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In this paper, we propose an approach to reduce the number of interactions among
agents in a multi-agent simulation. Modeling agent interactions turns out to be com-
putationally expensive, especially when arbitrary interactions are allowed. In order
to diminish computational costs of simulating agent interactions, we propose a self-
organized approach to abstracting recurrent interaction patterns among groups of
agents.

Predictably interacting groups of agents are subsumed by higher-order agents that
reproduce similar behaviours but at reduced computational costs. To this end, ob-
server agents are immersed into the simulation space in order to monitor groups of
agents and learn interaction patterns. Since the dynamics of the system changes over
time, an abstraction might loose its validity and must therefore be removed again.
This process is regulated by confidence values that are calculated and associated with
individual abstractions. If a pattern exists for longer than anticipated, its confidence
value is increased. The process of creating and removing abstractions is repeated dur-
ing the course of a simulation in order to ensure an adequate adaptation to the system
dynamics. Experimental results on a biological agent-based simulation show that our
proposed abstraction method can successfully reduce the computational complexity
during the simulation while maintaining the possibility of arbitrary interactions.
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1 Introduction

In the context of this paper, we are particularly interested in complex systems,
as they occur in biological processes and human physiology. In general, such
systems are composed of hierarchically intertwined and interacting parts. Com-
putational models can be implemented following the agent-based modelling ap-
proach (ABM) that provides each of these parts with the ability to change their
own states and to interact with others. Agent-based computational models have
gained great popularity as they can easily consider noise, spatial and temporal
relationships and exhibit emergent processes [8, 3, 4].

The flexibility of agent-based models comes at a cost: Without restrictions,
each agent could potentially interact with all the other ones. Merely identifying
who interacts with whom then becomes a computationally expensive task, not
even considering the actualisation of any interactions. Usually, numerous con-
current agent-based simulations are therefore limited to fixed neighbourhoods in
discrete lattice spaces as implemented by cellular automata (CA). The ability of
the models to continuously change the interaction topology among the agents,
however, is crucial to trace, for instance, the dynamics of transportation effects
[19] or developmental processes [15].

In this paper, we present a means to reduce the arising computational costs
while preserving the flexibility of agent-based models. In particular, we show
how groups of agents that exhibit behavioural patterns can be reduced to in-
dividual agents with (computationally) simplified interaction rules. In addition
to the agents that are part of the actual simulation model, observer agents are
immersed into the simulation space to monitor groups of agents, to learn their in-
teraction patterns, and to temporarily replace them (at reduced computational
costs). As the agents’ interactions may change over time, learned behaviours
might loose their validity. Therefore, confidence values determine the lifetime of
the learned behavioural patterns. Continuous re-evaluation of these confidence
values allows for a self-organized optimization process in which the substitutions,
initiated by observer agents, are adaptively created and revoked.

The remainder of this paper is organized as follows. Section 2 reviews related
work in the field of multi-scale and multi-agent modelling of biological systems.
Section 3 presents the details of our proposed method. Section 4 reports on
the experiments conducted on an agent-based blood coagulation simulation to
study the performance of the proposed method. Finally, concluding remarks are
presented in 5.

2 Related Work

Simulations can predict the behaviours of complex systems. The resulting phe-
nomena emerge bottom-up from the interactions of the parts of a system, or its
agents [4]. Although the natural sciences have uncovered numerous parts and
processes that constitute natural systems, it is not possible to comprehensively
represent or simulate them in accordance with the most recent findings. The
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parts and processes across several dimensions of scale would need to be described
by means of one modelling language and be integrated into one computational
model. It has been suggested that hierarchical representations of agents could
address these challenges, and that the associated levels of abstraction could
even reduce the computational load of large-scale, bottom-up simulations. In
this section, we briefly describe some of the related preceding works.

2.1 Bottom-up Models

Artificial chemistries [1] and computational developmental systems—such as L-
systems [13], relational growth grammars [10], or swarm grammars [20] explicitly
and often visually trace the emergence of high level structures based on simple
constituents—these constituents may be represented as formal symbols or as
entities in physics simulations. Even when looking at simplified physical artificial
chemistries, only allowing for the most simple interactions between molecules,
complex interaction patterns can emerge from the bottom-up.

Schuster coined the term hypercycle which denotes a system of chemicals
and their reactions that nurture one another. Through the formation of such
intertwined entities, hierarchies of increasing complexity emerge in nature [17].
Autocatalytic networks also pick up on this idea [9].

