
Abstraction of Agent Interaction Processes

Towards Large-Scale Multi-agent Models

Abbas Sarraf Shirazi1, Sebastian von Mammen1, and Christian Jacob1,2

1 Dept. of Computer Science, Faculty of Science
2 Dept. of Biochemistry & Molecular Biology, Faculty of Medicine

University of Calgary, Canada
{asarrafs,s.vonmammen,cjacob}@ucalgary.ca

Abstract. The typically large numbers of interaction in agent-based
simulations come at considerable computational costs. In this article,
we present an approach to reduce the number of interactions based on
behavioural patterns that recur during runtime. We employ machine
learning techniques to abstract the behaviour of groups of agents to cut
down computational complexity while preserving the inherent flexibil-
ity of agent-based models. The learned abstractions, which subsume the
underlying model agents’ interactions, are constantly tested for their
validity—after all, the dynamics of a system may change over time to
such an extent that previously learned patterns would not reoccur. An
invalid abstraction is, therefore, removed again from the system. The
creation and removal of abstractions continues throughout the course of
a simulation in order to ensure an adequate adaptation to the system dy-
namics. Experimental results on biological agent-based simulations show
that our proposed approach can successfully reduce the computational
complexity during the simulation while maintaining the freedom of arbi-
trary interactions.

1 Introduction

Phase transitions in complex systems cannot be inferred from the properties of
the underlying parts. Rather they occur due to the interactions of the involved
variables [14]. The agent-based modelling approach is a well-suited means to
model complex systems, as it provides each part of the system with the ability
to change its own state and to interact with other parts. Agent-based computa-
tional models have also gained great popularity as they can address heterogenous
populations, noise, spatial and temporal relationships [24, 9, 10, 5].

The flexibility of agent-based models renders their simulation computation-
ally inefficient [43]. As each agent could potentially interact with all the other n
agents, merely identifying who interacts with whom becomes a computationally
expensive task—O(n2) in the worst case. To overcome this problem, agent-based
simulations are often limited to fixed neighbourhoods in discrete lattice spaces
as implemented by cellular automata [48, 13, 2]. However, the ability of a model
to continuously change the interaction topology among the agents is crucial to

author's copy

trace, for instance, the dynamics of transportation effects [44] or developmental
processes [38].

In this article, we present an approach to apply machine learning techniques
such as evolutionary algorithms, neural networks, and clustering in order to
reduce the computational costs of an agent-based simulation while preserving
its inherent flexibility. In particular, we show how groups of agents that ex-
hibit behavioural patterns can be reduced to single agents with (computation-
ally) simplified interaction rules. In order to identify a group of agents that
can be substituted by a single agent, either neighbouring agents form a group,
or, more generically, an observer agent monitors arbitrary groups of agents and
substitutes them based on their exhibited behavioural patterns. As the agents’
interactions may vary over time, the learned behavioural patterns may loose
their validity. Therefore, confidence values determine the lifespan of the learned
behavioural abstractions. Continuous re-evaluation of these confidence values
allows for a self-organized optimization process in which the substitutions are
adaptively created and revoked.

The remainder of this paper is organized as follows. Section 2 reviews re-
lated works in multi-agent modeling and abstraction. In Section 3, we first show
how we can use artificial neural networks to learn the collective behaviour of
agent groups. Next, we present an approach that relies on genetic programming
and manages agent hierarchies dynamically, i.e. it does not destroy the learned
abstractions completely should their confidence values drop, but only incremen-
tally, as needed. In this context, we also elucidate the algorithm that ensures
the validity of any learned patterns. Section 4 further refines the introduced ap-
proaches to consider arbitrary types of agent interactions including collisions and
state changes. In order to demonstrate the effectiveness of this refined approach,
we apply it to an agent-based blood coagulation simulation. Finally, concluding
remarks are presented in Section 5.

2 Related Work

Abstract knowledge represents higher-order patterns that occur in lower-level
concepts. It bears the essence of a system and ignores unnecessary details [49,
19]. Higher-order patterns emerge from the interactions of the parts, or agents, of
a system [10]. In natural systems the formation of higher-order patterns happens
across several scales of time and space, which renders their complete description
impossible. However, it has been suggested that one could approximate the mul-
tiple scales of natural systems and their interdependencies by means of compu-
tational models that incorporate hierarchies of agents. High level agents in such
hierarchies correspond to high degrees of abstraction of the system processes.
In this section, we briefly describe some of the related works that motivated or
addressed this concept.

2.1 From Bottom-up to Abstract Models

Artificial chemistries [3] and computational developmental systems—such as
L-systems [35], relational growth grammars [28], or swarm grammars [45]—
explicitly, often visually trace the emergence of high level structures based on
simple constituents. These constituents may be represented as formal symbols or
as entities in physics simulations. Complex interaction patterns can emerge from
even the most simple interactions. Autocatalytic networks, for example, denote
patterns of chemical reactions that nurture one another [25]. Stable interaction
networks may even exhibit the property of self-replication [16]. As a result, the
formation of intertwined entities is promoted and hierarchies of increasing com-
plexity emerge in nature [41].

Rasmussen et al. designed a computational model based on artificial chem-
istries, in which structures are formed with an increase in complexity and with
different functionalities—from monomers to polymers to micelles [37]. Although
these experiments clearly retrace the formation of patterns at several levels of
scale, Dorin and McCormack claim that such phenomena are not surprising given
the model’s simplicity. Dorin and McCormack argue that it takes considerably
more effort to determine the novelties at higher levels in the hierarchy [15].

A first step toward the identification of high-level patterns is to gain clarity
about the abstractions inherent in an agent model to begin with. Bosse et al.
propose the classification of types and levels of abstraction of agent-based models
based on the following dimensions [6]:

The Process Abstraction Dimension deals with the behaviour representa-
tion of an agent, e.g. whether an agent is modelled by its inputs and outputs,
whether other variables like beliefs or desires are also considered, or whether
even lower level properties of an agent are modelled.

The Temporal Dimension deals with the definition of the agents’ behaviours
over smaller or longer periods of time.

