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Abstract—In this paper, we present a self-organized approach
to automatically identify and create hierarchies of cooperative
agents. Once a group of cooperative agents is found, a higher-
order agent is created which in turn learns the group behaviour.
This way, the number of agents and thus the complexity of the
multiagent system will be reduced, as one agent emulates the
behaviour of several agents. Our proposed method of creating
hierarchies captures the dynamics of a multiagent system by
adaptively creating and breaking down hierarchies of agents as
the simulation proceeds. Experimental results on two MAPK
signaling pathways suggest that the proposed approach is suitable
in stable systems while periodic systems still need further
investigations.

I. INTRODUCTION

Computer simulation is an important means to investigate
the properties of biological models. Simulations based on
numerical methods reveal the change of an entity in the
system over time or other measures. Unlike numerical meth-
ods, cellular automata simulations consider spatial location of
entities in the model. In agent-based modeling (ABM), each
entity is considered to be an agent in a multiagent system
(MAS) that interacts locally with its neighbours as well as
the environment [1], [2]. The ABM can also take geometrical
properties like shape into account. Furthermore, the result of
local interactions among agents often leads to the emergence
of collective behaviours which is not reflected in the behaviour
of individual agents. The human body is a good example
of such a phenomenon. Starting inside a cell, there is DNA
defining the behaviour of a cell. As the scale increases, cells
work together to form tissues, tissues form organs, and organs
drive the human body.

A signaling pathway is a cascade of biochemical reactions
which results in changing the concentration of substrates
inside a cell [3]. The MAPK signaling pathway is one of
the most documented pathways in the literature in which
an extra stimulus regulates cellular activities, such as gene
expression, mitosis, etc [4]. A typical agent-based model of
the MAPK signaling pathway might consist of substrates as
agents. The result of agents interactions is the change in
their concentrations. Thus, the change of concentration of
a substrate over time could be considered as an emergent
property of such a system.
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In this work, we present a multiagent approach to model the
MAPK signaling pathway. In our proposed method, a higher-
order agent learns and subsumes the behaviour of a group
of agents that exhibit similar behaviours (“adoption”). Since
the dynamics of the system might change over the course of
a simulation, the learned behaviour might not be valid any
more after some time. In this case, the learned hierarchy must
collapse and the individual agents must be again released to
the system (“release”). The process of adoption and release
happens recursively yielding dynamic hierarchical structures.
How and when to build hierarchies, how to learn the behaviour
of lower-level agents, and how to monitor the validity of
higher-order agents are issues that we aim to address in this
research.

The remainder of this paper is organized as follows. Section
2 reviews related work in the field of multiscale and multiagent
modeling of biological systems. Section 3 presents the details
of our proposed method. Section 4 reports on the experiments
conducted to demonstrate the performance of the proposed
method. Finally, concluding remarks are presented in Section
5.

II. RELATED WORK

Von Mammen et al. [5] conceptualize the idea of self-
organized middle-out abstraction in multiagent systems. In
particular, they identify different actions required by an ob-
serving agent to build hierarchies of agents. They conjecture
that motif detection algorithms in time series analysis will be
useful in finding recurrent patterns to be abstracted and learned
by higher-order agents.

Amigoni and Schiaffonati [3] review three multiagent ap-
proaches to model the MAPK signaling pathway. The first
approach [6], models each intracellular component as an agent
using a blackboard mechanism to interact with other agents. In
the second approach [4], agents are the biochemical reactions
while the approach proposed in [7] defines an agent to be
a molecular entity communicating to other agents through
biochemical reactions. It is also noted that although multia-
gent modeling of biological systems allows to associate each
biological entity to an agent type, the lack of experimental
data makes it hard to validate such systems [3].



A modularization approach for the MAPK signaling path-
way is presented in [8]. It is based on the graph theory
in which a node with the maximum number of neighbours
in the biological interaction network is found first. Further
expansion of this node into a subgraph results in a module.
This approach has two drawbacks: (1) it assumes that the graph
of the network is known beforehand, and (2) the analysis is
static.

Recently, with the advances in technology, there is more
focus on multiscale modeling in the literature. In [9], different
scales for modeling the human body (cell, tissue, organ) and
their link to real-world applications like tumor growth therapy
is explained. In [10], a software framework for multiscale
model integration and simulation is proposed; however, no
specific modeling technique is described. Lavelle et al. [11]
identify challenges ahead of biological multiscale modeling.
For each challenge, they list issues to be addressed along
with the significance of each challenge. Although there are a
few physical multiscale models proposed in the literature (e.g.
CPM [12], Synergetics [13], and Heterogeneous Multiscale
Methods [14]), there is no universally adopted theoretical
or computational framework for the assembly of multiscale
biological models [15].