Rasmussen et al. designed a computational model based on artificial
chemistries, in which structures are formed with an increase in structural com-
plexity and with different functionalities, from monomers to polymers to micelles
[14]. Although their experiments clearly suggest the formation of patterns at sev-
eral levels of scale, Dorin and McCormack claim that such phenomena are not
surprising given the model’s simplicity. They further argue that it takes con-
siderably more effort to determine the novelties at higher levels in the hierarchy
[7].

2.2 Re-representing Emergent Patterns

Several conceptual approaches have been presented that address the issue of
identifying emergent phenomena.

Servat et al. propose that an emergent phenomenon should be represented
as an abstract agent ignoring unimportant details [18]. Although the authors
suggest that externally observed changes could provide clues to introduce and
configure high-order agents, they conclude that agents on a higher level must be
predefined as their behaviours need to be known upfront.

Along the same lines, Chen et al. introduce an agent description formalism
capable of capturing emergent patterns at different levels of abstraction [2, 3].
Although the existence of emergent patterns should be automatically and for-
mally inferred, they also require that higher-level patterns are introduced as
background knowledge into the system beforehand.

Lavelle et al. use the term immergence, or downward causation, to describe
the effect of the higher level organization on entities at lower scales [11]. They
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postulate that explicit functions must be defined to bridge between micro and
macro levels.

2.3 Agent Group Substitution

In order to capture emergent phenomena, Dessalles and Phan foresaw a system
in which detectors would identify emergent patterns and subsume the activity
of the respective lower level objects [6].

von Mammen et al. introduced a conceptual model of self-organized middle-
out abstraction (SOMO) in agent-based simulations [21]. In their proposed
approach, observer agents monitor the interaction history of sets of agents, use
motif discovery algorithms to detect recurrent patterns, and create hierarchies of
high-level agents that subsume the lower interacting agencies. Although they do
not exclude the possibility of a relationship between learned high-order patterns
and emergent phenomena found in nature, their concept primarily targets an
increase of efficiency by repeatedly substituting groups of agents by individual
high-level instances that work at lower computational cost.

By means of a rudimentary prototype, the authors of this work have previ-
ously shown that high-level agent substitution indeed results in a reduction of
computational costs [16]. In particular, they merged artificial neural network
learning, an established inductive learning method, with an agent-based imple-
mentation of a signaling pathway. Clusters of biological substrates and their
corresponding activation patterns were substituted by artificial neural network
agents.

3 Self-Organized Learning of Collective Be-
haviours

In this section, we present an approach that maintains the capacity of letting
arbitrary agent interactions unfold over time and adaptively reduces the com-
putational costs that arise from unrestricted interaction possibilities.

In addition to the agents that constitute the simulation model, or model
agents, we introduce observer agents, or observers, into the simulation space.
The simulation framework treats both kinds of agents equally, i.e. each of these
agents is considered for interactions at each simulation step, depending on the
agents’ behaviours and the simulation state.

Observers monitor subsets of model agents and look for patterns in their
interactions. Once an observer successfully identifies an interaction pattern, it
replaces the individual behaviours maintained by the model agents that led to
this pattern by a group behaviour that it executes on behalf of the model agents.
The execution of this group behaviour is based on the learned pattern instead of
the model agents’ situations, which results in a reduction of the computational
costs.

546



Table 1: Interaction histories inside an observer

Interaction History of
Executed Actions

(IHExec)
Ag0 Activate A1 t0
Ag0 Activate A2 t1

. . . .

. . . .

. . . .
Ag2 Activate A2 t1
Ag7 Activate A2 t2
Ag12 Activate A2 t4

Interaction History of
Computed but

Unexecuted Actions (IHNExec)
t0 Activate n0
t3 Activate n3
. . .
. . .
. . .
t15 Activate n15
t23 Activate n23
t32 Activate n32

Since the substitution of the model agents’ individual behaviours with the
observer’s group behaviour diminishes the capacity of interactions in the simu-
lation, the observer has to continuously validate it. For the validation step, the
observer would simply check whether the deployment of the original individual
behaviours would yield an outcome different from the predictions of the learned
pattern. If the discrepancy between these two outcomes exceeds a given thresh-
old, the observer omits its learned pattern and reactivates the original individual
behaviours.

The success of the abstraction system depends on the configuration of the
deployed observer agents. In the following paragraphs, we explain one way how
the observers can replace the individual behaviours with a group behaviour and
how they can validate, maintain, or abandon the learned patterns throughout
the course of a simulation.