The Agent Cluster Dimension specifies the granularity of the agent-based
model, i.e whether an individual agent represents an entity or a cluster of
entities.

Ralambondrainy et al. identify the complex task of observing a simulation,
for which they propose a separate multi-agent system [36]. They describe an
ontology to facilitate the communications of the agents in the second system.
The observation agents have three main tasks, namely (1) acquisition of observa-
tional elements, (2) processing of simulation results, and (3) presentation of the
results to human actors. Although the second system does not affect the original
simulation, the notion of a separate system with the ability to present higher-
level, abstract knowledge emphasizes the necessity to have external observers in
the simulation.

Several approaches rely on a priori definitions to identify emergent patterns
in agent-based simulations. Servat et al. acknowledge that simulation states can
provide clues for the introduction and configuration of high-order agents [42].
However, they insist on the necessity to predefine the behaviours of high-level

agents. The same is true for Chen et al.’s formalism which they specifically use
for validating predicted behaviours [8, 9].

In order to capture emergent phenomena, Dessalles and Phan foresaw a sys-
tem in which detectors would identify emergent patterns and subsume the activ-
ity of the respective lower level objects [14]. Similarly, Denzinger and Hamdan
introduce a modeling agent that observes perceivable behaviours of other agents
and maps them to a predefined stereotype [11]. But Denzinger and Hamdan
also present a novel aspect: The periodic re-evaluation of the agents’ behaviours
gives the modeling agent the opportunity to adjust the mappings in accordance
with the dynamics of the system. Not only might the local interaction patterns
change over time, but high-level phenomena might also influence the underly-
ing layers. Lavelle et al. use the term immergence, or downward causation, to
describe the impact of high-level organizations on entities at lower scales [29].
They postulate that explicit functions must be defined to bridge between micro
and macro levels.

Cardon proposes three organizational levels to control the behaviour of a
multi-agent system [7]. The constituent agents are defined in the aspectual level.
A geometrical mapping of aspectual agents forms the second level called the
morphological level. Using a simplified, higher-level representation of agents in
the morphological level, analysis agents in the evocation level identify the current
state of the simulation and control the agents in the aspectual level by tampering
their behaviour. This approach provides self-adaptability in the system while
enforcing a degree of control on the behaviour of the system as a whole.

von Mammen et al. introduced the concept of self-organized middle-out ab-
straction (SOMO), where observer agents monitor the interaction history of sets
of agents, use motif discovery to detect recurrent patterns, and create hierarchies
of high-level agents that subsume the lower interacting agencies [46]. Although
they do not exclude the possibility of a relationship between learned high-order
patterns and emergent phenomena found in nature, SOMO primarily targets an
increase of efficiency by repeatedly substituting groups of agents by individual
high-level instances that work at lower computational costs.

The authors of this article have previously demonstrated that high-level agent
substitution indeed results in a reduction of computational costs [39, 40]. In par-
ticular, we deployed artificial neural networks and genetic programming, two
established inductive learning methods, to learn agent abstractions in a model
of a biological signaling pathway. Clusters of biological substrates and their cor-
responding activation patterns were substituted by meta-agents. We recently
extended our earlier implementation by introducing observer agents that are
able to abstract arbitrary patterns of groups of agents [43].

2.2 Toward a Framework for Multi-scale Modeling

As technology advances the design of multi-scale models becomes more promi-
nent. As long as these approaches merely connect models of different scales and
feed back and forth the computed results as variable parameters, the challenge

can be addressed with the right level of domain knowledge and software engi-
neering skills [30, 17]. As discussed in Section 2.1, there are only few concepts
that address the issue of automatic identification and abstraction of emergent
patterns, which is crucial for a system that would identify new levels as a result
of the computational process.

Martins et al. review different multi-scale models (from biomolecules to cells,
tissues and organs) and conclude that despite the lack of a quantitative model
of a cell, such models may help understand cancer growth and its therapy [32].
Erson and Cavusoglu propose a software framework for multi-scale model inte-
gration and simulation [18]; however, no specific modeling technique is described.
There are a few physical multi-scale models, e.g. CPM [33], and Synergetics [21].
However, as of yet, there is no universally adopted computational framework for
the assembly of multi-scale biological models [47].

Bassingthwaighte et al. identify a systems approach for developing multi-
scale models which includes six steps [4]: (1) the definition of the model at
its highest level of resolution, (2) the abstraction of patterns (“reduced-form
modules”), (3) the identification of valid parameter ranges of these abstractions,
(4) the observation of the variables of the system, (5) replacement of higher
resolution models with abstractions, and (6) the validation of the performance
of the multi-scale model against available real-world data. The authors further
discuss open challenges of their approach such as parameter identification in
closed-loop systems and the identification of input-output delays.

3 Abstraction in the MAPK Signaling Pathways

A signaling pathway describes how information travels from the receptors of a
cell to an inside target [1]. Typically, the information ripples through a cascade of
biochemical reactions that are carried out by enzymes. The Mitogen-Activated
Protein Kinase (MAPK) pathway plays a key role in the cell cycle and is ex-
tensively documented. It is responsible for responses to extracellular stimuli and
regulates cellular activities, such as gene expression, mitosis, and differentiation
[13]. In the MAPK signaling pathway proposed in [23], a hypothetical enzyme
E1 stimulates the cell and results in an increase in production of the MAPK-
PP enzyme (Fig. 1(a)). In another model [27], a negative feedback loop causes
sustained oscillations in the production of MAPK-PP (Fig. 1(b)).

The diagram in Figure 1 describes the interaction topology of substrates.
Numerical differential equation solvers are used to calculate their concentration
updates over the course of time. For example, the update formula for the MAPK-
PP concentration is given as follows:

d[MAPK − PP]/dt = v8 − v9 (1)

v8 =
k8 · [MKK − PP] · [MAPK − P]

K8 + [MAPK − P]
(2)

(a) (b)

Fig. 1. (a) The MAPK signaling pathway (from [23]), and (b) The MAPK signaling
pathway with a negative feedback (from [27]).

v9 =
V9 · [MAPK − PP]

K9 + [MAPK − PP]
(3)

where k8, K8, V9, and K9 are constants and [X] is the current concentration of
substrate X. The complete set of update equations can be found in [23] and [27].