Bassingthwaighte er al. identify six steps for developing
multiscale models [16]: (1) defining the model as its highest
level of resolution, (2) designing reduced-form modules, (3)
determining the range of validity of the reduced form modules,
(4) monitoring the variables of the system, (5) replacing higher
resolution models with reduced form modules, and finally, (6)
validating the performance of the multiscale model against
available real data. They further identify issues that must be
addressed by any attempt to multiscale modeling. Examples
of these issues are parameter identification of closed-loop
systems, the identification of input-output delays, and the im-
position of known constraints. Their work is among very few
attempts to identify challenges ahead of multiscale modeling
from a computer science perspective.

In our previous work [17], we proposed a multiagent ap-
proach to model the MAPK signaling pathway. Our proposed
system is similar to [7] in that every molecular entity is
an agent. We further extended [7] by introducing a self-
organized approach to learn group behaviours of agents using
neural networks. This way, we reduce the complexity of the
multiagent system by replacing individual agents with higher-
order agents which exhibit similar behaviour. We showed
that the transition between scales can be smooth by creating,
learning, and validating hierarchies of agents.

III. HIERARCHICAL MIDDLE-OUT LEARNING IN A
MULTIAGENT SYSTEM

The most prominent feature of a multiagent system (MAS)
is the absence of a top-down control unit. Agents in a MAS
interact with their neighbours to perform a task. The nature
of agent interactions depends on their given task and varies
from information sharing to physical contact. In this paper, we
are interested in numerical data exchange in which a pair of

agents exchange a numerical value which in turn results in a
change of internal states of both agents.

One of the problems with a MAS is high computational
costs which makes it inefficient in the presence of a large
number of agents. Another problem arises when a multi-
agent multiscale system is modelled. Since the dynamics
and complexity at each scale are different, a link between
two consecutive scales should be established and maintained
throughout the simulation. Abstraction is the key to find such
a link. The idea of abstraction is that a group of agents that
exhibit similar behaviours is subsumed by a higher-order agent
with a similar behaviour but reduced computational cost.

In our proposed approach, we aim to create, integrate
and break down hierarchies of agents dynamically as the
simulation proceeds. How to create hierarchies, how to learn
a group behaviour, and how to monitor the validity of a
hierarchy are among the issues that we address in this section.

A. Creating Hierarchies of Agents

In our system, each agent builds and updates an inter-
action graph while it interacts with its neighbours. It also
keeps track of its interaction values in an interaction history.
The weight of an edge in the interaction graph is equal to
the correlation coefficient with that neighbour. A correlation
coefficient between two statistical variables indicates their
linear dependancy. A zero correlation coefficient means that
two variables are independent, while +1 or -1 shows highly
correlated variables. The more two variables are correlated,
the more similar their function is. In case there is a series of n
measurements of agents s and 7 in the form of s; and ¢;, where
1=1,2,..., N, their correlation coefficient (ps;) is defined as
follows:

SN (s = 5)(ti — )

(n—1)osoy

Pst =

where 5 and ¢ are the mean values of, and o, and o; are
standard deviations of s and 7, respectively.

Having a local weighted graph, each agent then periodically
checks if its correlation coefficient with each neighbour is
greater than some threshold (7cqgc). If so, they form a new
agent and repeat this process to identify a cluster of agents
that are highly correlated (Algorithm 1). Figure 1 shows an
example in which Agent A finds Agent C and Agent E, and
they form a higher-order agent. The set of new neighbours is
the union of all neighbours of the underlying agents. Having
formed such a hierarchy, the next step is to train this new
agent, so that it learns and emulates the group behaviour of
its underlying agents.
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Fig. 1: Example of an interaction graph. The edges denote
the correlation coefficients. (a) Agent A, Agent C, and Agent
E form a hierarchy, (b) The new neighbours of this hierarchy
are Agent B and Agent D.