3.1 The Observer

Like any other agent, an observer agent can be defined as Ag = (Sit, Act,Dat),
a triple composed of a set Sit of situations, a set Act of actions, and a set Dat of
internal data [5]. At any point in time, the agent decides to perform an action
based on its situation and internal data. This decision is captured in a decision
function fag : Sit × Dat → Act. Without the loss of generality, fAg can be
represented as a set of situation-action pairs.

Observers are configured to log the interactions of model agents in their inter-
action histories: IHExec is used to log executed interactions, whereas IHNExec logs
the numbers of considered but not executed actions (Table 1). An IHExec entry
may contain any information related to an observed interaction. For instance,
an observer may store the model agent A that executed an action act ∈ Act
with time stamp t along with the set of interaction partners A. In addition,
the observer could also log situational information of the model agent and its
interaction partners (Figure 1).
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Figure 1: Observers inside the simulation space monitor a subset of agents and log
necessary information based on their configuration.

An observer then extracts group behaviours from the logged data by applying
a pattern recognition algorithm. In this paper, we have only relied on clustering,
which will be explained in the next subsection.

3.2 Learning and Abstraction

In our prototype, an observer logs interaction partners along with the time of
the interaction. Once the interaction history IHExec is grown beyond a certain
threshold, the observer applies a k-means clustering algorithm [12] to find a
large cluster C of overlapping interaction partners. When the observer finds
such a cluster, it infers a generalized group behaviour from the clustered indi-
vidual interactions by combining their features. The first feature is the set of
overlapping interaction partners that are constant for the learned action. Sec-
ondly, the observer needs to know when and at which rate it should execute the
learned action.

The observer first finds the time range [tmin, tmax] of the executed action
from all the individual interactions in C. Two cases might happen here: (1) an
interaction only occurs within a bound time range, (2) an interaction continu-
ously occurs over time or the observer is uncertain whether it has had enough
time to determine an upper bound tmax of the time range. In order to address
the latter case, the observer compares the two most recent time stamps an in-
teraction occurs in IHExec. If the difference exceeds the observation time, the
observer sets tmax to ∞.

Next, the observer extracts the rate of execution defined as the number of
interactions in C divided by the number of total computations of the interaction:

pexec =
|C|

|IHExec|+ |ihn| , ihn ∈ IHNExec & ihn.t ∈ [tmin, tmax] (1)
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Time to start 
validation?

End iteration t

Start iteration t

AGExec = AG - AGVal

AG: Set of the observed agents

AGVal: Subset of the observed 
agents used to validate the 
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AGExec: Subset of the observed 
agents for which the group 
behaviour is executed
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from AG

Put back individual 
behaviours in AGVal

Execute group 
behaviours for AGExec  

Validate the group 
behaviour using AGVal

AGVal == ∅?

AGVal = ∅

No

Yes

Yes

No

Figure 2: Flow chart of the validation step. At some interval, the observer selects
a random subset of the observed agents and restores their individual behaviour. The
result of their interactions is evaluated in the next iteration to regulate the confidence
value. The observer continues to execute the group behaviour for all other agents.

For example, all the IHExec logs in Table 1 except the first log constitute a
cluster in which the first column (Ags) is discarded and regarded as wildcard,
[tmin, tmax] is inferred from the last column, and pexec is calculated as described
above.

Finally, the observer removes act from model agents and subsumes this action
by executing it on behalf of them. If an agent A has the learned action act and
A.t ∈ [tmin, tmax], the observer executes act for that agent with probability
pexec. Since the observer has already learned the required interaction partners,
it does not need to use the computational resources to find them each time. The
observer only needs to validate the learned pattern and breaks it down once the
learned pattern becomes invalid.

3.3 Validation of the Learned Behaviours

After some time, a learned behaviour might not be valid any more. The observer
needs to ensure that a learned behaviour is valid to be executed. In order to
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monitor the reliability of a learned behaviour, the observer assigns an initially
unbiased confidence value (confinitial = 50%) to the learned behaviour. At
regular time intervals, the observer lets some model agents execute their original
interactions. The confidence value is regulated based on the difference between
the actual behaviour of model agents compared to the behaviour expected by
the observer (Fig. 2). In our prototype, we only consider the difference in
interaction partners. However, other possibilities like the time at which an
individual interaction occurs or the rate at which model agents execute their
interactions could also be incorporated in the comparison. A confidence measure
below a given threshold indicates that a learned group behaviour is not valid any
longer and that the observer has to restore the model agents’ original behaviours
instead.