Amigoni and Schiaffonati present three approaches to multi-agent simula-
tions of the MAPK pathway [1]. In the first approach, each chemical reaction is
represented as an agent [13]. The second approach translates each intracellular
component into an agent that uses a blackboard mechanism [34] to interact with
other agents in the system [20]. In the third model, each molecular entity acts
as an agent [26]. For our model, we follow the last approach and consider each
substrate a loosely defined, independent agent. Their behaviours are determined
by the interaction graphs shown in Figure 2 and the update formulas given in
Equations 1 to 3.

MKKK

MKKK-P

MAPK-PP

MKK

MKK-PP

MAPK

MAPK-P

MKK-P

MKKK

MKKK-P

MAPK-PP

MKK

MKK-PP

MAPK

MAPK-P

MKK-P

(a) (b)

Fig. 2. Agent interaction graphs for the MAPK signaling pathways of Fig. 1.

Algorithm 1 Meta-agent Creation
m = current agent;
Agent new agent;
Queue q;
q.Enqueue(m);
new agent.Add(m);
while !q.empty() do
Agent head = q.Dequeue();
for all Agent s in head do

for all Agent t in s.Neighbours()
do

if |ρst| ≥ τedge then
new agent.Add(t);
q.Enqueue(t);

end if
end for

end for
end while
return new agent;

Algorithm 2 Validity Monitoring
m = current agent;
needToBreak = false;

for all Agent s in m do
for all Agent t in s.Neighbours() do

if |ρst − ρ′st| > τvalid then
needToBreak = true;
break;

end if
end for

end for

if needToBreak then
simulation.remove(m);
for all Agent s in m do
simulation.add(s);

end for
end if

3.1 Creating Meta-agents

In our system, an agent maintains a list of all its neighbours and it logs their re-
spective interactions in so-called interaction histories. It weighs the relationships
to its neighbours based on its correlation coefficient. A correlation coefficient
between two statistical variables indicates their linear dependency. A correla-
tion coefficient of zero implies that two variables are independent, whereas ±1
indicates highly correlated variables. The greater the correlation between two
variables, the more similar is their function. Given a series of n measurements
of agents s and t in the form of si and ti, where i = 1, 2, ..., n, their correlation
coefficient (ρst) is defined as follows:

ρst =

∑n
i=1(si − s̄)(ti − t̄)

(n− 1)σsσt
(4)

where s̄ and t̄ are the mean values, and σs and σt are standard deviations of s
and t, respectively.

Each agent periodically checks whether its correlation coefficient with each
neighbour is greater than some threshold τedge. If this is the case, they form an
initial meta-agent. This heuristic process is repeated in order to identify a cluster
of agents that are highly correlated (Algorithm 1). Fig. 3 shows an example in
which Agent A finds Agent C and Agent E, and they form a meta-agent. The
set of new neighbours is the union of all neighbours of the underlying nodes.

0.8

-0.7 τ = 0.8

-0.9

0.7

0.5
0.9

A

E

D

BC

0.80.8

-0.9-0.9

0.90.9
A

E

C

0.7
-0.7

D

Group

Behaviour

B

Meta-Agent

0.5

0.70.7
-0.7-0.7-0.7-0.7

D

Group

Behaviour

B

Meta-Agent

0.50.5

(a) (b)

Fig. 3. Example of an interaction graph. The edges denote the correlation coefficients.
(a) Agent A, Agent C, and Agent E form a meta-agent, (b) The new neighbours of this
meta-agent are Agent B and Agent D.

3.2 Learning the Group Behaviour

A new meta-agent replaces its underlying agents and interacts on their behalf.
In order to approximate the subsumed agents’ group behaviour, a learning algo-
rithm such as artificial neural networks, evolutionary algorithms, or motif search
in time series can be deployed. The learning algorithm extracts the group be-
haviour from the interaction histories that are locally stored with each agent.

3.3 Monitoring the Validity of Modules

Due to changes in the overall system, meta-agents might exhibit invalid be-
haviours at some point. Therefore, we check the validity of each meta-agent
periodically by comparing its deployed behaviour with its expected behaviour.
The correlation coefficients of the underlying agents serve as a heuristic indicator
as they triggered the formation of the meta-agent (ρ′st). According to Algorithm
2, we compare the current correlation coefficients of the meta-agent to previous
values for each individual agent—if the difference is larger than some thresh-
old, we consider the meta-agent invalid. As a consequence, we break down its
hierarchy and set its underlying agents free.

3.4 Results

To validate the performance of our approach, we conducted a series of experi-
ments on both MAPK models. The experiments are determined by the following
five parameters (Table 1): We let the system run for some time twait and then
start looking for meta-agents within a given time interval ∆find. The waiting
time twait is important as the system has to reach a rather stable condition be-
fore the abstraction algorithm starts to work. We keep monitoring the system
in predefined intervals, ∆monitor. In order to integrate agents and to form meta-
agents, the correlation coefficient between two agents—or the value of an edge

in the interaction graph—should be greater than some threshold τedge. Finally,
a meta-agent is valid as long as its correlation coefficients with its neighbours
do not exceed the original correlation coefficients by a threshold τvalid. Working
values for τvalid and τedge have been found through trial and error (Table 1).

Table 1. Model Parameters

Parameter Name Symbol
Value in

the 1st MAPK
Model

Value in

the 2nd MAPK
Model

Delay before finding meta-agents twait 1200 1500
Meta-agent finding interval ∆find 300 300

Monitoring interval ∆monitor 20 20
Validity Threshold τvalid 0.1 0.1

Edge Threshold τedge 0.95 0.7

ANN Learning First, we present an experiment that utilizes feed-forward
artificial neural networks (ANNs) with the back-propagation learning algorithm
[22] to train meta-agents. The structure of an ANN is determined by its inputs
and outputs as well as the number of nodes in the hidden layer. Since agents
in our model are not aware of their dependent agents (they only know about
their outgoing edges in the interaction graph), the output of the network should
simply be all of the underlying agents. In the example shown in Fig. 3, outputs
are Agents A, C, and E. The input nodes of the network are comprised of all the
internal and their externally connected nodes (Agents A, C, D, and E in Fig. 3).
As for the number of nodes in the hidden layer, we follow a simple rule-of-thumb
and set it to the number of inputs+ 2.