Algorithm 1 Hierarchy Indentification & Creation

m = current_agent;
Agent new_agent; {A higher-order agent}
Queue q;
q-Enqueue(m);
new_agent.Add(m);
while !g.empty() do
Agent head = q.Dequeue();
for all Agent s in head do
for all Agent t in s.Neighbours() do
if |pst| > Tedge then
new_agent. Add(t);
q.-Enqueue(t);
end if
end for
end for
end while
{saving current hierarchy configuration (discussed in section
II-C}
new_agent.SaveCon fig();

B. Learning the Group Behaviour

Once a higher-order agent is created, it has to subsume
the behaviour of its children by learning to emulate their
behaviour. Having a set of input/output values in the interac-
tion history of each individual agent, any supervised learning
algorithm can be utilized to learn the agents’ behaviour. Unlike
[17] in which a feed-forward neural network has been used,
we use genetic programming (GP) [18] to find a data model

for each child inside a higher-order agent. Using a heuristic
learning algorithm like GP enables us to control the speed
of learning as well. Furthermore, we can also utilize parallel
processing to find each GP model.

We include four main operations (*, /, +, -) in the function
set of GP. As for the terminal set, in addition to numerical
constants, there are two design choices. The first one would
be to assign external nodes with incoming edges and ignore
internal connections (Agent D in Fig. 1). An alternative ap-
proach that we take in this paper is to consider internal nodes
as well. This way, a GP model has more data elements to be
trained with.

C. Monitoring the Validity of Modules

Once a new higher-order agent is created and trained, it
subsumes the behaviour of its underlying children. Due to the
dynamic behaviour of the system, at some point, the new agent
might show invalid behaviours. To address this issue, we check
the validity of each higher-order agent periodically. Nonethe-
less, we need an indicator to compare the current and expected
behaviour of the higher-order agent. A heuristic indicator are
the previous correlation coefficients of the underlying agent
graphs before they are subsumed by the higher-order agents
(p%;). According to Algorithm 2, we compare the current
correlation coefficients of the agent to previous values for each
individual agent. If the difference is larger than some threshold
(Tvalia), we consider the new agent invalid and consequently
break its hierarchy down into its previous configuration. Here,
unlike [17] which uses non-hierarchical learning, we save all
hierarchies when we identify a new agent in order to use them
here as we dissolve a higher-order agent back to the simulation
(Fig. 2).

Algorithm 2 Validity Monitoring

m = current_agent;
needToBreak = false;

for all Agent s in m do
for all Agent t in s.Neighbours() do
if [pst — plt| > Toalia then
needT oBreak = true;
break;
end if
end for
end for

if needT'oBreak then
simulation.remove(m);
for all Agent s in m.hierarchy() do
{s can be an individual or a higher order agent}
simulation.add(s);
end for
end if
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Fig. 2: An example in which one hierarchy breaks down to
four individual agents in non-hierarchical learning. In hierar-
chical learning, as we use it, this hierarchy breaks down into
the previous configuration (one higher-order agent and one
individual agent).

IV. EXPERIMENTS ON THE MAPK SIGNALING PATHWAY

Our proposed algorithm can be employed in any multiagent
system where agents cooperate by exchanging quantized infor-
mation. Signaling pathways are such ideal candidates in which
an external stimulus causes a cascade of biochemical reactions,
which in turn results in changing the concentration of sub-
strates. In the MAPK signaling pathway [19], a hypothetical
enzyme El stimulates the cell and results in an increase in
production of MAPK-PP enzyme (Fig. 3(a)). In another model
[20], a negative feedback loop causes sustained oscillations in
the production of MAPK-PP (Fig. 3(b)).

Starting with a diagram of a signaling pathway, the next
step is to find the update formula for each substrate. Numerical
differential equation solvers are used to calculate the concen-
trations of substrates in the system over time. For example, the
update formula for the change of concentration for MAPK-PP
is as follows:

d[MAPK - PP]/dt = Vg — Vg
ks - [MKK — PP]-[MAPK — P]
Ks + [MAPK — P]
V- [MAPK — PP]
"~ Ky + [MAPK — PP]

where kg, Kg, Vg, and Ky are constants and [ X] is the current
concentration of substrate X!.

vg =

A. Transforming the MAPK Signalling Pathway to an Agent-
Based Model

Similar to [7], we define each substrate in a signaling
pathway to be an independent entity which is loosely defined
as an agent. In our proposed model, each agent interacts with
those substrates that appear in its update formula. This way, we
can find a local interaction graph for each agent. Fig. 4 shows

IThe complete set of update equations can be found in [19] and [20].
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Fig. 3: The MAPK signaling pathway in which an external
stimulus E1 initiates a cascade of biochemical reactions (a)
Without feedback (from [19]), and (b) With a negative feed-
back (from [20]).

the complete interaction graphs for the signaling pathways of
Fig. 3. Note that Fig. 4(b) has an extra edge compared to Fig.
4(a) which is the negative feedback from MKKK to MAPK-
PP.