4 Experiments

The outlined self-organized optimization method can be employed in arbitrary
agent simulations. Biological simulations are particularly suitable applications as
biological entities will be directly modelled as agents. When simulating biological
systems at the level of inter-cellular and inter-molecular interactions, actions are
mostly triggered by collisions or internal agent states. We applied our proposed
method to an agent-based simulation of blood coagulation described in the next
subsection.

4.1 Model Setup

Blood coagulation emerges from the interplay of various blood factors, i.e.
platelets, fibrinogens, serotonins etc. When a collagen protein collides with
a platelet, the platelet becomes activated, activated platelets collide with the
wound site and secrete several chemicals which in turn activate more platelets
in the blood vessel. Gradually, a network of fibrils together with the platelet plug
form a clot around the wound site (Fig. 3). An according agent-based model
comprises of twelve blood factors modelled as agents. The agents’ behaviours
are phrased by means of situation-action pairs. There are ten different interac-
tions which fall into two categories: (1) state-dependent interactions, and (2)
collision-dependent interactions. The actions themselves introduce local state
changes of the agents (represented as internal variables), or they produce or
remove agents in the simulation.

4.2 Observer Setup

In our target simulation, there are ten key interactions. Each interaction is
monitored by an observer that records only the interaction partners. Table 2
lists all the important parameters in our system. Once an observer monitors
an interaction long enough (twait), it applies a k-means clustering algorithm
to create k clusters. The centroid of the largest cluster is considered to be
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t1 (Outside) t2 (Outside) t3 (Outside)

t1 (Inside) t2 (Inside) t3 (Inside)

Figure 3: The blood coagulation simulation at different time steps (t1 < t2 < t3). The
process is observed from two different perspectives: inside and outside of the vessel.

Table 2: System Parameters

Parameter Name Symbol Value

Delay before learning twait 100
Monitoring interval ∆monitor 10

Confidence threshold τconf 0.3
Number of clusters in k-means k 30

the learned group behaviour for which [tmin, tmax] and pexec are inferred. The
observer subsumes the learned interaction by executing it on behalf of the model
agents. The observer allows some randomly chosen model agents to execute their
original interaction in predefined intervals (∆monitor) and validates the result of
that interaction with the expected result. The confidence of the learned pattern
is regulated accordingly. If the confidence of a pattern is less than some threshold
(τconf ), the learned pattern will be removed from the simulation.

4.3 Results

Our proposed approach successfully identified all the group behaviours within
the simulation. For example, Random Walk is a self-triggering action found to
be executed with probability pexec = 100% and t ∈ [0,∞]. Produce Platelet is
an interaction executed in t ∈ [3,∞] with probability pexec = 100%. Activate
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Figure 4: Number of function evaluations and agents over simulation timestep.

is another collision based example with pexec = 77% and t ∈ [90, 95].

Figure 4 shows the number of situations evaluated over the simulation time.
Due to the model’s simplicity, the number of situations to be calculated increases
linearly as more agents enter the simulation space. When the proposed abstrac-
tion method is utilized, the number of situations to be calculated is kept steadily
constant. The difference between the two methods before the abstraction starts
(t < 100) is due to the overhead of having observers which is constant and ignor-
able. The peaks in our proposed method indicate the validation time in which
some model agents are allowed to execute their action.

Figure 5 shows the change of confidence value for one of the learned patterns.
Since there is no learned pattern before t = 100, the confidence value is also 0.
However, after the observer abstracts an individual behaviour, the confidence
value is initially set to 50%. It should be noted that since in this simulation all
the actions have been learned and abstracted perfectly correct, the confidence
values always increase over time.

5 Conclusion and Future Work

We proposed an approach to reduce the computational complexity of agent-based
simulations while maintaining the capacity for arbitrary interactions among
agents. In a self-organizing manner, observer agents monitor interactions dur-
ing the simulation to abstract group behaviours once they find an interaction
pattern. By replacing individual behaviours with the learned group behaviour,
computational costs are reduced. We showed that our approach successfully
abstracted all the behaviours in an agent-based simulation of blood coagulation.

We will further extend this work by introducing more levels of abstraction
hierarchies that are created automatically upon group behaviours detected by
observer agents. We are also working to address automatic proliferation of ob-
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Figure 5: The confidence value over time shown for an exemplarily learned pattern.

server agents, each configured differently to explore a subspace of possible group
behaviours. The relation between group behaviours and emergent phenomena
is another promising area to be investigated. Although no a priori knowledge of
high level patterns was incorporated in our design, the possibility to incorporate
predefined high-level patterns should be considered. If patterns are described at
different scales, multiscale modeling can be restated as finding transitions from
low-level to higher-level patterns.
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