Fig. 4(a) shows the result of applying our approach to the first MAPK model
in terms of the number of agents. Initially, there are eight model agents in the
system. We use the term “model agent” to emphasize their role in the original
model, as opposed to meta-agents that are introduced as part of the abstraction
process. The identification of meta-agents starts at twait = 1200. The resulting
pattern of periodic creation and destruction of meta-agents (Fig. 4(a)) stems
from the fact that a meta-agent’s probability to become invalid increases with
its number of subsumed model agents. Generally, a meta-agent becomes invalid
even if one of its subsumed agents becomes invalid. Therefore, after the system is
reduced to a single meta-agent, it breaks and releases all the eight model agents.

Fig. 4(b) shows that the concentration computed by the agent-based pathway
model successfully resembles that of the PDE solver. Fig. 4(c) shows the result of
the same algorithm for the second MAPK pathway. Since this model is periodic,
the algorithm successively finds, trains, and breaks meta-agents over time. The

great number of spikes in Fig. 4(c) implies that the meta-agents are only valid
for a short period of time.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 500 1000 1500 2000 2500 3000

N
um

be
r o

f M
od

ul
es

Simulation Time Step

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

C
on

ce
nt

ra
tio

n

Simulation Time Step

Adaptive
PDE

(a) (b)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 1000 2000 3000 4000 5000 6000 7000

N
um

be
r o

f M
od

ul
es

Simulation Time Step

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000

C
on

ce
nt

ra
tio

n

Simulation Time Step

Adaptive
PDE

(c) (d)

Fig. 4. Adaptive modularization results for the MAPK pathway models of Fig. 1. (a),
(c) Number of agents, (b), (d) Concentration of MAPK-PP.

GP Learning and Dynamic Hierarchies In a second experiment, we utilize
genetic programming (GP) to find the function that approximates the group
behaviour subsumed by a meta-agent. We include four mathematical operations
(+, -, *, /) in the function set of the GP algorithm, whereas the internal nodes of
the interaction graph serve as the available terminals. Using a heuristic learning
algorithm like GP enables us to control the speed of learning and to perform a
distributed search for good solutions.

The qualitative difference of this second approach compared to the presented
ANN-approach is the introduction of dynamic agent hierarchies. Previously, the
destruction of a meta-agent set free all the associated model agents. Now, meta-
agents store references to their underlying model agents only in the first instance
of the learning process. Meta-agents that subsume lower-level meta-agents store
those instead, which results in a hierarchy of meta-agents with the original model
agents as its leaves. When a meta-agent becomes invalid and is destroyed, its
underlying agents—whether meta-agents or model agents—are released back
into the simulation (Fig. 5).

Hierarchical

Learning

Non-hierarchical

Learning

Fig. 5. Difference of the non-hierarchical and the hierarchical approach to agent ab-
straction: When a non-hierarchical agent is destroyed, all the associated model agents
are released back into the simulation (shown at the top). In the other case (at the
bottom), the hierarchical configuration stored with a meta-agent is restored resulting
in one meta-agent and one model agent.

Fig. 6(a) compares the performance of the hierarchical and the previously
presented non-hierarchical approach. After twait = 1200, the non-hierarchical
approach reduces the number of agents faster, but it cannot maintain any of
the abstractions once the meta-agent becomes invalid at around t = 1700 and
t = 2500. When the hierarchical meta-agent becomes invalid, its underlying
hierarchy is restored—a single meta-agent breaks down at t = 2200 and releases
4 meta-agents back into the system (compared to 8 model agents). In both
experiments, a meta-agent subsuming the behaviour of a larger number of agents
becomes invalid very fast. This explains why an all-encompassing meta-agent
does not stay long in the system (2100 < t < 2200 in Fig. 6(a)). Fig. 6(b) shows
the MAPK concentration over time produced by the hierarchical approach and
compared to the results of the PDE solver.

As Fig. 6(c) shows, both experiments performed similarly on the second
MAPK pathway. The number of spikes in both approaches suggests that neither
learning method makes a significant difference in case of periodicity. We reason
that the short period of validity in both presented approaches is the result of
using the correlation coefficient to measure how closely two agents work together.
Since the correlation coefficient varies from −1 to +1 over a periodic signal, it
fails to capture the similarity of two agents in a periodic system. This result
suggests that we have to look for other indicators when dealing with a periodic
system.

4 Self-Organized Middle-Out Learning and Abstraction

In the third approach, we introduce observer agents, or observers, that coexist
alongside of the model agents in the simulation space (Figure 7). The simula-
tion framework treats both kinds of agents equally, i.e. each of these agent types
is considered for interactions at each simulation step. Instead of an external

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 500 1000 1500 2000 2500 3000

N
um

be
r o

f A
ge

nt
s

Simulation Time Step

Hierarchical
Non-hierarchical

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

C
on

ce
nt

ra
tio

n

Simulation Time Step

Hierarchical
PDE

(a) (b)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 1000 2000 3000 4000 5000 6000 7000

N
um

be
r o

f A
ge

nt
s

Simulation Time Step

Hierarchical
Non-hierarchical 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000
C

on
ce

nt
ra

tio
n

Simulation Time Step

Hierarchical
PDE

(c) (d)

Fig. 6. Results for the MAPK pathway model of Fig. 1. (a), (c) Number of agents
(solid line: our hierarchical approach, dashed line: non-hierarchical approach proposed
in [39]), (b), (d) Concentration of MAPK-PP.

algorithm (Section 3.4), the observer agents now handle the creation and man-
agement of abstraction hierarchies based on the interaction processes performed
by model agents.

