the performance of the adaptive modularization, we conducted
a series of experiments on both MAPK models. Essentially, there are five pa-
rameters in our algorithm which are summarized in Table. 1. We let the system
run in its normal mode for some time (twait) and then start looking for mod-
ules within a time interval (∆find). twait is important in that the system has
to reach a rather stable condition before the modularization algorithm starts to
work. We keep monitoring the system also in predefined intervals (∆monitor).
A module is valid as long as its correlation coefficients with its neighbours do
not vary too much with regards to those of individual agents (τvalid). Finally, to
integrate nodes and find modules, the value of an edge in the interaction graph
should be greater than some threshold (τedge). τvalid and τedge have been found
through trial and error. A more detailed exploration of the parameter spaces will
be undertaken in our future work.

Fig. 4(a) shows the result of applying our approach to the first model (Fig.
2(a)) in terms of the number of modules. Initially, each agent is its own module.
The identification of modules starts after t = 1200. The process of construction
and deconstruction of modules results in the emergence of a periodic pattern.
The reason is that whenever a module is broken, all of its underlying nodes start
to work as individual agents again. Naturally, when a module contains a larger
number of nodes, the probability of that module to become invalid is higher.
In other words, since there is no hierarchical learning, after an all-encompassing
single module is created and it breaks, there are again eight individual modules
(one for each agent) in the system. As this modularization/demodularization
3 The complete set of update equations can be found in [22] and [23].
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Table 1: Model Parameters

Parameter Name Symbol
Value in

Experiment 1
Value in

Experiment 2

Delay before finding modules twait 1200 1500
Modules finding interval ∆find 300 300

Monitoring interval ∆monitor 20 20
Validity Threshold τvalid 0.1 0.1

Edge Threshold τedge 0.95 0.7

process continues, a periodic pattern appears as illustrated in Fig. 4(a). Fig.
4(b) shows that the final concentration successfully resembles that of the PDE
solver.
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Fig. 4: Adaptive modularization results for the first MAPK pathway model of
Fig. 2(a). (a) Number of agents, (b) Concentration of MAPK-PP.

Fig. 5 shows the result of adaptive modularization for the second MAPK
pathway. Since this model is periodic, the adaptive modularization algorithm
successively finds, trains, and breaks modules over time. The number of spikes
in Fig. 5(a) shows that the validity period of a composite module is not long
enough. The reason is that the correlation coefficient is a linear indicator which
varies from -1 to +1 over a periodic signal. This variation makes a module in
a periodic system invalid. This result suggests that we have to look for other
parameters when we have a nonlinear system with feedback. Nevertheless, it is
still more reliable than if modules were broken at random.

5 Conclusion and Future Works

In this paper, we introduced a bottom-up method to reduce the complexity of a
multiagent system simulating the MAPK signaling pathway by adaptive mod-
ularization and demodularization. Although we have shown that this approach
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Fig. 5: Adaptive modularization results for the second MAPK pathway model of
Fig. 2(b). (a) Number of agents, (b) Concentration of MAPK-PP.

works very well for this specific example, we believe that our module composition
and decomposition algorithm can be applied to a wide range of other multiagent
systems. In particular, individual agents share their interaction graph to build
a higher-level module which subsumes their behaviour. After a new module is
formed, it learns the behaviour of its underlying nodes using a feed-forward neu-
ral network. To monitor the validity of a module, the values of any edge in its
interaction graph is checked – at defined intervals – and compared against the
previous values of its nodes. A module is broken if the difference between the
current and previous value of an edge is greater than some threshold.

We use correlation coefficients to determine the edge value in the agent’s
interaction graphs. Although this indicator is mathematically sound, it does not
capture the nonlinear dependance between agents. Looking for other nonlinear
indicators seems to be a promising approach. This work is among very few at-
tempts to find an algorithmic framework to address the complexity reduction in
an agent-based system and can serve as the first step to address the reduction
of complexity in highly complex systems.
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