We validated the performance of our proposed method by
conducting a series of experiments on both MAPK models. In
all experiments, we use standard genetic programming [18] to
learn a model of agent group behaviour. In addition, there are
six more parameters to be manually tuned in each experiment
which are summarized in Table I. We observe the system for
some time (f,,4¢) before starting to create hierarchies within
a time interval (Ay;,q). The size of the interaction history
is denoted by hist_size. We wait at least for hist_size time
steps to get enough data to learn a group behaviour. Once a
hierarchy has been found, we constantly monitor its validity in
predefined intervals (A,,onit0r)- A hierarchy is valid as long
as its correlation coefficients with its neighbours do not vary
too much with regards to those of individual agents (7,q1i4)-
As described in Algorithm 1, if the absolute value of an edge
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Fig. 4: Agents interaction graph for the MAPK signaling
pathways of Fig. 3.

in an agent’s interaction graph is greater than some threshold
(Tedge), @ new hierarchy will be formed.

Fig. 5(a) compares the performance of our proposed hier-
archical approach to our previous non-hierarchical approach
reported in [17]. Having the same %4, they both start
finding hierarchies after ¢ = 1200. Our previous approach
reduces the number of agents more quickly. However, when
a higher-order agent contains a larger number of individual
agents, the probability of that agent to become invalid is
higher. Therefore, when an all-encompassing agent in the
system breaks down, due to the non-hierarchical nature of
that approach, all individual agents are released back into the
system, hence making a periodic pattern emerge. In case of
hierarchical learning, when a higher-order agent breaks down,
it will release the previous hierarchy back to the system. For
example, after the current hierarchy with a single agent breaks
down at t = 2200, there will be 4 agents in the system again
(compared to 8 in the case of [17]). Fig. 5(b) shows that
the final concentration successfully resembles that of the PDE
solver.

As Fig. 6(a) shows, the proposed approach and our previous
approach performed similarly on the second MAPK pathway.
The number of spikes in both approaches suggests that neither
learning methods make a significant difference in case there
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Fig. 5: Results for the first MAPK pathway model of Fig. 3(a).
(a) Number of agents (solid line: our hierarchical approach,
dashed line: non-hierarchical approach proposed in [17]), (b)
Concentration of MAPK-PP.

is periodicity in the system. In particular, a short validity
period of both approaches is the result of using the correlation
coefficient as an indicator to measure how close two agents
work together. Since the correlation coefficient varies from —1
to +1 over a periodic signal, it fails to capture the similarity
of two agents in a periodic system. This result suggests that
we have to look for other indicators when we have a periodic
system.

V. CONCLUSION

In this paper, we extended our previous work by introducing
a self-organized hierarchical learning concept using genetic
programming. We showed that by using the correlation coef-
ficient, we can identify and create hierarchies of agents thus
reducing the complexity of the multiagent environment while
emulating individual behaviours. Although we demonstrated
our algorithm in a case in which agents exchange numerical
values, we believe that our proposed approach could be utilized
in any multiagent system provided that a correlation coefficient
between each pair of agents could be deduced from their
interactions.

In order to apply our proposed method to a wider range
of multiagent settings, we need to look for other measures of
agent cooperation. Another reason to look for other measures



TABLE I: Model Parameters

Value i Value i
Parameter Name Symbol a tle " a Ele m
Experiment 1 Experiment 2
Delay before finding hiearchies twait 1200 1500
Hierarchy finding interval Afind 300 300
Monitoring interval Anonitor 20 20
Validity threshold Tvalid 0.1 0.1
Edge threshold Tedge 0.99 0.7
Interaction history size hist_size 1000 1000
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is the inability of the correlation coefficient to capture periodic
systems effectively. In this research, we focused only on
a multiagent problem in which agents have rather simple
behaviour. In more advanced problems in which agents have
several behaviours, we also need to identify what to learn,
too. Altogether, this work is among very few attempts to
find an algorithmic framework to address the challenge of
complexity reduction in an agent-based system. Our proposed
approach can serve as the first step to address the reduction
of complexity in highly complex systems.
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