Once an observer successfully identifies an interaction pattern, it acts as a
meta-agent that replaces the individual behaviours previously maintained by
the model agents that led to the identified pattern. Acting as a meta-agent, the
observer itself becomes subjected to observation. In order to verify their valid-
ity, observers would check whether the deployment of the subsumed individual
behaviours would yield an outcome different from the predictions of the learned
pattern. If the discrepancy between these two outcomes exceeds a given thresh-
old, the observer omits its learned pattern and restores the subsumed individual
behaviours.

The success of the abstraction system depends on the configuration of the
deployed observer agents. In the following paragraphs, we explain one way how
they can replace the individual behaviours with a group behaviour and how
the observer agents can validate, maintain, or abandon the learned patterns
throughout the course of a simulation.

4.1 Observer Configuration

Like any other agent in a multi-agent system, an observer can be defined as
ag = (Sit, Act,Dat, fag), a 4-tuple composed of a set Sit of situations, a set Act
of actions, a set Dat of internal data, and a decision function fag [12]. At any
point in time, the agent decides to perform an action based on its situation and
internal data. This decision is captured in a decision function fag : Sit×Dat→
Act. In rule-based agent architectures, Dat can be re-written as Intvar × RS,
where Intvar is a set of values for internal variables and RS is a set of interaction
rules:

if condition then execute act,

where act ∈ Act, and condition is a statement about the situation the agent is
in and the actual values of the variables in Intvar. Both condition and act might
involve other agents called interaction partners.

Observers are configured to log the interactions of model agents in their inter-
action histories: IHExec is used to log executed interactions, whereas IHNExec logs
the numbers of considered but not executed actions (Table 2). An IHExec entry
may contain any information related to an observed interaction. For instance, an
observer may store that the model agent A executed an action act ∈ Act with
time stamp t along with the set of interaction partners A.

An observer extracts group behaviours from the logged data by applying
a pattern recognition algorithm. In this section, we present results based on
clustering, which will be explained next.

Obs0

Ag0

Ag1

Model Agents

Simulation

...

Ag2

Ag3

Ag4

Obs1

Fig. 7. Observers Obs0 and Obs1 inside the simulation space monitor a subset of agents
and log necessary information based on their configuration.

Table 2. Interaction histories inside an observer

Interaction History of
Executed Actions

(IHExec)

Time Agent Action
Interaction
Partners

t0 ag0 Activate A2

t1 ag0 Activate A2

. . . .

. . . .

. . . .
t1 ag2 Activate A2

t2 ag7 Activate A2

Interaction History of Computed but
Unexecuted Actions

(IHNExec)

Time Action Count

t0 Activate n0

t3 Activate n3

. . .

. . .

. . .
t15 Activate n15

t23 Activate n23

t32 Activate n32

4.2 Learning and Abstraction

In our prototype, an observer logs interaction partners in combination with the
time of the interaction. Once the interaction history IHExec has grown beyond
a certain threshold, the observer applies a k -means clustering algorithm [31] to
find a large cluster C of overlapping interaction partners. The similarity between
two interactions is calculated based on the number of overlapping interaction
partners. When the observer finds such a cluster, it infers a generalized group
behaviour from the clustered individual interactions by combining their features.
The first feature is the set of overlapping interaction partners that are constant
for the learned action. Secondly, the observer needs to know when and at which
rate it should execute the learned action.

The observer first finds the time range [tmin, tmax] of the executed action
from all the individual interactions in C. Two cases might happen here: (1) an
interaction only occurs within a bound time range, (2) an interaction continu-
ously occurs over time or the observer is uncertain whether it has had enough
time to determine an upper bound tmax of the time range. In order to address
the latter case, the observer compares the two most recent time stamps an in-
teraction occurs in IHExec. If the difference exceeds the observation time, the
observer sets tmax to ∞.

Next, the observer extracts the rate of execution defined as the number
of executed interactions divided by the number of total computations of the
interaction:

pexec =
|IHExec|

|IHExec|+ |ihn|
, ihn ∈ IHNExec & ihn.t ∈ [tmin, tmax] (5)

where IHExec is the set of executed interactions, ihn is the set of considered but
not executed interactions whose timestamp is in [tmin, tmax], and | · | denotes the
size of a set.

For example, all the IHExec records in Table 2 constitute a cluster in which
[tmin, tmax] is inferred from the first column. The second column (ags) is dis-

carded and regarded as wildcard, the set of interaction partners is fixed to A2,
and pexec is calculated as described above.

Finally, the observer removes the action act from the model agent. From now
on, it performs the action on the model agent’s behalf. For instance, an observer
may learn that action act of an agent A occurs at A.t ∈ [tmin, tmax], and executes
it on A’s behalf with an according probability pexec. Since the observer also learns
the interaction partners an action depends on, the computational resources to
identify those are saved as well.

4.3 Validation of the Learned Behaviours

After some time, a learned behaviour might not be valid any more. In order to
monitor the reliability of a learned behaviour, it is initialized with an unbiased
confidence value confinitial = 50%. At regular time intervals, the observer lets
some model agents execute their original interactions. The confidence value is
regulated based on the difference between the actual behaviour of model agents
compared to the behaviour expected by the observer (Fig. 8). In our prototype,
we only consider the difference in interaction partners. The time at which an
individual interaction occurs or the rate at which model agents execute their
interactions could also be incorporated into the comparison. A confidence mea-
sure below a given threshold indicates that a learned group behaviour is not
valid any longer and that the observer has to restore the model agents’ original
behaviours.

4.4 Experiments

The outlined self-organized optimization method can be employed in arbitrary
agent simulations. Biological simulations are particularly suitable applications as
biological entities will be directly modelled as agents. When simulating biologi-
cal systems at the level of inter-cellular and inter-molecular interactions, actions
are mostly triggered by collisions or internal agent states. We applied our pro-
posed method to an agent-based simulation of blood coagulation described in
the next subsection. All the experiments were repeated 10 times to ensure that
a particular experiment did not bias the results.

Model Setup Blood coagulates at wound sites because of the interplay of var-
ious bio-agents, e.g., platelets, fibrinogens, and serotonins. If a collagen protein
collides with a platelet, the platelet becomes activated. In case an activated
platelet collides with the wound site, it secretes several chemicals which in turn
activate more platelets in the blood vessel. Gradually, a network of fibrins to-
gether with a platelet plug form a clot around the wound site (Fig. 9). We
modelled twelve blood factors as agents whose behaviours are expressed as a set
of interaction rules. There are ten different interactions which fall into two cate-
gories: (1) state-dependent interactions and (2) collision-dependent interactions.
The actions themselves introduce local state changes of the agents (represented

Time to start
validation?

End iteration t

Start iteration t

AGExec = AG - AGVal

AG: Set of the observed agents

AGVal: Subset of the observed
agents used to validate the
group behaviour

AGExec: Subset of the observed
agents for which the group
behaviour is executed

Randomly create AGVal
from AG

Put back individual
behaviours in AGVal

Execute group
behaviours for AGExec

Validate the group
behaviour using AGVal

AGVal == ∅?

AGVal = ∅

No

Yes

Yes

No

Fig. 8. Flow chart of the validation step. At some interval, the observer selects a
random subset of the observed agents and restores their individual behaviours. The
result of their interactions is evaluated in the next iteration to regulate the confidence
value. The observer continues to execute the group behaviour for all other agents.

as internal variables), or they produce or remove agents in the simulation. The
simulation starts with 10 agents and ends up with nearly 140 interacting agents
(Fig. 10).

Observer Setup Each interaction is monitored by an observer that records
only the interaction partners. Table 3 lists all the important parameters in our
system. Once an observer monitors an interaction long enough (twait), it applies
a k -means clustering algorithm to create k clusters. The centroid of the largest
cluster is considered to be the learned group behaviour for which [tmin, tmax] and
pexec are inferred. The observer subsumes the learned interaction by executing
it on behalf of the model agents. In predefined intervals, Vinterval, the observer
randomly chooses a subset of the subsumed behaviours and allows the model
agents to execute their original interactions. The size of this subset is determined
by Vratio. After some time, Vlength, the observer subsumes this subset again and
and validates its abstractions based on the resulting interaction compared to the
expected result. The confidence of the learned pattern is regulated accordingly. If

t1 (Outside) t2 (Outside) t3 (Outside)

t1 (Inside) t2 (Inside) t3 (Inside)

Fig. 9. The blood coagulation simulation at different time steps (t1 < t2 < t3). The
process is observed from two different perspectives: inside and outside of the vessel.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r o

f A
ge

nt
s

Simulation Time Step

Fig. 10. Blood coagulation simulation: Number of agents over time.

the confidence of a pattern is less than some threshold τconf , the learned pattern
will be removed from the simulation.

Table 3. System Parameters

Parameter Name Symbol Value

Delay before learning twait 350
Validation interval Vinterval 70
Validation length Vlength 10
Validation ratio Vratio 30%

Confidence threshold τconf 0.3
Number of clusters in k -means k 10

Results The presented prototype implementation successfully identified sev-
eral group behaviours within the simulation. For example, Random Walk is
a self-triggering action found to be executed with probability pexec = 100%
and t ∈ [0,∞). Adhere is an interaction executed in t ∈ [172,∞) with prob-
ability pexec = 65%. Self Activation is another collision-based example with
pexec = 2.8% and t ∈ [173, 190].

Figure 11(a) shows the actual run-time of the simulation at each time step.
When there is no observer, the simulation slows down as it proceeds, as sim-
ulating the interactions among the increasing number of agents requires more
computations. When the observers are present in the simulation logging interac-
tion data (0 < t < 350), they add a little overhead to the run-time of the whole
simulation. At t = 350 when the learning happens, there is a peak in the run-
time. However, once successfully deployed, the observers reduce the run-time
drastically by executing group behaviours instead of individual behaviours. The
validation cycle is triggered every Vinterval = 70 time steps, therefore there is a
fairly high peak at this interval. It continues for Vlength = 10 time steps before
the learned pattern is evaluated. After this time, the simulation runs fast again
until the next validation cycle.

Figure 11(b) depicts the cumulative run-time of the simulation comparing
a normal run against a run with observers. The overhead of having observers
clearly pays off at t > 390, when the cumulative run-time of a normal run
exceeds that of a run with observers. On average, a normal run takes 107 seconds
to complete 1000 simulation time steps, almost twice as long as the run with the
observers, which takes 56 seconds.

Figure 12 shows the change of confidence for one of the learned patterns.
Since there is no learned pattern before t = 350, the confidence value is also 0.
However, after the observer abstracts an individual behaviour, the confidence

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(s

)

Simulation Time Step

With Observers
No Observer

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 100 200 300 400 500 600 700 800 900 1000

C
um

ul
at

iv
e

Ti
m

e
(s

)

Simulation Time Step

With Observers
No Observer

(b)

Fig. 11. Blood coagulation simulation: Run-time with and without observers, (a) Run-
time per simulation time step, (b) Cumulative run-time.

value is initially set to 0.5. As all the abstractions work correctly, the confidence
values continuously increase over time.

5 Conclusion and Future Work

We introduced a concept for the reduction of computational complexity in agent-
based models by means of learning behavioural patterns over the course of a
simulation. The abstractions would be expressed as meta-agents that subsume
lower-level agents and be seamlessly integrated into the agent models.

We presented and evaluated three implementations: (1) The first utilized ar-
tificial neural networks to learn collective processes in the flux of concentrations

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600 700 800 900 1000

C
on

fid
en

ce

Simulation Time Step

Fig. 12. The confidence value over time shown for an exemplarily learned pattern.

of the MAPK signaling pathway. Here, the learned abstractions were constantly
updated to consider a growing number of agents. As a result, the abstractions
lost their validity at some point, they were removed from the simulation and
relearned. (2) In the second implementation, which relied on genetic program-
ming for learning collective behaviours, the abstractions were not completely
revoked when becoming invalid, but they were restored to their previous states.
(3) In the third implementation, observer agents detected group behaviours and
managed the resulting abstractions. We demonstrated the effectiveness of this
implementation in the context of a blood coagulation model. We proposed two
algorithms to monitor the validity of abstractions by comparing the expected
group interactions to the interactions of the actual individuals at regular inter-
vals.

In order to further our approach, we suggest the automatic proliferation of
a diverse set of observer agents based on their workload. An evolution of agents
that are primed to identify frequently occurring patterns could be implemented,
yielding a self-organized learning system that adapts to specific model domains
and even to niches inside of simulation spaces.

The relation between group behaviours and emergent phenomena is another
promising area to be investigated in the given context. The possibility to in-
corporate predefined high-level patterns should be considered. If patterns are
described at different scales, multi-scale modeling can be restated as finding
transitions from low-level to higher-level patterns.

6 Acknowledgement

This work has been partially supported by the Natural Sciences and Engineering
Research Council of Canada.

References

1. Francesco Amigoni and Viola Schiaffonati. Multiagent-Based Simulation in Biology
A Critical Analysis. Model-Based Reasoning in Science, Technology, and Medicine,
64:179–191, June 2007.

2. Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari. Multi-agent modeling of
the immune system: The situated cellular agents approach. Multiagent and Grid
Systems – An International Journal, 3:173–182, June 2007.

3. Wolfgang Banzhaf. Artificial chemistries - Towards Constructive Dynamical Sys-
tems. Solid State Phenomena, pages 43–50, 2004.

4. James B. Bassingthwaighte, Howard Jay Chizeck, and Les E. Atlas. Strategies and
Tactics in Multiscale Modeling of Cell-to-Organ Systems. Proceedings of the IEEE,
94(4):819–831, April 2006.

5. Eric Bonabeau. Agent-based modeling: methods and techniques for simulating
human systems. Proceedings of the National Academy of Sciences of the United
States of America, 99 Suppl 3:7280–7287, May 2002.

6. Tibor Bosse, Mark Hoogendoorn, Michel C A Klein, and Jan Treur. A three-
dimensional abstraction framework to compare multi-agent system models. In
Proceedings of the Second international conference on Computational collective in-
telligence: technologies and applications, pages 306–319, Berlin, Heidelberg, 2010.
Springer-Verlag.

7. Alain Cardon. Design and behavior of a massive organization of agents. In Design
of Intelligent Multi-Agent Systems, volume 162, pages 133–190. Springer Berlin /
Heidelberg, 2004.

8. Chih-Chun Chen, Sylvia B. Nagl, and Christopher D. Clack. Multi-level behaviours
in agent-based simulation: colonic crypt cell populations. Proceedings of the Sev-
enth International Conference on Complex Systems, 2008.

9. Chih-Chun Chen, Sylvia B. Nagl, and Christopher D. Clack. Identifying Multi-
Level Emergent Behaviors in Agent-Directed Simulations using Complex Event
Type Specifications. Simulation, 86(1):41–51, October 2010.

10. Peter A Corning. The re-emergence of “emergence”: A venerable concept in search
of a theory. Complexity, 7(6):18–30, 2002.

11. Jörg Denzinger and Jasmine Hamdan. Improving observation-based modeling of
other agents using tentative stereotyping and compactification through kd-tree
structuring. Web Intelligence and Agent Systems, 4:255–270, 2006.

12. Jörg Denzinger and Michael Kordt. Evolutionary On-line Learning of Cooperative
Behavior with Situation-Action-Pairs. In Proceedings of the Fourth International
Conference on MultiAgent Systems (ICMAS-2000), pages 103–110, Washington,
DC, USA, 2000. IEEE Computer Society.

13. G Desmeulles, G Querrec, P Redou, S Kerdelo, L Misery, V Rodin, and J Tisseau.
The virtual reality applied to biology understanding: The in virtuo experimenta-
tion. Expert Systems With Applications, 30(1):82–92, 2006.

14. Jean-Loius Dessalles and Denis Phan. Emergence in multi-agent systems: cogni-
tive hierarchy, detection, and complexity reduction part I: methodological issues.
Artificial Economics, 564:147–159, September 2006.

15. Alan Dorin and Jon McCormack. Self-assembling dynamical hierarchies. Artificial
life eight, page 423, 2003.

16. M Eigen and P Schuster. The hypercycle. Naturwissenschaften, 65(1):7–41, 1978.
17. Thomas Eissing, Lars Kuepfer, Corina Becker, Michael Block, Katrin Coboeken,

Thomas Gaub, Linus Goerlitz, Juergen Jaeger, Roland Loosen, Bernd Ludewig,

Michaela Meyer, Christoph Niederalt, Michael Sevestre, Hans-Ulrich Siegmund,
Juri Solodenko, Kirstin Thelen, Ulrich Telle, Wolfgang Weiss, Thomas Wendl, Ste-
fan Willmann, and Joerg Lippert. A computational systems biology software plat-
form for multiscale modeling and simulation: integrating whole-body physiology,
disease biology, and molecular reaction networks. Frontiers in Physiology, 2(1–10),
February 2011.

18. E.Z. Erson and M.C. Cavusoglu. A software framework for multiscale and multi-
level physiological model integration and simulation. Engineering in Medicine and
Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the
IEEE, 2008:5449–5453, 2008.

19. R L Goldstone and L W Barsalou. Reuniting perception and conception. Cognition,
65(2-3):231–62, January 1998.

20. Pedro Pablo González, Maura Cárdenas, David Camacho, Armando Franyuti, Oc-
tavio Rosas, and Jaime Lagúnez-Otero. Cellulat: an agent-based intracellular sig-
nalling model. Bio Systems, 68(2-3):171–85, 2003.

21. H Haken. Synergetics : an introduction : monequilibrium phase transitions and
self-organization in physics, chemistry and biology. Springer-Verlag, Berlin, 1977.

22. S Haykin. Neural Networks: A Comprehensive Foundation. Macmillan, New York,
1994.

23. Chi-Ying Huang and James E. Ferrell. Ultrasensitivity in the mitogen-activated
protein kinase cascade. Proceedings of the National Academy of Sciences of the
United States of America, 93(19):10078–10083, September 1996.

24. Christian Jacob and Ian Burleigh. Biomolecular Swarms: An Agent-based Model
of the Lactose Operon. Natural Computing, 3(4):361–376, December 2004.

25. Stuart Kauffman. At Home in the Universe: The Search for the Laws of Self-
Organization and Complexity. Oxford University Press, 1995.

26. Salim Khan, Ravi Makkena, Foster McGeary, Keith Decker, William Gillis, and
Carl Schmidt. A multi-agent system for the quantitative simulation of biological
networks. In AAMAS ’03: Proceedings of the second international joint conference
on Autonomous agents and multiagent systems, pages 385–392, New York, NY,
USA, 2003. ACM.

27. Boris N. Kholodenko. Negative feedback and ultrasensitivity can bring about
oscillations in the mitogen-activated protein kinase cascades. European journal of
biochemistry, 267(6):1583–1588, March 2000.

28. O Kniemeyer, G Barczik, R Hemmerling, and W Kurth. Relational Growth
Grammars—A Parallel Graph Transformation Approach with Applications in Bi-
ology and Architecture. In Applications of Graph Transformations with Industrial
Relevance: Third International Symposium, AGTIVE 2007, Kassel, Germany, Oc-
tober 10-12, 2007, Revised Selected and Invited Papers, pages 152–167, Berlin, Hei-
delberg, 2008. Springer-Verlag.

29. Christophe Lavelle, Hugues Berry, Guillaume Beslon, Francesco Ginelli, Jean-
Louis J.L. Giavitto, Zoi Kapoula, A. Le Bivic, Nadine Peyrieras, Ovidiu Radulescu,
Adrien Six, Others, André Le Bivic, Véronique Thomas-Vaslin, and Paul Bourgine.
From Molecules to organisms: towards multiscale integrated models of biological
systems. Theoretical Biology Insights, 1:13–22, 2008.

30. J Li and M Kwauk. Exploring complex systems in chemical engineering–the multi-
scale methodology. Chemical Engineering Science, 58(3-6):521–535, 2003.

31. J B MacQueen. Some Methods for Classification and Analysis of MultiVariate
Observations. In L M Le Cam and J Neyman, editors, Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297.
University of California Press, 1967.

32. M L Martins, S C Ferreira Jr, and M J Vilela. Multiscale models for biological
systems. Current Opinion in Colloid {&} Interface Science, 15(1-2):18–23, 2010.

33. Roeland M H Merks and James A Glazier. A cell-centered approach to developmen-
tal biology. Physica A: Statistical Mechanics and its Applications, 352(1):113–130,
2005.

34. H. Penny Nii. Blackboard systems. STAN-CS. Dept. of Computer Science, Stanford
University, 1986.

35. Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of
Plants. Springer-Verlag, 1996.

36. Tiana Ralambondrainy, Rémy Courdier, and Denis Payet. An Ontology for Obser-
vation of Multiagent Based Simulation. In IAT Workshops, pages 351–354. IEEE
Computer Society, 2006.

37. Steen Rasmussen, Nils A Baas, Bernd Mayer, Martin Nilsson, and Michael W
Olesen. Ansatz for dynamical hierarchies. Artificial Life, 7(4):329–353, March
2002.

38. Isaac Salazar-Ciudad. Tooth Morphogenesis in vivo, in vitro, and in silico. Current
Topics in Developmental Biology, 81:342, 2008.

39. Abbas Sarraf Shirazi, Sebastian von Mammen, and Christian Jacob. Adaptive
modularization of the MAPK signaling pathway using the multiagent paradigm.
In PPSN’10: Proceedings of the 11th international conference on Parallel problem
solving from nature: Part II, volume 6239 of PPSN’10, pages 401–410. IEEE Press,
September 2010.

40. Abbas Sarraf Shirazi, Sebastian von Mammen, and Christian Jacob. Hierarchical
self-organized learning in agent-based modeling of the MAPK signaling pathway.
In Evolutionary Computation (CEC), 2011 IEEE Congress on, pages 2245–2251,
June 2011.

41. Peter Schuster. How does complexity arise in evolution. Complex., 2(1):22–30,
September 1996.

42. David Servat, Edith Perrier, Jean-Pierre Treuil, and Alexis Drogoul. When Agents
Emerge from Agents: Introducing Multi-scale Viewpoints in Multi-agent Simula-
tions. In Proceedings of the First International Workshop on Multi-Agent Systems
and Agent-Based Simulation, pages 183–198, London, UK, 1998. Springer-Verlag.

43. Abbas Sarraf Shirazi, Sebastian von Mammen, Iman Yazdanbod, and Christian
Jacob. Self-Organized Learning of Collective Behaviours in Agent-Based Simula-
tions. In H Sayama, A A Minai, D Braha, and Y Bar-Yam, editors, ICCS 2011 - 8th
International Conference on Complex Systems, Boston, MA, USA, 2011. NECSI
Knowledge Press, NECSI Knowledge Press.

44. Tamás Vicsek and Anna Zafiris. Collective Motion. Reviews of Modern Physics,
2010.

45. Sebastian von Mammen and Christian Jacob. The Evolution of Swarm Gram-
mars: Growing Trees, Crafting Art and Bottom-Up Design. IEEE Computational
Intelligence Magazine, August 2009.

46. Sebastian von Mammen, Jan-Philipp Steghöfer, Jörg Denzinger, Christian Ja-
cob, and Jan-Philipp Stehöfer. Self-organized middle-out abstraction. In Car-
los Bettstetter, Christian and Gershenson, editor, IWSOS 2011: 5th International
Workshop on Self-Organizing Systems, pages 26–31. Springer Berlin / Heidelberg,
2011.

47. Dawn C Walker and Jennifer Southgate. The virtual cell–a candidate co-ordinator
for ’middle-out’ modelling of biological systems. Brief Bioinform, 10(4):450–461,
July 2009.

48. Le Zhang, Zhihui Wang, Jonathan a Sagotsky, and Thomas S Deisboeck. Multiscale
agent-based cancer modeling. Journal of mathematical biology, 58(4-5):545–59,
April 2009.

49. Jean-Daniel Zucker. A grounded theory of abstraction in artificial intelligence.
Philosophical transactions of the Royal Society of London Series B, Biological sci-
ences, 358(1435):1293–1309, July 2003.

